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Abstract: - In this paper, we propose a method for estimating Normal distribution parameters using genetic al-
gorithm. The main purpose of this research is to identify the most efficient estimators among three estimators
for Normal distribution; Maximum likelihood method (ML), the least square method (LS), and genetic algorithm
(GA) via numerical simulation and three real data, carbonation depth of Concrete Girder Bridges data examples
which are based on performance measures such as The Root Mean Square Error (RMSE), Kolmogorov-Smirnov
test, and Chi squared test. The simulation studies are conducted to evaluate the performances of the proposed
estimators and provide statistical analysis of the real data set. The numerical results, χ2, show that the genetic
algorithm performs better than other methods for actual data and simulated data unless the sample size is small.
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1 Introduction
The Normal distribution or Gaussian distribution
plays an important role in several fields of mathemat-
ics and its applications. The Normal distribution has
been widely used to describe the probability distri-
bution of carbonation depth, [1],[2],[3],[4]. The car-
bonation depth is a point deterioration factor to de-
termine the durability of the concrete structures. The
characterization of carbonation depth is essential for
the carbonation reliability analysis of Concrete Girder
Bridges. Carbonation depth is usually employed in
carbonation service life prediction of existing Con-
crete Girder Bridges as deterministic coefficients.

Several estimations, [5],[6],[7] for estimating pa-
rameters have been proposed. The authors in [7], us-
ing the Markov Chain Monte Carlo (MCMC) method
for estimating parameters. Li, Yan, Wang and Hou,
[6], proposed two parameter estimations for the Nor-
mal distribution: the least square method and the
Bayesian quantile method. They found that the least
square method is the best parameter estimation. Ge-
netic algorithm was first introduced by Holland, [8],
in 1992 and represented a population-based optimiza-
tion method. This algorithm is a method to find an ap-
proximate solution for optimization problems which
is used widely in several fields, [9],[10]. In parame-
ter estimation, some researchers, [11],[12],[13], stud-

ied a method to find parameters by using genetic al-
gorithms. The authors in [11], studied genetic algo-
rithms and proposed a new genetic algorithm. They
found that genetic algorithms are effective in perfor-
mance indicators improvement. The authors in [12],
used genetic algorithm (GA) to find estimators of
Skew Normal distribution. They found that the GA
has a high performance where traditional search tech-
niques fail. In this paper, we study the genetic al-
gorithm, a well-known search technique. The GA is
inspired by a metaphor of the evolution process ob-
served in nature.

The main purpose of this research is to identify the
most efficient estimators among three estimators for
the Normal distribution via actual data and simulated
data. The rest of this paper is organized as follows:
Section 2 discusses a short introduction of the Nor-
mal distribution, followed by the Normal distribution
parameter estimation in Section 3. Accuracy judg-
ment criteria are considered in Section 4. The per-
formances of all methods are compared via a detailed
simulation study in Section 5. Three parameter esti-
mations are applied to three real data sets of Carbon-
ation Depth of Concrete girder bridges, in Section 6.
Finally, the main conclusions of this study are sum-
marized in the last section.
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2 Normal Distribution
The Normal distribution is also called Gaussian dis-
tribution.

A random variable x has a Normal distribution if
its probability density function is defined by Equation
(1).

The probability density function (pdf) of the Nor-
mal distribution can be written as

f(x) =
1

σ
√
2π

e−
1

2(
x−µ

σ )
2

, (1)

whereµ and σ are the location parameter and the scale
parameter, respectively.
The cumulative distribution function (CDF) of the
Normal distribution is given by

F (x) =
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F (x) = Φ
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where Φ(x) = 1√
2π

∫ x
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2 dt.

3 Estimation Methods
In this section, the three considered estimation meth-
ods were described to obtain the estimates of the pa-
rameters µ and σ of the Normal distribution.

3.1 Maximum Likelihood Method
Let x1, x2, . . . , xn be observed values of
X1, X2, . . . , Xn, n independent random variables
having the Normal distribution with parameters µ 
and σ.
The maximum likelihood function of the sample,
denote by L(µ, σ|x1, x2, . . . , xn), is given by

L(µ, σ|x1, x2, . . . , xn) =
n∏

i=1

f(xi)

=

n∏
i=1

1

σ
√
2π

e−
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2(
xi−µ

σ )
2

,

by taking ln, we get

lnL(µ, σ|x1, x2, . . . , xn)

= −n

2
ln(2πσ2)− 1

2σ2

n∑
i=1

(xi − µ)2.

(3)

To obtain the maximum likelihood estimators, we
have to maximize Equation (3), partial derivatives

of lnL(µ, σ|x1, x2, . . . , xn) functions with respect to
each parameter are taken, and we set them equal to 0
as follows:

∂

∂µ
lnL(µ, σ|x1, x2, . . . , xn) = 0,

∂

∂σ
lnL(µ, σ|x1, x2, . . . , xn) = 0.

