Raising all group elements to a common power

HUI-TING CHEN, CHING-LUEH CHANG
Department of Computer Science and Engineering
Yuan Ze University
No. 135, Yuandong Rd., Zhongli Dist., Taoyuan City Taiwan (R.O.C.)
TAIWAN

Abstract: - We give a deterministic $O(|G|)$-time algorithm that, given the multiplication table of a finite group (G, \cdot) and nonzero $p, q \in \mathbb{Z}$, finds all solutions (if any) to $x^{p}=g^{q}$ for all $g \in G$.

Key-Words: - inverting element, group, multiplication table and power.
Received: July 4, 2022. Revised: January 5, 2023. Accepted: February 4, 2023. Published: March 2, 2023.

1 Introduction

Many properties of a group-like structure can be discovered from its multiplication table. Zumbrägel et al., [1] , consider the problem of learning the multiplication table of a groupoid (G, \cdot) by making the minimum number of queries, each for a product $a \cdot b$, with $a, b \in G$. An interesting problem is to determine algebraic properties of a finite group G from $\Psi(G)=\sum_{g \in G} o(g)$, where $o(g)$ denotes the order of $g \in G$, [2]-[5]. Jahani et al., [6], find a pair of finite groups G and S of the same order such that $\Psi(G)<\Psi(S)$, with G solvable and S simple.

Now we are interested in efficiently finding a given power of all elements simultaneously. By convention, the multiplication in G costs $O(1)$ time. Let G be a group with n elements. If we want to calculate the q th power of each element, how long does it take? The brute force method takes $O(q)$ time to calculate the q th power of an element. So the total time is $O(n q)$.

Recursive doubling method reduces the time required to calculate the q th power of an element to $O(\log q)$, so the total time can be reduced to $O(n \log q)$. Kavitha, [7], presents an $O(n)$ algorithm that determines if two Abelian groups with n elements each are isomorphic. Similar research can see, [8] and [9]. The main ingredient in this result is an $O(|G|)$-time algorithm that finds the orders of all elements in any finite group G given as input the multiplication table of G. Inspired by Kavitha's result, we give a deterministic $O(|G|)$-time algorithm that, given the multiplication table of a finite group ($G, \cdot)$ and nonzero $p, q \in \mathbb{Z}$, finds all solutions (if any) to $x^{p}=g^{q}$ for all $g \in G$.

Primitive roots are elements of order $|G|$ and have been extensively studied. See, e.g., [10]. To find the
solutions to $x^{p}=g^{q}$ for each $g \in G$, it suffices to do the following:
(1) Calculate g^{q} for each $g \in G$.
(2) Find a primitive root r and calculate $r^{1}, r^{2}, \ldots, r^{|G|}$. When some r^{j} matches any value calculated in step 1, a solution for $x^{p}=g^{q}$ is found.

Unlike in our result, however, the above procedure takes $\omega(|G|)$ time.

2 Preliminaries

We refer to some basic definitions in algebra, [11].For more detail, please see, [12] and [13].

Definition 1. A nonempty set G endowed with a binary operation $\cdot, G \cdot G \rightarrow G$ is called a groupoid. An element $e \in G$ is an identity if and only if for all $x \in G, x \cdot e=$ $e \cdot x=x$. If y has a unique inverse, it's denoted y^{-1}.
Definition 2. A groupoid (G, \cdot) is

- Abelian if $x \cdot y=y \cdot x$ for all $x, y \in G$.
- associative if $x \cdot(y \cdot z)=(x \cdot y) \cdot z$ for all $x, y, z \in$ G.
- a quasigroup iffor all $x, y \in G$, there are unique elements $a, b \in G$ such that $x \cdot a=y$ and $b \cdot x=y$.
- a loop if (G, \cdot) is a quasigroup with an identity.

Definition 3. The order of a finite group (G, \cdot) refers to the number of elements of G. The order of an element a in a finite group (G, \cdot) refers to the least positive integer h which satisfies $a^{h}=e$, where e is the identity of ($G, \cdot)$.

