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Abstract: - The technique used here emphasizes pivotal quantities and ancillary statistics relevant for
obtaining tolerance limits (or confidence intervals) for anticipated outcomes of applied stochastic models
under parametric uncertainty and is applicable whenever the statistical problem is invariant under a group of
transformations that acts transitively on the parameter space. It does not require the construction of any
tables and is applicable whether the experimental data are complete or Type Il censored. The exact
tolerance limits on order statistics associated with sampling from underlying distributions can be found
easily and quickly making tables, simulation, Monte-Carlo estimated percentiles, special computer
programs, and approximation unnecessary. The proposed technique is based on a probability transformation
and pivotal quantity averaging. It is conceptually simple and easy to use. The discussion is restricted to one-
sided tolerance limits. Finally, we give practical numerical examples, where the proposed analytical
methodology is illustrated in terms of the exponential distribution. Applications to other log-location-scale
distributions could follow directly.
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1 Introduction There are the following types of prediction
Statistical ~prediction and optimization (under problems:

parametric uncertainty) of future random quantities o

(future outcomes, order statistics, etc.) based on the 1.1 New-Sample Prediction Problem

past and current data is the most prevalent form of In this case, the data from a past sample of size n are
statistical inference. Predictive inferences for future used to make prediction on one or more future units
random quantities are widely used in risk in a second sample of size m from the same process
management,  finance, insurance, economics, or population. For example, based on previous
hydrology, material sciences, telecommunications, (possibly censored) life test data, one could be
and many other industries. Predictive inferences interested in predicting the following: (1) time to
(predictive distributions, prediction or tolerance failure of a new item (m = 1); (2) time until the kth
limits (or intervals), confidence limits (or intervals) failure in a future sample of m units, m > k; (3)
for future random quantities on the basis of the past number of failures by time z*in a future sample of
and present knowledge represent a fundamental m units. Formally we call the problems in this
problem of statistics, arising in many contexts and category as two-sample problems.

producing varied solutions. Statistical prediction is

the process by which values for unknown 1.2 Within-Sample Prediction Problem
observables (potential observations yet to be made In this case, the problem is to predict future events
or past ones which are no longer available) are in a sample or process based on the early-failure
inferred based on current observations and other data from that sample or process. For example, if n
information at hand. The approach used here is a units are followed until censoring time 7, and there

special case of more general considerations
applicable whenever the statistical problem is
invariant under a group of transformations, which
acts transitively on the parameter space [1-12].

are r observed ordered failure times, X,<..<X,,

one could be interested in predicting the following:
1) time of next failure; 2) time until | additional
failures, | <n—r; 3) number of additional failures in
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a future interval (r,,z'). Formally we call the
problems in this category as one-sample problems.

2 Adequate Mathematical Models of
the Cumulative Distribution Function
of Order Statistics to Construct New-

Sample Tolerance Limits (One-Sided)

Theorem 1.Let us assume that there is a random
sample of t ordered observations Z;< ... <Z; from a
known distribution with a probability density
function (pdf) f,(2), cumulativeJ O .distribution

function (cdf) F,(z), where 4 is the parameter (in

general, vector), then the adequate mathematical
models of the cumulative distribution function (cdf)
of the rth order statistic Z,, re{l, 2, ..., t}, to
construct one-sided y —content tolerance limits with

confidence level g, are given (for a new sample) as
follows:

2.1 Adequate Mathematical Model 2.1

F;x(zr)

[ o adu=P,Z <z|t), (1)
0
where
1 a Crl)-
u) = ur 1—U (t-r+1) 1’
@ B(r,t—r+1) A=)
O<u<l (2)

is the probability density function (pdf) of the
beta distribution (Beta(r,t-r+1)) with shape
parameters r and t-r+1,

P,(Z, <1, |t)=i(tjj[a<z,)]j L-F@17 @)

Proof. On the one hand, it follows from (1) that

d F.(z)
dT j fr,t—r+1(u)du

0

F.(zr)
— i 1 LIr—l (1_ u)(t—r+l)—1 du
dy, ¢ B(r,t—r+1)

F,u (Zr)ril

_ _ (t-r+1)1
RN LE. @

On the other hand, it follows from (1) that

E-ISSN: 2224-2880

155

Nicholas Nechval,
Gundars Berzins, Konstantin Nechval

F r-1
bz <z el
dz B(r,t—r+1)

r

< (1-F,@) " 1, @), )

Thus, F,(z,) is the generalized pivotal quantity:

F.(z)=u~f

1 a 1)
=— = u"t@-uw)"t o<u<l. (6
B(r,t-r+1) - ©)

(u)

rt-r+l

This ends the proof.

