
Raising all group elements to a common power
HUI-TING CHEN, CHING-LUEH CHANG

Department of Computer Science and Engineering
Yuan Ze University

No. 135, Yuandong Rd., Zhongli Dist., Taoyuan City Taiwan (R.O.C.)
TAIWAN

Abstract: - We give a deterministic O(|G|)-time algorithm that, given the multiplication table of a finite group (G, ·)
and nonzero p, q ∈ Z, finds all solutions (if any) to xp = gq for all g ∈ G.

Key-Words: - inverting element, group, multiplication table and power.

Received: July 4, 2022. Revised: January 5, 2023. Accepted: February 4, 2023. Published: March 2, 2023.

1 Introduction
Many properties of a group-like structure can be discov-
ered from its multiplication table. Zumbrägel et al., [1]
, consider the problem of learning the multiplication ta-
ble of a groupoid (G, ·) by making the minimum num-
ber of queries, each for a product a · b, with a, b ∈ G.
An interesting problem is to determine algebraic prop-
erties of a finite group G from Ψ(G) =

∑
g∈G o(g),

where o(g) denotes the order of g ∈ G, [2]–[5]. Jahani
et al., [6], find a pair of finite groups G and S of the
same order such that Ψ(G) < Ψ(S), with G solvable
and S simple.

Now we are interested in efficiently finding a given
power of all elements simultaneously. By convention,
the multiplication in G costs O(1) time. Let G be a
group with n elements. If we want to calculate the qth
power of each element, how long does it take? The
brute force method takes O(q) time to calculate the qth
power of an element. So the total time is O(nq).

Recursive doublingmethod reduces the time required
to calculate the qth power of an element to O(log q), so
the total time can be reduced to O(n log q). Kavitha,
[7], presents an O(n) algorithm that determines if two
Abelian groups with n elements each are isomorphic.
Similar research can see, [8] and [9]. The main in-
gredient in this result is an O(|G|)-time algorithm that
finds the orders of all elements in any finite group G
given as input the multiplication table ofG. Inspired by
Kavitha’s result, we give a deterministic O(|G|)-time
algorithm that, given the multiplication table of a finite
group (G, ·) and nonzero p, q ∈ Z, finds all solutions
(if any) to xp = gq for all g ∈ G.

Primitive roots are elements of order |G| and have
been extensively studied. See, e.g., [10]. To find the

solutions to xp = gq for each g ∈ G, it suffices to do
the following:

(1) Calculate gq for each g ∈ G.

(2) Find a primitive root r and calculate r1, r2, . . ., r|G|.
When some rj matches any value calculated in step
1, a solution for xp = gq is found.

Unlike in our result, however, the above procedure
takes ω(|G|) time.

2 Preliminaries
We refer to some basic definitions in algebra, [11].For
more detail, please see, [12] and [13].

Definition 1. A nonempty setG endowed with a binary
operation ·,G·G→ G is called a groupoid. An element
e ∈ G is an identity if and only if for all x ∈ G, x · e =
e · x = x. If y has a unique inverse, it’s denoted y−1.

Definition 2. A groupoid (G, ·) is

• Abelian if x · y = y · x for all x, y ∈ G.

• associative if x ·(y ·z) = (x ·y) ·z for all x, y, z ∈
G.

• a quasigroup if for all x, y ∈ G, there are unique
elements a, b ∈ G such that x·a = y and b·x = y.

• a loop if (G, ·) is a quasigroup with an identity.

Definition 3. The order of a finite group (G, ·) refers to
the number of elements of G. The order of an element
a in a finite group (G, ·) refers to the least positive in-
teger h which satisfies ah = e, where e is the identity
of (G, ·).

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.21 Hui-Ting Chen, Ching-Lueh Chang

E-ISSN: 2224-2880 167 Volume 22, 2023

Input: The multiplication table of a group (G, ·) and
q ∈ Z+

1: Compute g−1 for all g ∈ G;
2: Compute the order of g, denoted order(g), for all

g ∈ G;
3: for all g ∈ G do
4: ans[g]← ⊥;
5: end for
6: for ℓ = 1, 2, . . ., |G| do
7: g ← the ℓth element of G;
8: if ans[g] = ⊥ then
9: k ← min{q mod order(g)} ∪ {i ≥ 2 |

(ans[gi−1] ∈ G) ∧ (ans[gi] ∈ G)};
10: Calculate g, g2, . . ., gk;
11: if k = (q mod order(g)) then
12: ans[g]← gk;
13: else
14: ans[g]← ans[gk] · (ans[gk−1])−1;
15: end if
16: for j = 2, 3, . . ., k − 1 do
17: ans[gj]← ans[gj−1] · ans[g];
18: end for
19: end if
20: end for

Figure 1: Algorithm All Powers outputting gq, stored in
ans[g], for all g ∈ G

Definition 4. For any finite group (G, ·), we say (H, ·)
is a subgroup of (G, ·) ifH ⊆ G and for any x, y ∈ H ,
x · y ∈ H .