The maximum likelihood estimators of µ and σ, de-
noted by µ̂ML and σ̂ML, respectively, are obtained by

µ̂ML =
1

n

n∑
i=1

xi,

σ̂ML =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2,

where x̄ is the sample mean.

3.2 Least Square Method
Let X1, X2, . . . , Xn be n independent random vari-
ables having the Normal distribution with parameters
µ and σ. Suppose that X(1) ≤ X(2) ≤ . . . ≤ X(n)

are the order statistics. Let the empirical distribution
function of X be denoted by

Fn(x) =


0, x < X(1),
k

n
, X(k) ≤ x < X(k+1), k = 1, 2, . . . , n− 1

1, x > X(n).

(4)

The following cumulative distribution function F (x)
is calculated by

F (x) =
1

σ
√
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dt. (5)

The CDF of Normal F (x) can be expanded in Taylor
series approximation as follow:

F (x) = Φ

(
x− µ

σ

)
, (6)

where

Φ(x) ≈ 1

2
+

1√
2π

N∑
k=0

(−1)kx2k+1

2kk!(2k + 1)
.

For the Normal distribution, the least square method
estimates µ̂ and σ̂ of the parameters µ and σ, respec-
tively, are obtained by minimizing the function:

E(µ, σ) =

n∑
i=1

(F (xi)− Fn(xi))
2, (7)
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where F (xi) and Fn(xi) are obtained by Equation (4)
and (5), respectively. By solving the following equa-
tions:

∂

∂µ
E(µ, σ) = 0,

∂

∂σ
E(µ, σ) = 0.

We denote by

A(xi, µ, σ) =

N∑
k=0

(−1)k
(
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σ

)2k

2kk!

and

B(xi, µ, σ) =

N∑
k=0

(−1)k+1

(
xi − µ

σ

)2k

2kk!(2k + 1)
,

µ̂, σ̂ are the estimators of the parameters µ and σ, re-
spectively. Using some algebraic manipulations, the
estimators satisfy the following equations:

σ̂ =

∑n
i=1 Fn(xi)A(xi, µ, σ)∑n
i=1 F (xi)

1

σ
A(xi, µ, σ)

,

and

µ̂ =

∑n
i=1(F (xi)− Fn(xi))xiA(xi, µ, σ)∑n
i=1(F (xi)− Fn(xi))A(xi, µ, σ)

.

These equations are solved iteratively.

3.3 Genetic Algorithm
The main steps of the genetic algorithm (GA) are se-
lection, crossover, and mutation. In GA, each chro-
mosome (individual in the population, parameters)
represents a possible solution to a problem and is
composed of a string of genes. Kalra and Singh [14]
proposed a pseudo code of GA for optimization of
scheduling problems as follows:
Procedure GA
Determine the number of chromosomes generation
(Npop = 10000), and mutation rate (MR =
0.5).The number of chromosomes is 2 (µ and σ).
1. Initialization: Generating initial population P

consisting of N = 100 chromosomes. Every
gene represents a parameter (variables) in the so-
lution. This collection of parameters that forms
the solution is the chromosome. Therefore, the
population is a collection of chromosomes. As-
sume that the initial population P (1) is denoted
by

P (1) = [w
(1)
1 , w

(1)
2 , . . . , w

(1)
N ]

where w(1)
i = [µ(1), σ(1)]t is a vector of param-

eters for i = 1, 2, . . . , N . Also, the vector of
w

(m)
i , i = 1, 2, . . . , N, m = 1, 2, . . . , Npop

represents the values of the ith chromosome in the
population atmth iteration.

2. Fitness: Calculate the fitness value of each chro-
mosome using a fitness function. In this study,
the fitness values are defined by:

f
(m)
i =

1

i
, m = 1, 2, . . . , Npop

where f (m)
i represents the fitness value of the ith

chromosome atmth iteration.

3. Selection: Select the chromosomes for produc-
ing the next generation using the selection op-
erator, the worst chromosomes are replaced by
new chromosomes generated randomly from the
search space. We used the roulette wheel selec-
tion. The probability of choosing chromosome i
is equal to

pi =
f
(m)
i∑N

i=1 f
(m)
i

where f (m)
i is the fitness value of the ith chromo-

some in the population atmth iteration.

4. Crossover: Perform the crossover operation on
the pair of chromosomes obtained in step 3.

5. Mutation: Perform the mutation operation on
the chromosomes. The chromosome k for k =
1, 2 are mutated as follows:
random uk ∈ (0, 1), if uk < MR, then we mu-
tated the chromosome i.