2.2 Adequate Mathematical Model 2.2

1

ft—r+1,r (U)du = P# (Zr < Zr |t)1 (7)
1-F,(z)
where
1 (t-r+1)-1 r-1
Uuy=———u 1-u)',
e W) B(t-r+1r) a-u)
O<u<l, (8)

is the probability density function (pdf) of the beta
distribution (Beta(t—r+1,r)) with  shape
parameterst—r+1andr,
Proof. It follows from (7) that
d 1
- | e

r 17':;: (z)

1
— i 1 u(t—r+l)—1 (1_ u)r—ldu
dz B(t—r+1r)

r 1—Fﬂ(z,)

_ -1 3 (t-r+1)-1 1
Bt R @) R e @)
1 1 tor
“Biriorg @ -RE) GO

It follows from (5) and (9) that

d d 7§
S PZ <2 10=— [ f ., Wd. (10)

r ri1-F,(z)
Thus,1-F (z,) is the generalized pivotal quantity:

1-F,(z)=u~f (u)

t-r+l,r

1

=——— ™2 _w)"?t 0o<u<l. (11
B(t—1+11) - (11)

This ends the proof.
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2.3 Adequate Mathematical Model 2.3

t-r+1 F,(z,)
r 1—F‘,(z,)

[ pa@du=P(Z <z, @12

0

where
1

O ira(U) = B(rt——r-l-l)

r r-1
r

u

[t—r+1 |

8 r
r "tor+1
1+ u
t—-r+1

is the probability density function (pdf) of the F
distribution (F(r,t —r +1)) with parameters r and
t—r+1, which are positive integers known as the
degrees of freedom for the numerator and the
degrees of freedom for the denominator.

Proof. It follows from (12) that

t-r+1 F,(z)
r 1-F,(z)

d
w

r 0

, ue(0,). (13)

d
Prira(U)du = =P, (Z, <7, ]0). (14)

ZI’

t-r+1 F,(z)

Thus, is the generalized pivotal
r 1-F,(z)
quantity:
t-r+1 F,(z) 1
- =u ~¢I,m—|+1(u):—
r 1-F,(z) B(r,t—r+1)

1-1
r
u
L—r+1 } r

r ™t-r+1
1+ u
t—-r+1

This ends the proof.

, ue(0,m). (15)

2.4 Adequate Mathematical Model 2.4

0

[ o WAu=P,Z <711, (6
r 1-F,(z)
t-r+l F,(z)

where

t—r+1 t-r+l, o
r r

t—r+1r) [“t— r Jrlu}t+r '
r

¢t—r+l,r (U) = B(

u €(0,0), a7

is the probability density function (pdf) of the F
distribution (F(t—r+1r)with parameters t—r

E-ISSN: 2224-2880

Nicholas Nechval,
Gundars Berzins, Konstantin Nechval

+1 and r, which are positive integers known as
the degrees of freedom for the numerator and
the degrees of freedom for the denominator.

Proof. It follows from (16) that
a4
dz, | e
t-r+l F,(z,)
1-F . . .
Thus, d . (2) is the generalized pivotal
t-r+1 F,(z)

quantity:

P WA =—SP(Z, 52, 10). (19

r 1- F#(Zr) 1
t 1 F =u- qot—r+l,r (U) = B
—r+ . (2,) (

t—r+1r)
t—r+1 |
! t—r+1
x r , ue(0,:0). (19)

_ t+1 r
[1+t r+1uJ
r

This ends the proof.

3 Adequate Mathematical Models of
the Cumulative Distribution Function
(Conditional) of Order Statistics to
Construct Within-Sample Tolerance
Limits (One-Sided)

Theorem 2. Let us assume that there is a random
sample of t ordered observations Z:< ... <Z; from a
known distribution with a probability density
function  (pdf) f,(z), cumulative distribution
function (cdf) F,(z),where x is the parameter (in

general, vector), then the adequate mathematical
models of the conditional cumulative distribution
function (cdf) of the rth order statistic Z, (1 <k <r
< t) given Z=zx are determined (for the same
sample) as follows:

3.1 Adequate Mathematical Model 3.1
A
E‘(Zk)

[ fa@du=P,(Z, <2,1Z, =2:1)
0

tk (t—k E@)TE @)
= 1- -~ A 20
er-:k( j j{ F;,(Zk):l |:F;,(Zk)} (0)

where F,(z) =1-F,(2),
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u r—k-1 (1_ u)(t—r+1)—l

du, O<u<l, (21
B(r—k,t—r+1) 1)

fr—k,t—r+1 (U) =

is the probability density function (pdf) of the beta
distribution  (Beta(r —k,t—r+1))  with  shape
parameters r—k and t—r+1.