Input: The multiplication table of a group (G, \cdot) and $q \in \mathbb{Z}^{+}$
Compute g^{-1} for all $g \in G$;
Compute the order of g, denoted $\operatorname{order}(g)$, for all
$g \in G$;
for all $g \in G$ do
$\operatorname{ans}[g] \leftarrow \perp$;
end for
for $\ell=1,2, \ldots,|G|$ do
$g \leftarrow$ the ℓ th element of G;
if ans $[g]=\perp$ then $k \leftarrow \min \{q \bmod \operatorname{order}(g)\} \cup\{i \geq 2 \mid$ $\left.\left(\operatorname{ans}\left[g^{i-1}\right] \in G\right) \wedge\left(\operatorname{ans}\left[g^{i}\right] \in G\right)\right\} ;$
Calculate g, g^{2}, \ldots, g^{k};
if $k=(q \bmod \operatorname{order}(g))$ then
$\operatorname{ans}[g] \leftarrow g^{k}$;
else
$\operatorname{ans}[g] \leftarrow \operatorname{ans}\left[g^{k}\right] \cdot\left(\operatorname{ans}\left[g^{k-1}\right]\right)^{-1} ;$
end if
for $j=2,3, \ldots, k-1$ do ans $\left[g^{j}\right] \leftarrow$ ans $\left[g^{j-1}\right] \cdot \operatorname{ans}[g]$;
end for
end if
end for
Figure 1: Algorithm All Powers outputting g^{q}, stored in ans $[g]$, for all $g \in G$

Definition 4. For any finite group (G, \cdot), we say ($H, \cdot)$ is a subgroup of (G, \cdot) if $H \subseteq G$ and for any $x, y \in H$, $x \cdot y \in H$.

3 Raising powers

To begin with, we check that ans $\left[g^{k}\right] \in G$ and ans $\left[g^{k-1}\right] \in$ G in line 14 of algorithm All Powers in Fig. 11; hence line 14 tries neither to invert \perp nor to multiply a group element with \perp.

Lemma 5. In line 14 of All Powers, ans $\left[g^{k-1}\right] \in G$ and ans $\left[g^{k}\right] \in G$.
Proof. Clearly, $k \neq q$ in line 14. So line 9 implies the lemma.

Lemma 6. At any time, ans $[a]=a^{q}$ for all $a \in G$ satisfying ans $[a] \neq \perp$.
Proof. Assume as induction hypothesis that the lemma is true up to the $(\ell-1)$ th iteration of the for loop in lines $6-20$, where $\ell \geq 1$. In the ℓ th iteration:

- As $g^{q \bmod \operatorname{order}(q)}=g^{q}$, line 12 maintains the lemma.
- Upon reaching line 14 , ans $\left[g^{k-1}\right] \in G$ and ans $\left[g^{k}\right] \in$ G by Lemma 5, implying ans $\left[g^{k-1}\right]=\left(g^{k-1}\right)^{q}$ and ans $\left[g^{k}\right]=\left(g^{k}\right)^{q}$ by the induction hypothesis (note that ans $\left[g^{k-1}\right]$ and ans $\left[g^{k}\right]$ are not yet modified in the current iteration). So line 14 calculates ans $[g]$ as g^{q}.
- Upon reaching Line 17 , we must have just run line 12 or line 14 , resulting in ans $[g]=g^{q}$ by the analyses above. So lines 16-18 calculate ans $\left[g^{j}\right]$ as $\left(g^{j}\right)^{q}$ for all $2 \leq j \leq k-1$.

In summary, the lemma remains true after the ℓ th iteration.

The base case that $\ell=0$ is trivial because ans $[g]=$ \perp for all $g \in G$ before the first iteration.

Lemma 7. After running All Powers, ans $[g]=g^{q}$ for all $g \in G$.
Proof. Lines 11-15 and Lemma 5 guarantee ans $[g] \neq$ \perp. So the loop in lines 6-20 ends up guaranteeing ans $[g] \neq$
\perp for all $g \in G$. Now apply Lemma 6 .
Lemma 8. Each execution of lines 8-19 of All Powers take $O(k)$ time, where k is as in line 8 .