6. Replacement: Update the population P (m) for
m = 2, 3, . . . by replacing bad solutions with bet-
ter chromosomes from offspring.

7. Repeat steps 3 to 6 until the stopping condition
is met. The stopping condition may be the max-
imum number of iterations or no change in the
fitness value of chromosomes for consecutive it-
erations.

8. Output the best chromosome (the best parame-
ter) as the final solution.

End Procedure

3.4 Goodness-of-Fit
To show how a theoretical probability function
matches with the observation data, three kinds of sta-
tistical errors are considered as the Goodness-of-fit.
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Generally, the smaller the errors, the better the fit is.
Let n be the number of data and k be the number of
classes, calculated by Sturges formula,

k = ⌈1 + 3.322 logn⌉.

The First one is the root mean square error (RMSE)
defined as

RMSE =

√√√√1

k

k∑
i=1

(Oi − Ei)2, (8)

where Oi is the actual value at time stage i, and Ei

is the value computed from correlation expression for
the same stage.
The second one is the Kolmogorov-Smirnov test
(KS), which is defined as the max error in CDFs

KS = max
x

|Fn(x)− F (x)|, (9)

where Fn(x) is the empirical cumulative distribution
function not exceeding x andF (x) is the CDF of Nor-
mal distribution.
The third judgment criterion is the Chi-squared test
given as:

χ2 =

k∑
i=1

(Oi − Ei)
2

Ei
. (10)

4 A Simulation Study
In this section, a simulation study was performed to
compare the performance of the different methods
discussed in Section 3. 2000 random samples of sizes
n = 10, 20, 30, 50, 100, 500, 1000, and 2000 were
generated from the Normal distribution. Since any
Normal distribution data can be standardized to have
a location parameter of 0 and scale parameter of 1,
only samples with parameters µ = 0 and σ = 1 were
generated. In order to compare the goodness-of-fit
of various pdfs to sample data, several statistics have
been used in studies related to data.

The RMSE is most useful when large errors are
particularly undesirable. The Kolmogorov–Smirnov
test has the advantage of considering the distribution
functions collectively. Advantages of the Chi-square
test include its robustness in data distribution, and
ease of calculation.

The most frequently used ones are the root mean
square error (RMSE), [15],[16], the Kolmogorov–
Smirnov test results (KS), [15],[17], and the Chi
squared test results (χ2), [15].

The results of the simulation study are presented in
Table 1-2. The following conclusions can be drawn:
1. All estimators of the parameters are unbiased, i.e.,
the estimators sometimes exceed the true value of the

n Parameter Estimation
ML LS GA

10 µ 0.5180 8.1768 0.6112
σ 0.8437 0.3664 0.8263
RMSE 0.7920 1.0227 0.7729
KS test 0.9939 4.7753 1.2699
χ2 4.9517 16.5301 4.7405

20 µ 0.2101 -7.6186 0.2315
σ 0.9042 5.0261 0.9481
RMSE 0.7993 1.3470 0.7919
KS test 0.7447 8.5721 1.0788
χ2 3.7719 19.3985 3.7027

30 µ 0.1314 0.1274 0.1330
σ 0.8238 1.1688 0.9273
RMSE 1.4151 1.5568 1.4122
KS test 2.0833 3.7360 2.1236
χ2 13.7865 15.2259 12.9437

50 µ 0.0932 4.7193 0.0890
σ 0.9458 8.1408 1.0836
RMSE 1.2694 2.4223 1.4442
KS test 1.7180 15.7167 3.2420
χ2 13.6696 25.6064 9.7582

100 µ -0.0520 -2.8979 -0.0821
σ 0.9920 3.3682 1.0383
RMSE 1.6756 3.7792 1.6742
KS test 2.6334 30.4071 1.9056
χ2 9.0434 46.5958 8.5079

500 µ 0.0236 0.2656 0.0276
σ 1.0694 1.2600 1.0831
RMSE 4.4704 7.1210 4.4631
KS test 5.0129 51.8562 5.9734
χ2 17.2298 48.2707 16.9679

Table 1: Comparison of the estimation methods for n =
10, 20, 30, 50, 100 and 500.

parameters. The biases of maximum likelihood esti-
mation and genetic algorithm of the parameters tend
to zero for large n
2. As the sample size increases, the estimates of µ and
σ generally approach their true values. An increase in
the sample size of the simulated The Normal distribu-
tion data generally results in the improvement of the
three methods. Overall, the RMSE, KS test, and χ2

values increase as the sample size increases.
3. The difference between the ML and GA is very lit-
tle for small sample sizes (n < 30), but it is slightly
more for larger sample sizes (n ≥ 30).
4. The LS value is higher than the others.