Proof. On the one hand, it follows from (20) that

A
d Eu (%)
fr—k,t—r+1 (U)du

r k 1(1 u)(t r+1)-1
B(r—k,t—r+1)

[1_ E,(zr)}"“{ E(zr)}” f,(2)
L R@] [F@] R@ )
B(r—-k,t—-r+1)

On the other hand, it follows from (20) that

d :
dTP#(Zr SZ, |Zk :Zk,t)

r

{1_ E(z»}““{ E(zr)}” f,(2)
TR@ [R@] RE

B(r-k,t—-r+1)

Thus, 1-F,(z,)/F,(z,)is the generalized pivotal
quantity:

~ ﬁ”(zr) Cu-t (u) _ ur—k—l(l_u)(t—r+1)—1
F.(z) kit B(r-kt-r+1)’
O<u<1. (24)

This ends the proof.

3.2 Adequate Mathematical Model 3.2

—_—

ft—r+l,r—k (U)du, = P;z (Zr < Zr | Zk = Zk ’t)

S
i F.(z) ] | F.(z)

g(m-a)- - u)l—k—l
B(m—1+11-k) "

ull
—~
~N
N

Nl
—
N

=
-

T

where

foraio (U) = O<u<l, (26)
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is the probability density function (pdf) of the beta
distribution  (Beta(t—r+21,r—Kk)) with shape
parameters t—r+1 and r—k.

Proof. On the one hand, it follows from (25) that

1
j t-r+1,r—k (u)du
( (2

(2

sul

iyl

1 t r+1)- r—k-1
j (1 U) du
(

B(t—r+1r—k)

sl

;rn

{1_ 5(4)} r 2 )] L)

L R@] [Rw]  R@ o,
B(r—k,t—-r+1)

On the other hand, it follows from (25) that

d .
EPM(Zr <z, |Z,=17:1)

r

{1_ E(z»}““{ E(zr)}” f,(2)
TR@ [R@] RE

B(r-k,t—-r+1)

Thus, F,(z)/F,(z)is the generalized pivotal
quantity:

T:-I-“

(Z ) u(l—r+l)—l 1—u r—k-1
=u- 1:t—r+1,r—k (U) = ( ) '
- (z,) B(t—r+1r—k)

<M

O<u<l. (29)

This ends the proof.

3.3 Adequate Mathematical Model 3.3

) e
!

= PH(Zr SZr |Zk :Zk;t)
< (t-k\, Ee)][E@]
— 1— _# _/l , 30

r-k-1
l |: r-k U:|
t—r+1 t—-r+1

B(r —k,t—r+1) r—k e
1+ u
t—-r+1

¢r—k,t—r+1 (U)du

¢r—k,t—r+1 (U) =
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u e (0,), (31)
is the probability density function (pdf) of the F
distribution (F(r—k,t—r+1)) with parameters r—k
and t—-r+1, which are positive integers known as the

degrees of freedom for the numerator and the
degrees of freedom for the denominator.

Proof. It follows from (30) that

t—r+l[17 'fﬂ(zr) 51(Zr)
r—k U F.(z))/ F.(n)

= diZ J- ?r—k,t—m—l (u)du.
d
=—P,(Z,<2,1Z, =7,;1) (32)
dz,
Thus,
t;izl(l— F.(z)/F.(2))/(1-F,(z)/F.(z)) is

the generalized pivotal quantity:

t—r+1 F.(z)) /F@z) )
r-k (1_ 'Ey(zk)]/lfﬂ(zk)_u gor*k,tle(u)

r—k r—k-1
u
B 1 L—r+1 } r—k
B(r—k,t—r+1)1 r—k 1% t-r+1
+ u
t—-r+1

u € (0,). (33)
This ends the proof.
3.4 Adequate Mathematical Model 3.4

0

J. (/)t—r+l,r—k, (u)du,
r—k 'E;l(zr) 1 'E,;(Zr)
t—r+l|fy(zk) lfﬂ(zk)

=P,(Z,<2,|1Z, =12;t)
A F# (z,) Fﬂ(zk)