3 Raising powers
To beginwith, we check that ans[gk] ∈ G and ans[gk−1] ∈

G in line 14 of algorithm All Powers in Fig. 1; hence
line 14 tries neither to invert ⊥ nor to multiply a group
element with ⊥.

Lemma 5. In line 14 of All Powers, ans[gk−1] ∈ G and
ans[gk] ∈ G.

Proof. Clearly, k ̸= q in line 14. So line 9 implies the
lemma.

Lemma 6. At any time, ans[a] = aq for all a ∈ G
satisfying ans[a] ̸= ⊥.

Proof. Assume as induction hypothesis that the lemma
is true up to the (ℓ − 1)th iteration of the for loop in
lines 6–20, where ℓ ≥ 1. In the ℓth iteration:

• As gq mod order(q) = gq, line 12maintains the lemma.

• Upon reaching line 14, ans[gk−1] ∈ G and ans[gk] ∈
G by Lemma 5, implying ans[gk−1] = (gk−1)q

and ans[gk] = (gk)q by the induction hypothesis
(note that ans[gk−1] and ans[gk] are not yet modi-
fied in the current iteration). So line 14 calculates
ans[g] as gq.

• Upon reaching Line 17, we must have just run
line 12 or line 14, resulting in ans[g] = gq by the
analyses above. So lines 16–18 calculate ans[gj]
as (gj)q for all 2 ≤ j ≤ k − 1.

In summary, the lemma remains true after the ℓth itera-
tion.

The base case that ℓ = 0 is trivial because ans[g] =
⊥ for all g ∈ G before the first iteration.

Lemma 7. After running All Powers, ans[g] = gq for
all g ∈ G.

Proof. Lines 11–15 and Lemma 5 guarantee ans[g] ̸=
⊥. So the loop in lines 6–20 ends up guaranteeing ans[g] ̸=
⊥ for all g ∈ G. Now apply Lemma 6.

Lemma 8. Each execution of lines 8–19 of All Powers
take O(k) time, where k is as in line 8.

Proof. Run line 9 by calculating gi for an increasing i ≥
1 until either (1) i = q mod order(g) or (2) ans[gi−1] ̸=
⊥ and ans[gi] ̸= ⊥. Because gi = gi−1 ·g for all i, line 8
takesO(k) time. Similarly, line 9 also takesO(k) time.
Clearly, lines 11–15 and 16–18 take O(1) and O(h)
time, respectively (note that the inverse (ans[gk−1])−1

in line 14 has been found in line 1).

Lemma 9. Each execution of lines 9–18 of All Powers
turn Ω(k) entries of ans[·] from ⊥ to non-⊥.

Proof. By the minimality of k in line 9, the sequence
{ans[gj]}k−1

j=1 does not contain two consecutive elements
that are non-⊥ (when line 9 is executed). So ⊥ appears
for at least ⌊(k − 1)/2⌋ times in {ans[gj]}k−1

j=1 . But af-
ter lines 11–19, ans[gj] ̸= ⊥ for all j ∈ {1, 2, . . . , k −
1}. Note that as k < order(g) by line 9, g1, g2, . . .,
gk−1 are distinct. In summary, lines 9–18 turn at least
⌊(k − 1)/2⌋ distinct entries of ans[·] from ⊥ to non-⊥.
Unless k ≤ 2, ⌊(k − 1)/2⌋ = Ω(k). When k ≤ 2, the
lemma still holds because lines 11–15 turn ans[g] from
⊥ to non-⊥.

Lemma 10. All Powers take O(|G|) time.

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.21 Hui-Ting Chen, Ching-Lueh Chang

E-ISSN: 2224-2880 168 Volume 22, 2023

Proof. Appendix A proves the easy, probably folklore,
result that line 1 takesO(|G|) time. Kavitha [7] gives an
O(|G|)-time algorithm for line 2. Clearly, once an en-
try of ans[·] becomes non-⊥, it remains non-⊥ forever.
So by Lemmas 8–9, the running time is at most propor-
tional to the total number of entries of ans[·], which is
|G|.

