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Abstract: - In this study, we define d-Tribonacci polynomials. Some combinatorial properties of the d-
Tribonacci polynomials with matrix representations are obtained with the help of Riordan arrays. In addition, d-
Tribonacci number sequence, a new generalization of this number sequence, is obtained by considering the 
Pascal matrix. With the help of the Pascal matrix, two kinds of factors of d-Tribonacci polynomials are found.  
Also, infinite d-Tribonacci polynomials matrix and the inverses of these polynomials are found. 
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1 Introduction 
The Tribonacci number sequence is inspired by the 
Fibonacci number sequence and is a number 
sequence with 3-term recurrence. It is used in many 
branches, as in the Fibonacci number sequence. 
Many generalizations of this number sequence such 
as Padovan, Narayana, Perrin have been put forward 
and studied [ 1-8, 10-12]. 

The term Tribonacci was first used by Feinberg in 
1963 [14]. Later, many basic features were studied 
[15-19]. 

We know that the Tribonacci numbers  are 
defined by  

, 3 

with 0, 0 and 1 [9]. 

In this study, a new Tribonacci number sequence is 
obtained with the help of Riordan sequence and 
Pascal matrix by bringing a new perspective to the 
existing definitions of traditional number sequences. 
Additionally, based on Pascal's matrix, we factor 
two types of d-Tribonacci polynomials. 

Also, infinite d-Tribonacci polynomial matrices and 
the inverses of these polynomials are found. 

It is thought that if these values are placed in the 
Riordan array appropriately by working on the 

initial values, it will allow similar studies to be 
made on many number sequences where a Riordan 
array is given as an infinite lower triangular matrix 

  if its th column generating function 

is    for . Note that the first column 

is indexed by 0 and we accept  [13]. 

Throughout this paper, let 	  and 	  be 
polynomials with real coefficient for 1,… ,
1. 

Definition 1.1 d-Fibonacci polynomials are given 
as: 

⋯
                                                   (1) 

with  for  and  [12]. 

Similarly, d-Lucas polynomials are defined by 

⋯
                                                 (2) 

with 0	for	 0	and	
2	and	  [12]. 
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The Riordan matrices is given as a set of matrices  
  where  are complex 

numbers [13]. 

The Riordan group is defined as a set of infinite 
lower-triangular integer matrices where each matrix 
is defined by pair of formal power series 

 and  with  

and  [13]. 

In this study, we describe new generalizations of 
Tribonacci polynomials. Some combinatorial 
properties of matrix representations of d-Tribonacci 
polynomials are obtained with the help of Riordan 
arrays. In addition, d-Tribonacci number sequence is 
obtained by considering the Pascal matrix. Based on 
the Pascal matrix, d-Tribonacci polynomials have  
two types of factors..  Also, infinite d-Tribonacci 
polynomial matrices and the inverses of these 
polynomials are given. 

 

2 Generalization of Tribonacci 
Polynomials 

Definition 2.1.  Tribonacci polynomials are 
given by 

⋯          (3) 

with 0, 1, 1 and 
0 for 0. 

A few terms of these polynomials: 

0, 1, 1, , 

 

2  

From equation (3), its characteristic equation are 
obtained as 

⋯ 0. 

Its roots: , , … , . 

Theorem 2.3. Generating function of	 d‐Tribonacci 
polynomials  is 

,

1 ⋯
. 

Proof. We have  

,
⋯                                          (4) 

Multiply Eq. (4) by 

, , …	 , , respectively. 
The following equations are obtained. 

, ⋯ 

⋮ 

,

⋯ 

If the necessary calculations are made, we get 

, 1 ⋯

0 ⋯. 

,
⋯

. 

Its Binet formula has the following form 

 

We get the following equation for each value of .  

 

 

⋮ 
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Multiplying both sides of above equations by 
, , … , , respectively, we have: 

 

 

 

⋮ 

 

The sum of the left-hand side of the equations: 

1 ⋯
. 

The sum of the right-hand side of the equations: 

1 ⋯

1
1

 

so, we get 

1 ⋯ 1
. 

Theorem 2.4. We have the following equation for 0. 

⋯ 	
, , … ,

…
⋯

. 

Proof. Generating function for Tribonacci polynomials 

1 ⋯
 

⋯  

2
, , … ,

… ⋯

⋯ 	

 

⋯ 	
, , … ,

…
⋯

 

as desired. 
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Theorem 2.5. The sum of the Tribonacci 
polynomials: 

1
1 ⋯

. 

Proof. We have 

⋯ ⋯ 

Multiplying the last equation by , … , , 
respectively then we obtain 

	
⋯ ⋯ 

	⋮	 

⋯ ⋯ 

From here, we have 

1 ⋯ 1. 

So, we get 

1
1 ⋯

. 

From [12], the  Fibonacci polynomials matrix 
 has the following form  

			 		⋯						 			
1												0																								0									
	0						 ⋱																																							
																																																
									⋱																																						

			0										0														1									0													

       

                                                      (5) 

where 1 . 

Matrix representation for  is given in 
following theorem. 

Theorem 2.7. The representation for  is as 
follows: 

								 ⋯ 								⋯									
															 ⋯ 								⋯									

												⋮																																																																⋮																																																																							⋮							
												 ⋯ 			⋯							 	

			 6  

 
Proof. Let’s apply the induction over  to prove it. 

For 1, 

								 ⋯ 								⋯									
															 ⋯ 								⋯									

												⋮																																																																⋮																																																																							⋮							
												 ⋯ 			⋯							 	
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			 		⋯						 			
1												0																								0									
	0						 ⋱																																							
																																																
									⋱																																						

			0										0														1									0													

                                                                                                            (7) 

From the definition of , the matrices in (5) and (7) are equal. 