1
B(t-r+1r—k)

Drri1r—k (U) =
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t—r+1ut7r+1
r-k t—-r+1

x m-k+1 ' Ue (O’OO) (35)
— r-k
[1+t r+1u}

r-k

is the probability density function (pdf) of the F
distribution (F(t—r+1r—Kk))with parameters t—
r+1 and r—k, which are positive integers known as
the degrees of freedom for the numerator and the
degrees of freedom for the denominator.

Proof. It follows from (30) that

_ 4 i

dzr r—k lf#(zr) . 'Ep(zl‘)
t-r+1F, (z)/ | F,(z)

-Lp@szlz s ()
Z

r

¢t—r+1,r—k, (U)du

Thus,

Kk - B ~ ~ -
t£r+1(Fy(Zr)/Fy(Zk))/(1_ F#(Zr)/Fﬂ(zk)) is the

generalized pivotal quantity:

r—k F,@) /[, F.@)
t-r+1F,(z,) F.(z)

U~ @ W =[BE-r+Lr-K)]"

[t—r+lu}t_r+1
L =k t=rel i c0w). (37)

{ t—r+1 T” r—k
1+ u
r-k

This ends the proof.

4 Two-Parameter
Distribution

Let Z = (Z1 £ ... £ Z;) be the first r ordered
observations (order statistics) in a sample of size t
from the two-parameter exponential distribution
with the probability density function (pdf)

Exponential

_ -0
fﬂ(Z) =9 1exp£—7], 19>O, Z >O, (38)

and the cumulative distribution function (cdf)

Fy(z)zl—exp(—%} F.(2)=1-F,(2). (39)
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where u=(5,9), & is the shift parameter and 4is

the scale parameter. It is assumed that these
parameters are unknown. In Type Il censoring,
which is of primary interest here, the number of
survivors is fixed and Zx is a random variable. In
this case, the likelihood function is given by

LG9 =TT1.@)(F.@)"

=%exp( {i(zi LS+ (t-1)(z, —5)}/19

1 ~ ' (z, -2, +2,-6)

9 exp( |:§+(t— rN(z,—z,+z —5)}/’9
gf-l exp( {Zr:(z, z,)+({-r)(z, —zl)}/g
1 t(z, - 0)
xgexp(— 3 j

I S G O S O (CRro)
_lgr_lexp( 3] gxp( 3 j (40)

where
S, =27,

s oY@ -zyre-ne-zy|

is the complete sufficient statistic for u. The
probability density function of S=(Si, Sy) is given by

f,(s:8,)

1exp(—sfj x 1exp(—t(Sl - 5)j
gt g) 9 g

1 7s? 17 t(s,— &
el Jes o ( 857

r 0

— 1 Sr—z exp(_s_rj
r(r-)9—*" 9

t t(s,—0) ) _
xgexp(—Tj_fg(sr)fﬂ(sl), (42)

where

t(s, ~9)

fﬂ(sl) gexp( 3 j s, >0, (43)
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1 S
f, (s )=—————s?exp| —— |, s . >0. (44
3( r) l—‘(r_l)lgrfl r p( 19) r ( )
v -2l (45)

is the pivotal quantity, the probability density
function of which is given by

f,(v,) =texp(-tv;), v, >0, (46)
Sr
V== (47)

is the pivotal quantity, the probability density
function of which is given by

1 r-2
fr(v,)zr(r_l)vr exp(-v,), v,>0. (48)

4.1 Constructing One-Sided y-Content
ToleranceLimit with a Confidence Level
B (where Model 2.1 is used)
Theorem 3. Let Z;<...<Z; be the first r ordered
observations from the preliminary sample of size t
from a two-parameter exponential distribution
defined by the probability density function (37).
Then the lower one-sided y-content tolerance limit
with a confidence level g, Lk« = Lk (S) (on the kth
order statistic Y« from a set of n future ordered
observations Yi<...<Y, also from the distribution
(37)), which satisfies

E{Pr(Py(Yk >Lk|n)27)}:,8, (49)

is given by
L= Lk (S)

1
AL )t _

S T =2 e TN Gl

t 1-pB InA,_,

= - - (50)