Proof. Run line 9 by calculating g^{i} for an increasing $i \geq$ 1 until either (1) $i=q \bmod \operatorname{order}(g)$ or (2) ans $\left[g^{i-1}\right] \neq$ \perp and ans $\left[g^{i}\right] \neq \perp$. Because $g^{i}=g^{i-1} \cdot g$ for all i, line 8 takes $O(k)$ time. Similarly, line 9 also takes $O(k)$ time. Clearly, lines 11-15 and 16-18 take $O(1)$ and $O(h)$ time, respectively (note that the inverse $\left(\operatorname{ans}\left[g^{k-1}\right]\right)^{-1}$ in line 14 has been found in line 1).

Lemma 9. Each execution of lines 9-18 of All Powers turn $\Omega(k)$ entries of ans $[\cdot]$ from \perp to non- \perp.

Proof. By the minimality of k in line 9 , the sequence $\left\{\text { ans }\left[g^{j}\right]\right\}_{j=1}^{k-1}$ does not contain two consecutive elements that are non- \perp (when line 9 is executed). So \perp appears for at least $\lfloor(k-1) / 2\rfloor$ times in $\left\{\operatorname{ans}\left[g^{j}\right]\right\}_{j=1}^{k-1}$. But after lines $11-19$, ans $\left[g^{j}\right] \neq \perp$ for all $j \in\{1,2, \ldots, k-$ $1\}$. Note that as $k<\operatorname{order}(g)$ by line $9, g^{1}, g^{2}, \ldots$, g^{k-1} are distinct. In summary, lines 9-18 turn at least $\lfloor(k-1) / 2\rfloor$ distinct entries of ans $[\cdot]$ from \perp to non- \perp. Unless $k \leq 2,\lfloor(k-1) / 2\rfloor=\Omega(k)$. When $k \leq 2$, the lemma still holds because lines $11-15$ turn ans $[g]$ from \perp to non- \perp.

Lemma 10. All Powers take $O(|G|)$ time.

Proof. Appendix A proves the easy, probably folklore, result that line 1 takes $O(|G|)$ time. Kavitha [7] gives an $O(|G|)$-time algorithm for line 2. Clearly, once an entry of ans $[\cdot]$ becomes non- - , it remains non- \perp forever. So by Lemmas 8-9, the running time is at most proportional to the total number of entries of ans $[\cdot]$, which is $|G|$.

Lemma 11. Given the multiplication table of a finite group (G, \cdot) and a nonzero $q \in \mathbb{Z}$, it takes $O(|G|)$ time to find g^{q} and all qth roots (if any) of g, for all $g \in G$.

Proof. There are several cases:

- $q \geq 2$: By Lemmas 7 and 10, finding g^{q} for all $g \in G$ takes $O(|G|)$ time. Create a list L_{a} for each $a \in G$. For each $g \in G$, put g into $L_{g^{q}}$. Then the q th roots of each $a \in G$ are just the elements of L_{a}.
- $q=1$: Trivial.
- $q<0$: Find g^{-1} for all $g \in G$ in $O(|G|)$ time, as in Appendix A. Replace q by $-q \geq 1$ and each $g \in G$ by g^{-1}. Then proceed as if $q>0$.

Below is our main result.
Theorem 12. Given the multiplication table of a finite group (G, \cdot) and nonzero $p, q \in \mathbb{Z}$, it takes $O(|G|)$ time to find all solutions (if any) to $x^{p}=g^{q}$ for all $g \in G$.
Proof. Use Lemma 11 twice to find g^{q} and all p th roots (if any) of g, for all $g \in G$.

4 Conclusion

If we want to find the power of a finite group G given the multiplication table, we give the optimal algorithm that takes $O(|G|)$ time to find all solutions (if any) to $x^{p}=g^{q}$ for all $g \in G$. And we use this method to invert all elements in G .