Lemma 11. Given the multiplication table of a finite
group (G, ·) and a nonzero q ∈ Z, it takes O(|G|) time
to find gq and all qth roots (if any) of g, for all g ∈ G.

Proof. There are several cases:

• q ≥ 2: By Lemmas 7 and 10, finding gq for all
g ∈ G takesO(|G|) time. Create a listLa for each
a ∈ G. For each g ∈ G, put g into Lgq . Then the
qth roots of each a ∈ G are just the elements of
La.

• q = 1: Trivial.

• q < 0: Find g−1 for all g ∈ G in O(|G|) time,
as in Appendix A. Replace q by −q ≥ 1 and each
g ∈ G by g−1. Then proceed as if q > 0.

Below is our main result.

Theorem 12. Given the multiplication table of a finite
group (G, ·) and nonzero p, q ∈ Z, it takes O(|G|) time
to find all solutions (if any) to xp = gq for all g ∈ G.

Proof. Use Lemma 11 twice to find gq and all pth roots
(if any) of g, for all g ∈ G.

4 Conclusion
If we want to find the power of a finite group G given
the multiplication table, we give the optimal algorithm
that takes O(|G|) time to find all solutions (if any) to
xp = gq for all g ∈ G. And we use this method to
invert all elements in G.

A Inverting all elements
We begin by verifying that algorithm All Inverses in

Fig. 2 performs only reasonable operations. In partic-
ular, line 12 does not try to multiply a group element
with ⊥.

Lemma 13. In line 12 of All Inverses, inv[gh] ∈ G.

Proof. By lines 9 and 11, gh ̸= 1 in line 12. So line 7
implies the lemma.

Input: The multiplication table of a group (G, ·)
1: for all g ∈ G do
2: inv[g]← ⊥;
3: end for
4: for ℓ = 1, 2, . . ., |G| do
5: g ← the ℓth element of G;
6: if inv[g] = ⊥ then
7: h← min{i ≥ 1 | (gi = 1) ∨ (inv[gi] ∈ G)};
8: Calculate g, g2, . . ., gh;
9: if gh = 1 then
10: inv[g]← gh−1;
11: else
12: inv[g]← gh−1 · inv[gh];
13: end if
14: for j = 2, 3, . . ., h− 1 do
15: inv[gj]← inv[gj−1] · inv[g];
16: end for
17: end if
18: end for

Figure 2: Algorithm All Inverses outputting g−1, stored
in inv[g], for all g ∈ G

Lemma 14. At any time, inv[a] = a−1 for all a ∈ G
satisfying inv[a] ̸= ⊥.
Proof. Assume as induction hypothesis that the lemma
is true up to the (ℓ − 1)th iteration of the for loop in
lines 4–18, where ℓ ≥ 1. In the ℓth iteration:

• Line 10 clearly maintains the lemma.

• Upon reaching line 12, inv[gh] ∈ G byLemma 13,
implying inv[gh] = (gh)−1 by the induction hy-
pothesis. So line 12 calculates inv[g] as g−1.

• Upon reaching Line 15, we must have just run
line 10 or line 12, resulting in inv[g] = g−1 by the
analyses above. So lines 14–16 calculate inv[gj]
as (gj)−1 for all 2 ≤ j ≤ h− 1.

In summary, the lemma remains true after the ℓth itera-
tion.

The base case that ℓ = 0 is trivial because inv[g] =
⊥ for all g ∈ G before the first iteration.

Lemma 15. After running All Inverses, inv[g] = g−1

for all g ∈ G.
Proof. Lines 9–13 and Lemma 13 guarantee inv[g] ̸=
⊥. So the loop in lines 4–18 ends up guaranteeing inv[g] ̸=
⊥ for all g ∈ G. Now apply Lemma 14.

Lemma 16. Each execution of lines 7–16 ofAll Inverses
take O(h) time, where h is as in line 7.

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.21 Hui-Ting Chen, Ching-Lueh Chang

E-ISSN: 2224-2880 169 Volume 22, 2023

Proof. Run line 7 by calculating gi for an increasing
i ≥ 1 until either (1) gi = 1 or (2) inv[gi] ̸= ⊥. Because
gi = gi−1 ·g for all i, line 7 takesO(h) time. Similarly,
line 8 also takesO(h) time. Clearly, lines 9–13 and 14–
16 take O(1) and O(h) time, respectively.