AL )t _
s,-2cf| 2 g it MAZS)
ti\1-p InAH

where

= Oy n e, (Beta(k,n-k+1), 1~y quantile). (51)
Proof. It follows from (1), (39) and (49) that

Pr(P,(Y, > L n)=y)
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Fu (L)
N Pr{ .[ fk,ﬂfk+1(u)du <1- ?/J

0
= Pr(l— exp(— Lklg_ 5) < qk,nk+l;lyj

L —
:Pr(exp(— s 5j21_qkn—k+l'l—}/j
9 , ;
Cp[LoSS 8-
S, & 9
S, -0 L —-S, S,
ZPr[ 18 <- kSr lg_ln(l_qk,n—k-*—l:l—y)]

- Ve—InA,

1)

<-In (1_ Oy k127 )j

= Pr(V1 <-n.V,—-InA,_, ) = _[ f,(v,)dv,, (52)
0
where
e (53)
It follows from (49) and (52) that
- Ve —InA,
E{Pr(P,(Y, > L [n)>y)}= E{ j fl(vl)dvl}
0

- Ve —InA,
= E{ I texp(—tv, )dvl}

0

=Eft-exp(~t[-n,V, ~Ina, )}
=E {1— exp(tnLkVr )exp(ln A )}

=E {1— AL, exp(tr,V, )}

_ T(l— AL, exp(tn,v,)) (v,
0

—_ T _ At r-2 .
_l(l A, eXp(t’thr))r( iy v 2 exp(-v, )dv,
AL,
=1- —=p. (54)
[1— tr,, ]
It follows from (54) that
_ Al r-1
Pt W P e = (55)
S, t 1-p

It follows from (55) that
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L, =31+% 1{— (56)

It follows from (56) that

1—{£}” <0 (if t ZMJ 57)
1-8 InA,_,

or
1

1{&]‘30 [fwj (58)
1-p InA

Then (50) follows from (56), (57) and (58). This
ends the proof.

Corollary 3.1. Let Zi<...<Z; be the first r
ordered observations from the preliminary sample of
size t from a two-parameter exponential distribution
defined by the probability density function (38).
Then the upper one-sided y-content tolerance limit
with a confidence level g, Ux =Uk (S) (on the kth
order statistic Yx from a set of n future ordered
observations Y:<...<Y, also from the distribution
(38), which satisfies

1-y

E{Pr(P,(Y <U,In)=y)} =4, (59)
is given by
_ L
Al Yt
S T ) g TINLVC
t Yij InA,
U, = - L] (60)
Al Yt
s, -2 L] i t< B
ti\ g InA,
where ) )

A, =1-0Q 4., (Beta(k,n-k+1), y quantile).(61)

4.2 Numerical Practical Example
Let us assume that k =1, r =m =n =15, y = £ = 0.95,
S,=Z,=9,

=t(Z. -7
Sr :Z( i 1)

='+(t-r)(Z, -Z,)=192.2508

Then the lower one-sided y-content tolerance limit
with a confidence level B, Lk=1 =L«-1(S) can be
obtained from (50). Since

t=15< Ind=-p) _
InA,,

S= . (62)

In@-p)
In (1— Ak n-k+1)2-7 )

—876, (63)
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where the quantile of Beta(k,n-k+1),1—y is
given by
Qkn-kityiy = 0.003414,

it follows from (50) and (64) that

(64)

Ll(S):Sl—% (f_tl—;Jrl—l ~9-3=6. (65)

Statistical inference. From (65) it follows that
there is a 95% certainty that failures will not occur
in the proportion y=0.95 or more of a set of n
selected items before the end of the lower one-sided
y-content tolerance limit Li(S) = 6 monthly
intervals.

5 Adequate Mathematical Models of
the Cumulative Distribution Function
of Order Statistics to Construct Equal
Tails or Shortest Length Confidence

Intervals

Let Z = (Z1 £ ... £ Z) be the first r ordered
observations (order statistics) in a sample of size t
from the exponential distribution with the
probability density function

f (2)=p"exp(-z/p), u>0,2>0,  (66)
and the cumulative probability distribution function

F,(2) =1-exp(-z/ w), (67)
where x is the scale parameter. It is assumed that the
parameter z is unknown. In Type Il censoring,

which is of primary interest here, the number of
survivors is fixed and Z; is a random variable. It is
known that
S, =>.Z,+(t-n)Z, (68)
j=1

is the complete sufficient statistic for ux. The
probability density function of Sy is given by

r-1

1
r ST
I(r)u

V=S, /u

is the pivotal quantity, the probability density
function of which is given by

f,(s)=

exp[—s—r} s, >0. (69)
U

(70)

f(v)= %v!l exp(-v,), v. >0. (Gamma (r,1)). (71)
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Consider the above example, where t units, whose
lifetimes are distributed according to the same
exponential distribution (66), are put on test
simultaneously, and where all units are observed
until failure. In this case, Z1 < ... < Z, are the first r
ordered observations (the Type Il censored sample
and the parameter y is unknown).