Moreover, we found that:
1. The ML is a commonly used method for parameter
estimation because it is simple and fast.
2. The LS is the iterative method, so the best param-
eter is based on the initial parameter. The genetic al-
gorithm is the iterative method, but the genetic algo-
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n Parameter Estimation
ML LS GA

1000 µ 0.0119 8.6916 -0.0064
σ 1.0588 7.3159 1.0875
RMSE 3.9538 28.6166 4.1776
KS test 6.9662 262.3597 5.2007
χ2 22.8076 383.9043 18.9865

2000 µ -0.0003 -0.2052 -0.0088
σ 1.0471 1.5086 1.0568
RMSE 5.6892 32.7658 5.5773
KS test 14.8244 98.7142 6.0461
χ2 19.3856 358.0330 18.4112

Table 2: Comparison of the estimation methods for n =
1000 and 2000.

rithm performance is better than ML and LS as ML
performance is better than LS.
3. According to χ2, the genetic algorithm has a
smaller χ2 value than other methods.

Therefore, ML and GA show identical perfor-
mance for estimating the µ and σ parameters of the
Normal distribution unless the sample size is larger.
However, the GA performs better for large sample
sizes than other methods considered here such as ML
and LS methods.

5 Application to Carbonation Depth
In this section, the parameter estimation methods
defined in Section 3 are applied to the real data-
carbonation depth. Three real data sets of carbonation
depth are analyzed to compare the considered three
estimation methods for the Normal distribution.
The first data set represents 12 measurements of the
carbonation depth of a reinforced concrete girder
bridge [6]: 12.5, 13.2, 13.9, 14.1, 14.3, 14.6, 14.9,
15, 15.3, 15.7, 16.4, 17.1 mm.
The second data set represents 18 measurements of
the carbonation depth of the Chorng-ching Viaduct
[2]: 8, 11, 15, 15, 17, 18, 20, 22, 22, 26, 28, 30, 30,
31, 33, 38, 38, 40 mm.
The third data set represents 27 measurements of the
carbonation depth of pier of a reinforced concrete
girder bridge [18]: 2, 2.1, 2.2, 2.3, 2.3, 2.3, 2.4, 2.5,
2.6, 2.7, 2.8, 2.9, 3.0, 3.2, 3.2, 3.3, 3.3, 3.3, 3.4, 3.4,
3.4, 3.5, 3.5, 3.6, 3.7, 3.8, 3.9 mm.

Method Estimated parameter RMSE KS test χ2

µ σ

ML 14.7500 1.2923 0.7851 0.7174 5.1521
LSM 14.5703 1.2197 0.7954 0.2285 5.9343
GA 14.8241 1.2976 0.7861 0.9394 5.0878

Table 3: Parameter estimations, RMSE, KS test, and Chi
squared test for the first data set.

Method Estimated parameter RMSE KS test χ2

µ σ

ML 24.5556 9.5808 1.1323 1.4957 11.7405
LSM 23.5642 10.6848 1.1626 1.1159 12.7121
GA 14.8356 1.2942 0.7865 0.9664 5.0868

Table 4: Parameter estimations, RMSE, KS test, and Chi
squared test for the second data set.

Method Estimated parameter RMSE KS test χ2

µ σ

ML 2.9852 0.5702 1.5836 2.7463 15.3773
LSM 2.9697 0.6770 1.5492 2.2868 15.0384
GA .0193 0.6512 1.5134 2.3795 14.6748

Table 5: Parameter estimations, RMSE, KS test, and Chi
squared test for the third data set.

Table 3, 4, and 5 show the estimators of µ and
σ parameters of the Normal distribution with val-
ues of RMSE, KS test, and χ2 on carbonation depth
real data. According to χ2, the genetic algorithm
yields a smaller χ2 value than other methods. Ac-
cording to the KS test, the least square method yields
a smaller KS value than other methods. According
to the RMSE, the genetic algorithm yields a smaller
χ2 value than other methods. The genetic algorithm
yields a smaller χ2 value than other methods.

The results indicate that the genetic algorithm is
better than other methods in terms of RMSE and χ2

values. Hence, for the real given data sets of carbon-
ation depth, we concluded that the genetic algorithm
method is the best among the three considered esti-
mation methods.

6 Conclusions
We proposed a parameter estimation to estimate pa-
rameters for the Normal distribution based on the ge-
netic algorithm. The proposed estimation and the
most common estimation were applied to real data
sets. We compare the performance of three methods
for the Normal distribution through a simulation study
and three real data sets of carbonation depth. There-
fore, it is concluded from both simulated and real data
sets that all the methods show identical performance
for estimating the parameters of the Normal distribu-
tion. However, the genetic algorithm performs better
than other methods, such as the maximum Likelihood
method and least square method. In future work, we
will adjust the genetic algorithm for estimating pa-
rameters.
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