Lemma 17. Each execution of lines 7–16 ofAll Inverses
turn Ω(h) entries of inv[·] from ⊥ to non-⊥.
Proof. By the minimality of h in line 7, inv[gj] = ⊥
for 1 ≤ j ≤ h− 1 (when line 7 is executed). But after
lines 9–16, inv[gj] ̸= ⊥ for all j ∈ {1, 2, . . . , h−1}. So
lines 7–16 turn at least h− 1 entries of inv[·] from ⊥ to
non-⊥. Unless h ≤ 1, h− 1 = Ω(h). When h ≤ 1, the
lemma still holds because lines 9–13 turn inv[g] from⊥
to non-⊥.

Lemma 18. All Inverses take O(|G|) time.
Proof. Clearly, once an entry of ans[·] is non-⊥, it re-
mains non-⊥ forever. So by Lemmas 16–17, the run-
ning time is at most proportional to the total number of
entries of ans[·], which is |G|.

Lemmas 15 and 18 yield the following.

Theorem 19. Finding g−1 for all g ∈ G takes O(|G|)
time.

References
[1] N. Suvorov andN.Kryuchkov, “Examples of some

quasigroups and loops admitting only discrete topol-
ogization,” SiberianMathematical Journal, vol. 17,
no. 2, pp. 367–369, 1976.

[2] H. Amiri and S. Jafarian Amiri, “Sum of element
orders of maximal subgroups of the symmetric
group,”Communications in Algebra, vol. 40, no. 2,
pp. 770–778, 2012.

[3] H. Amiri and S. Jafarian Amiri, “Sum of element
orders on finite groups of the same order,” Jour-
nal of Algebra and its Applications, vol. 10, no. 02,
pp. 187–190, 2011.

[4] Y.Marefat, A. Iranmanesh, andA. Tehranian, “On
the sumof element orders of finite simple groups,”
Journal of Algebra and its Applications, vol. 12,
no. 07, p. 1 350 026, 2013.

[5] M. Tărnăuceanu and D. G. Fodor, “On the sum
of element orders of finite abelian groups,” arXiv
preprint arXiv:1805.11693, 2018.

[6] M. Jahani, Y. Marefat, H. Refaghat, and B. Vak-
ili Fasaghandisi, “The minimum sum of element
orders of finite groups,” International Journal of
Group Theory, vol. 10, no. 2, pp. 55–60, 2021.

[7] T.Kavitha, “Linear time algorithms for Abelian
group isomorphism and related problems,” Jour-
nal of Computer and System Sciences, vol. 73,
no. 6, pp. 986–996, 2007.

[8] C. D. Savage, An O(n2) algorithm for abelian
group isomorphism. Computer Studies [Program],
North Carolina State University, 1980.

[9] N. Vikas, “An o(n) algorithm for abelianp-group
isomorphism and an o(nlogn) algorithm for abelian
group isomorphism,” journal of computer and sys-
tem sciences, vol. 53, no. 1, pp. 1–9, 1996.

[10] V. Edemsky andW. CHENHUANG, “On the lin-
ear complexity of binary sequences derived from
generalized cyclotomic classesmodulo (2n)(pm),”
WSEAS Transactions on Mathematics, vol. 18,
pp. 197–202, 2019.

[11] D. S. Dummit and R. M. Foote, Abstract alge-
bra. Prentice Hall Englewood Cliffs, NJ, 1991,
vol. 1999.

[12] M.Hall, The theory of groups. Courier Dover Pub-
lications, 2018.

[13] I. N. Herstein, Topics in algebra. John Wiley &
Sons, 2006.

Contribution of individual authors to
the creation of a scientific article
(ghostwriting policy)
Author Contributions:
Ching-LuehChang carried out the conceptualization and
is the supervisor.
Hui-Ting Chen did the data curation and has writing and
editing.

Sources of funding for research
presented in a scientific article or
scientific article itself
This work was Supported in part by the Ministry of
Science and Technology of Taiwan under grant 111-
2221-E-155-035-MY2.

Creative Commons Attribution License
4.0 (Attribution 4.0 International , CC
BY 4.0)
This article is published under the terms of the Creative
Commons Attribution License 4.0

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.21 Hui-Ting Chen, Ching-Lueh Chang

E-ISSN: 2224-2880 170 Volume 22, 2023

Conflict of Interest
The authors have no conflicts of interest to declare

that are relevant to the content of this article.

	Introduction
	Preliminaries
	Raising powers
	Conclusion
	Inverting all elements