1) What is the 100(1-a)% shortest-length
confidence interval for 4 based on Z,? Answer 1:

5.1 Application of Mathematical Model 2.1
It follows from (6) that F (z )is the generalized

pivotal quantity:
ur—l l—u (t-r+1)-1
() = d-u) ,
B(r,t—r+1)
O<u<Zl (Beta(r,t-r+1)). (72)

Using (72), it can be obtained a 100(1-a)%
confidence interval for x« from

Pr(u,<F,(z)<u,)= Pr{u1 sl—exp(—z—/;j < uz)

:Pr[l—uzgexp(—ijsl—ulJ

U

=Pr[|n( 1 Jgisln[ 1 D
1-u ) u 1-u,

B I:)r(ln(ll[zlr—uz]) =4 In(l/[zlr—ul])J

=l-«

F.(z)=u~f

rt-r+l

IN

(73)
by suitably choosing the decision variables U, and

U, . Hence, the statistical confidence interval for u
is given by

{In(l/[zlr—uz])'In(l/flr—ul])}' ()

The length of the statistical confidence interval for
4 is given by

Zr _ Zr (75)
In(1/[1-v,]) In(1/[1-u,])
In order to find the shortest length confidence
interval L(u;,u,|z), we should find a pair of

L(Ul,U2 |Zr) :[

decision variables u, and u, such that L(u,,u,|z,)
is minimum.
It follows from (73) and (74) that
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[f . @du=[f (Wdu-[f (u)du
Uy 0 0
=(1-a+p)-p=1-a, (76)
where p (0< p<«) is a decision variable,
j L (du=(1-a+p) (77)
0
and
[f . (du=p. (78)
0
Then u, represents the (1—«a + p) - quantile, which
is given by
u2 = ql—a+ pi(rit-r+l1)? (79)
u, represents the p - quantile, which is given by
u1 = qp;(r,t—r+l)' (80)

The shortest length confidence interval for x can
be found as follows:
Minimize

Lz(uliuz | Zr) =

(1/[1[—u2])}

2

In(L/ E]r.—ul]) I

z

r

In (l/ [1— Upi(rtren) ])

z

r

In (1/ [1 N pi(r,t-r+l) ])

(81)

subject to
0<p<e, (82)
Numerical Solutions. The optimal numerical
solution minimizing L(ui, Uz z) can be obtained
using the computer software "Solver”". If, for
example, t=10, r = 4, « = 0.05, then the optimal
numerical solution is given by

p=00483%4, U, =q,,, ., =0.148512,
Uy =0y . prarapy = 0.779435 (83)

with the 100(1-a)% shortest-length confidence
interval
L(u,u,|z,)=1026.313-109.1584 =917.1544. (84)
The 100(1-)% equal tails confidence interval is
given by
LU, |z,;p=c/2)

=1273.159-156.1236 =1117.036.  (85)

with
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p=0.025 u, =0.121552, u, =0.652453. (86)
Relative efficiency. The relative efficiency of
L(uy,U2 | Zr ; p =af2) as compared with L(uy,Uz | zr) is
given by
releff. { L(u,u,|z;p=a/2),L(u,u,|z)}
- I-(ul'l“IZ | Zr)
L(u,U, |z p=c/2)
_917.1544
1117.036

2) What is the 100(1-a)% shortest-length
confidence interval for 4 based on S;? Answer 2:

= 0.821061. (87)

5.2 Application of Gamma (r,1)
It follows from (71) that S,/ z=u represents the

pivotal quantity:

i=u ~f.()
y7]
1
=——u -u), u=0, (Gamma (r,1)). (88
0 (-u) ( (r1).(88)
Using (88), it can be obtained a 100(1-a)%

confidence interval for x« from

Pr[ul Siﬁuzj: Pr(i
H u,

by suitably choosing the decision variables u, and

SySile—a (89)
ul

u, . Hence, the statistical confidence interval for u
is given by
[, /u,.5s,./u,]. (90)
The length of the statistical confidence interval for
4 is given by
L(ul’uz | Sr) :(Sr/ul _sr/uz)-
In order to find the shortest length confidence
interval L(u,,u,|s,), we should find a pair of