A Inverting all elements

We begin by verifying that algorithm All Inverses in Fig. 2 performs only reasonable operations. In particular, line 12 does not try to multiply a group element with \perp.

Lemma 13. In line 12 of All Inverses, $\operatorname{inv}\left[g^{h}\right] \in G$.
Proof. By lines 9 and $11, g^{h} \neq 1$ in line 12 . So line 7 implies the lemma.

Input: The multiplication table of a group (G, \cdot)
for all $g \in G$ do
$\operatorname{inv}[g] \leftarrow \perp ;$
end for
for $\ell=1,2, \ldots,|G|$ do $g \leftarrow$ the ℓ th element of G; if $\operatorname{inv}[g]=\perp$ then
$h \leftarrow \min \left\{i \geq 1 \mid\left(g^{i}=1\right) \vee\left(\operatorname{inv}\left[g^{i}\right] \in G\right)\right\} ;$
Calculate g, g^{2}, \ldots, g^{h};
if $g^{h}=1$ then
$\operatorname{inv}[g] \leftarrow g^{h-1} ;$
else
$\operatorname{inv}[g] \leftarrow g^{h-1} \cdot \operatorname{inv}\left[g^{h}\right] ;$
end if
for $j=2,3, \ldots, h-1$ do
$\operatorname{inv}\left[g^{j}\right] \leftarrow \operatorname{inv}\left[g^{j-1}\right] \cdot \operatorname{inv}[g] ;$
end for
end if
end for
Figure 2: Algorithm All Inverses outputting g^{-1}, stored in inv $[g]$, for all $g \in G$

Lemma 14. At any time, $\operatorname{inv}[a]=a^{-1}$ for all $a \in G$ satisfying $\operatorname{inv}[a] \neq \perp$.
Proof. Assume as induction hypothesis that the lemma is true up to the $(\ell-1)$ th iteration of the for loop in lines $4-18$, where $\ell \geq 1$. In the ℓ th iteration:

- Line 10 clearly maintains the lemma.
- Upon reaching line $12, \operatorname{inv}\left[g^{h}\right] \in G$ by Lemma 13, implying inv $\left[g^{h}\right]=\left(g^{h}\right)^{-1}$ by the induction hypothesis. So line 12 calculates $\operatorname{inv}[g]$ as g^{-1}.
- Upon reaching Line 15 , we must have just run line 10 or line 12 , resulting in inv $[g]=g^{-1}$ by the analyses above. So lines 14-16 calculate $\operatorname{inv}\left[g^{j}\right]$ as $\left(g^{j}\right)^{-1}$ for all $2 \leq j \leq h-1$.
In summary, the lemma remains true after the ℓ th iteration.

The base case that $\ell=0$ is trivial because $\operatorname{inv}[g]=$ \perp for all $g \in G$ before the first iteration.
Lemma 15. After running All Inverses, $\operatorname{inv}[g]=g^{-1}$ for all $g \in G$.
Proof. Lines 9-13 and Lemma 13 guarantee inv $[g] \neq$ \perp. So the loop in lines 4-18 ends up guaranteeing $\operatorname{inv}[g] \neq$ \perp for all $g \in G$. Now apply Lemma 14 .
Lemma 16. Each execution of lines 7-16 of All Inverses take $O(h)$ time, where h is as in line 7 .

Proof. Run line 7 by calculating g^{i} for an increasing $i \geq 1$ until either (1) $g^{i}=1$ or (2) inv $\left[g^{i}\right] \neq \perp$. Because $g^{i}=g^{i-1} \cdot g$ for all i, line 7 takes $O(h)$ time. Similarly, line 8 also takes $O(h)$ time. Clearly, lines 9-13 and 1416 take $O(1)$ and $O(h)$ time, respectively.
Lemma 17. Each execution of lines 7-16 of All Inverses turn $\Omega(h)$ entries of $\operatorname{inv}[\cdot]$ from \perp to non- \perp.