Suppose that the result satisfies for . So, we obtain 

								 ⋯ 								⋯									
															 ⋯ 								⋯									

												⋮																																																																⋮																																																																							⋮							
												 ⋯ 			⋯							 	

 

Let’s prove it for 1. So, we get 

 

								 ⋯ 								⋯									
															 ⋯ 								⋯									

												⋮																																																																⋮																																																																							⋮							
												 ⋯ 			⋯							 	

. 

 

			 		⋯						 			
1												0																								0									
	0						 ⋱																																							
																																																
									⋱																																						

			0										0														1									0													

 

								 ⋯ 								⋯									
															 ⋯ 								⋯									

												⋮																																																																⋮																																																																							⋮							
												 ⋯ 			⋯							 	

 

Corollary 2.8. For , 0, we have 

⋯

⋯  

Proof. We know 

	 . 

The first row and column of matrix  is the 
result. 

Lemma 2.9. For 1, 

. 

Proof. For 2 equality is true  
1 

Let the equality be true for . For 1, 
we show that the equation is true. 
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⋯
,         

⋯
.     

Theorem 2.10. For 2, 0, 

⋯ 	
, , … ,

…
, ,…,

⋯

⋯  

                                                                                                                          (8) 

Proof. For 1, we have 

⋯
. 

Let us show the right-hand side of (8) by RH. 

For 0, we have 

⋯ 	
, , … ,

…
, ,…,

⋯

⋯  

⋯ 	
, , … ,

…
, ,…,

⋯

⋯  

⋯ 	
, , … ,

…
, ,…,

⋯

⋯
⋯ 	

, , … ,
…

, ,…,
⋯

 

⋯

⋯

⋯  

 from characteristic equation, we obtain 

∑ . 

as desired. 

Lemma 2.11. For 1, 

. 

Proof. From (2) we get 

  
⋯  

⋯
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3 The Infinite Tribonacci Polynomials 
Matrix 

The Tribonacci polynomials matrix is showed 
by 

, ,…, , ,  

and defined as follows 

1

																	⋮															

										0									.
										1											.
				
													.
.

.       

, , 

where  2  

     and      

This Tribonacci polynomial matrix can also be 
written as, 

0 0 …
0 …

…
⋮ ⋮ ⋮ ⋮ ⋮ …

 

Note that  is a Riordan matrix. 

Theorem 3.1. The first column of matrix  is 

1, , , … . 

From the Riordan group theory, we get the 
generator function of the first column as follows: 

, ,…, , ,

1
1 ⋯

. 

Proof. Generating functions of the first column of 
matrix	  is  

1 ⋯. 

If we do operations like the proof of Theorem 2.4, 
then 

⋯
. 

The desired expression is obtained.  

From the Riordan matrix,  . 

,
1

1 ⋯
, . 

If the Tribonacci polynomials matrix  is 
finite, then the matrix is 

0 0 0 0 …
1 0 0 0 …

⋮ ⋮ ⋮ ⋮ ⋮ …
⋮ ⋮

 

and  
1 1. 

We give two factorizations of Pascal Matrix with 
the Tribonacci polynomials matrix. Now, we 
give a matrix , , 

,
1
1

2
1

⋯

2
1

 

So, we get  

1 0 0 …
1 1 0 …

1 2 1 …
1 3 2 3 …

⋮ ⋮ ⋮ …

 

Thus we can introduce the first factorization of 
the infinite Pascal matrix. 

Theorem 3.2. The factorization of the infinite 
Pascal matrix is  

. 

Proof.  The generating function from the first 
column of matrix  is 

1 1 1
⋯ 
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1 ⋯ ⋯
⋯ ⋯

⋯  

1
1 1 1

⋯
1

 

⋯
. 

From the Riordan matrix, we get  as 
follows 

2
3 2 ⋯ 

2 3 ⋯
2 3 ⋯ ⋯

2 3 ⋯  

⋯
. 

From definition of the Riordan array, 	  column 
generating function is  

. 

Thus,  has the following form 

,

1 ⋯
1

,
1

. 

From the definitions of infinite Pascal matrix and 
the infinite Tribonacci polynomials matrix, the 
Riordan representations: 

, , 

⋯
, . 

From the matrix multiplication, the proof is ok. 

Secondly, we introduce other factorization of the 
Pascal matrix with the Tribonacci polynomials 
matrix. Let’s give an infinitive , 	  as 
follows. 

,

⋯ . 

We give the infinite  by 

 

1 0 0 0 …
1 1 0 0 …

1 2 2 1 0 …
1 3 3 3 2 3 1 …

⋮ ⋮ ⋮ ⋮ …

 

Now, we introduce the final factorization of the 
infinite Pascal matrix. 

Theorem 3.3. The factorization of the infinite 
Pascal matrix: 

. 

Proof. The proof is similar to Theorem 3.2. 

Now, we can give the inverse of Tribonacci 
polynomials matrix by helping the definition of the 
reverse element of the Riordan group in [11].  

Corollary 3.4 The inverse of Tribonacci 
polynomial: 

1 ⋯
, . 

 
4 Conclusion 
In this study, new generalized Tribonacci 
polynomials have been introduced and studied. 
Some combinatorial properties of the Tribonacci 

polynomials matrix representations are obtained 
with the help of Riordan arrays. In addition, d-
Tribonacci number sequence has been obtained by 
considering the Pascal matrix. Based on the Pascal 
matrix, two kinds of factors of d-Tribonacci 
polynomials were found.  Also, infinite 

Tribonacci polynomial matrices and the inverses of 
these polynomials were found. 
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