(91)

decision variables u, and u, such that L(u,,u,|s,)
is minimum.
It follows from (88) and (89) that

T f.,(u)du= T f_(u)du —T f (u)du
Uy 0 0

=(1-a+p)-p=1l-a, (92)
where p (0< p<¢) is adecision variable,

[t (Wdu=(1-a+p) (93)

0
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and
j f (u)du=p. (94)
0

Then u, represents the (1—c + p) - quantile, which

is given by
Uy =0 gpyryy (95)
u, represents the p - quantile, which is given by
U =0piryy- (96)

The shortest length confidence interval for u can
be found as follows:

Minimize
S

2
Sr
ul u2

2
s S,
qp;(r,l) ql—a+ p;(r.1)

0<p<a, (98)

The optimal numerical solution minimizing L(us,
Uz | sr) can be obtained using the standard computer
software "Solver" of Excel 2016. If, for example,
t=10, r = 4, a = 0.05, then the optimal numerical
solution is given by

p=0.048393, u,=q,, =1.351362,
Uy =0 oy pray =12.45735 (99)

with the 100(1-a)% shortest-length confidence
interval

L(u,,U, | 5,) =1035.992 —112.3884 = 923.6087. (100)

I—Z(ul’uz |sr):|:

(97)

subject to

The 100(1-)% equal tails confidence interval is
given by
L(u,u,|s;;p=al2)

=1284.562 —159.6848 =1124.878 (101)
with

p=0.025, u, =1.089865, u,=8.767273.(102)
Relative efficiency. The relative efficiency of

L(u1,Uz | Sr; p =af2) as compared with L(us,Uz | ) is
given by

rel.eff. { L(u,u,|s,; p=a/2),L(u,u,]|s,) }

L(u,,u,|s,) ~923.6087
L(u,u,|s;p=al2) 1124.878
=0.821075. (103)
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Inference. Two completely different versions of
constructing confidence intervals of the shortest
length and equal tails gave practically the same final
results. This confirms the validity of the analytical
conclusions and computational algorithms presented
in this paper.

6 New Mathematical Approach to
Constructing Statistical Estimates of
the Probability Density and
Cumulative Distribution Function

Let Z = (Z1 £ ... £ Z) be the first r ordered
observations (order statistics) in a sample of size t
from the two-parameter exponential distribution
with the probability density function (pdf) (38) and
the cumulative distribution function (cdf) (39),
where the parametric vector x is equal to (s, 9); the

shift parameter & and the scale parameter 9 are
unknown.

6.1 Example of Constructing Statistical
Estimates for the Two-Parameter
Exponential Distribution

Let us suppose that Z is a future observation from
the same distribution (39), independent of Z = (Z; <
.. < Z). Then a statistical estimate of (39) can be
determined as follows.

Step 1. Invariant embedding of S; in (39) to
isolate the unknown parameter & from the problem
through Vi (45),

F”(Z) zl_exp(_wj
3
=1—exp(—%)exp(—vl), z>s, (104)

Step 2. Averaging (104) over the probability
distribution of the pivotal quantity Vi to eliminate
unknown parameter ¢ from the problem. It follows
from (104) and (46) that the pivot-based estimate of
the cumulative distribution function (39) (obtained
through the pivot-based method) is given by

F.(@)= T F,(2)f (v,)av,

_ ]Il—exp(— : _351 Jexp(—vl )} texp(-tv,)dy,

texp(—v,[t+1))dv,
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dF, (2) t 1 7—5

S1.9 1
=———exp| — 106
dz t+19 p( 3) (106)

and
t 1 Z-s
1P Ty 1 Z—s

=—exp| ——= |, (107
C— p( 9 j( )

exp(— z ;Sl jdz g

It follows from (107) that the probability density
function (pdf) of Z is given by

Slt+119

1 Z-S
fw(z)zgexp(— 3 1), z>s, (108)
with the cumulative distribution function
F, +(2) =1—exp(— Z ;Slj. (109)

Step 3. Invariant embedding of S, in (109) to
isolate the unknown parameter & from the problem
through V. (47),