Proof. By the minimality of h in line $7, \operatorname{inv}\left[g^{j}\right]=\perp$ for $1 \leq j \leq h-1$ (when line 7 is executed). But after lines $9-16, \operatorname{inv}\left[g^{j}\right] \neq \perp$ for all $j \in\{1,2, \ldots, h-1\}$. So lines 7-16 turn at least $h-1$ entries of $\operatorname{inv}[\cdot]$ from \perp to non- \perp. Unless $h \leq 1, h-1=\Omega(h)$. When $h \leq 1$, the lemma still holds because lines $9-13$ turn inv $[g]$ from \perp to non- \perp.

Lemma 18. All Inverses take $O(|G|)$ time.
Proof. Clearly, once an entry of ans $[\cdot]$ is non- \perp, it remains non- \perp forever. So by Lemmas $16-17$, the running time is at most proportional to the total number of entries of ans $[\cdot]$, which is $|G|$.

Lemmas 15 and 18 yield the following.
Theorem 19. Finding g^{-1} for all $g \in G$ takes $O(|G|)$ time.

References

[1] N. Suvorov and N. Kryuchkov, "Examples of some quasigroups and loops admitting only discrete topologization," Siberian Mathematical Journal, vol. 17, no. 2, pp. 367-369, 1976.
[2] H. Amiri and S. Jafarian Amiri, "Sum of element orders of maximal subgroups of the symmetric group," Communications in Algebra, vol. 40, no. 2, pp. 770-778, 2012.
[3] H. Amiri and S. Jafarian Amiri, "Sum of element orders on finite groups of the same order," Journal of Algebra and its Applications, vol. 10, no. 02, pp. 187-190, 2011.
[4] Y. Marefat, A. Iranmanesh, and A. Tehranian, "On the sum of element orders of finite simple groups," Journal of Algebra and its Applications, vol. 12, no. 07, p. 1350 026, 2013.
[5] M. Tărnăuceanu and D. G. Fodor, "On the sum of element orders of finite abelian groups," arXiv preprint arXiv:1805.11693, 2018.
[6] M. Jahani, Y. Marefat, H. Refaghat, and B. Vakili Fasaghandisi, "The minimum sum of element orders of finite groups," International Journal of Group Theory, vol. 10, no. 2, pp. 55-60, 2021.
[7] T.Kavitha, "Linear time algorithms for Abelian group isomorphism and related problems," Journal of Computer and System Sciences, vol. 73, no. 6, pp. 986-996, 2007.
[8] C. D. Savage, An $O\left(n^{2}\right)$ algorithm for abelian group isomorphism. Computer Studies [Program], North Carolina State University, 1980.
[9] N. Vikas, "An o(n) algorithm for abelianp-group isomorphism and an o(nlogn) algorithm for abelian group isomorphism," journal of computer and system sciences, vol. 53, no. 1, pp. 1-9, 1996.
[10] V. Edemsky and W. CHENHUANG, "On the linear complexity of binary sequences derived from generalized cyclotomic classes modulo (2n)(pm)," WSEAS Transactions on Mathematics, vol. 18, pp. 197-202, 2019.
[11] D. S. Dummit and R. M. Foote, Abstract algebra. Prentice Hall Englewood Cliffs, NJ, 1991, vol. 1999.
[12] M. Hall, The theory of groups. Courier Dover Publications, 2018.
[13] I. N. Herstein, Topics in algebra. John Wiley \& Sons, 2006.

Contribution of individual authors to the creation of a scientific article (ghostwriting policy)

Ching-Lueh Chang carried out the conceptualization and is the supervisor.
Hui-Ting Chen did the data curation and has writing and editing.

Sources of funding for research presented in a scientific article or scientific article itself

This work was Supported in part by the Ministry of Science and Technology of Taiwan under grant 111-2221-E-155-035-MY2.

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Creative Commons Attribution License

4.0 (Attribution 4.0 International, CC

BY 4.0)
This article is published under the terms of the Creative Commons Attribution License 4.0