Z-5 z-s, S,
Fw(z)zl—exp(— 3 1] =1—exp(— S 1§j

z-s,
s

r

=1- exp[— V,], z>s,. (110)
Step 4. Averaging (111) over the probability
distribution of the pivotal quantity V to eliminate
unknown parameter & from the problem. It follows
from (110) and (48) that the pivot-based estimate of
the cumulative distribution function (39) (obtained
through the pivot-based method) is given by

[ T Z-s,
!Fsl,g(z)fr(v,)dvr:I[l—exp(— . Vrﬂ

0 r

X mv:iz eXp(—Vr )dVr
z-s

=1—(1+
Sr

F(2)=1- Fs(z)=(1+

The pivot-based estimate of the probability density
function (38) is given by

fs(z)zdFs(Z):r_l(lJrzgslj , z>s,.(113)

dz S,
It follows from (111) that the cumulative

distribution function of the ancillary statistic

Z-S,
S

-(r-1)
j —F(z2). (111)

where

75 )"
1J . 1)
S

r

W = (114)

r
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is given by

1
(L+w)™
The probability density function of the ancillary
statistic (114) is given by

F(w)=1- (115)

dFw)  r-1

fw= dw  (L+w)"

w>0,

(116)

Constructing Confidence Interval for Z. Using
(114) and (115), it can be obtained a 100(1-x)%
confidence interval for Z from

!

Z-5S ]
<W,
S,

=Pr(ws, +5,<Z<w,S, +S,)=1-a. (117)

Pr(w, <W <w,)= Pr[w1 <

by suitably choosing the decision variables w, and
w, . Hence, the statistical confidence interval for Z
is given by
[Ws, +5,,W,8, +5,]- (118)

The length of the statistical confidence interval for Z
is given by

LW, W, |s,)=(W,s, —ws, ) =(W, —w,)s,.(119)
In order to find the shortest length confidence
interval L(w,,w, |s,), we should find a pair of
decision variables w, andw, such that L(w,w,|s,)
is minimum.

It follows from (116) and (117) that
f f (w)dw = f f(w)dw—vj1 f (w)dw

0 0

W
=F(W,)-F(W)=(1-a+p)-p=1-a, (120)
where p (0< p<¢) is adecision variable,

W,

j f(wdw=F(Ww,)=(1-a+p)  (121)
and
Wy
j f (w)dw = F(w,) = p. (122)

0

Then u, represents the (1—a + p) - quantile, which
is given by
1 U(r-1)
W2 = ql—a+p :[ J _11 (123)

a-p

w, represents the p - quantile, which is given by
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1 1/(r-1)
Wl = qp = [EJ —1.

The shortest length confidence interval for Z can
be found as follows:
Minimize

LZ(W11W2 's,) :I:(WZ _Wl)sf:lz :[(ql_‘”p _)}

U(r-1) v(r-11?
ZKLJ _(L] } s2. (125)
a—-p 1-p

subject to

(124)

0<p<a, (126)

The optimal numerical solution minimizing L(ws,

W> | Sr) can be obtained using the standard computer

software "Solver" of Excel 2016. If, for example, r

= 4, a = 0.05, then the optimal numerical solution is
given by

p=0 (127)

with the 100(1-a)% shortest-length confidence

interval
L(w,w, |s,)=1.114743s,. (128)

The 100(1-)% equal tails confidence interval is
given by

L(w,w,|s,;p=a/2)=1508517s, (129)

with
p =0.025. (130)
Relative efficiency. The relative efficiency of
L(w,w, |s,; p=a/2)as compared with L(wz,w2| Sr)
is given by
rel.eff. { L(w, W, |s;; p=a/2),L(w,W,]s,) }

L(w,w,|s,) - 1.114743s,
L(w,w,|s,;p=a/2) 1.508517s,
=0.738966. (131)
7 Conclusion
The new intelligent computational methods

proposed in this paper are conceptually simple,
efficient, and useful for constructing accurate
statistical tolerance limits and shortest-length or
equal-tailed confidence intervals under the
parametric uncertainty of applied stochastic models.
The methods listed above are based on adequate
mathematical models of the cumulative distribution
function of order statistics and constructive use of
the principle of invariance in mathematical
statistics. We have illustrated proposed intelligent
computational methods for the exponential
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distribution. Applications to other log-location-scale
distributions can follow directly.
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