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Abstract: - The technique used here emphasizes pivotal quantities and ancillary statistics relevant for 

obtaining tolerance limits (or confidence intervals) for anticipated outcomes of applied stochastic models 

under parametric uncertainty and is applicable whenever the statistical problem is invariant under a group of 

transformations that acts transitively on the parameter space. It does not require the construction of any 

tables and is applicable whether the experimental data are complete or Type II censored. The exact 

tolerance limits on order statistics associated with sampling from underlying distributions can be found 

easily and quickly making tables, simulation, Monte-Carlo estimated percentiles, special computer 

programs, and approximation unnecessary. The proposed technique is based on a probability transformation 

and pivotal quantity averaging. It is conceptually simple and easy to use. The discussion is restricted to one -

sided tolerance limits. Finally, we give practical numerical examples, where the proposed analytical 

methodology is illustrated in terms of the exponential distribution. Applications to other log-location-scale 

distributions could follow directly.  
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1 Introduction 
Statistical prediction and optimization (under 

parametric uncertainty) of future random quantities 

(future outcomes, order statistics, etc.) based on the 

past and current data is the most prevalent form of 

statistical inference. Predictive inferences for future 

random quantities are widely used in risk 

management, finance, insurance, economics, 

hydrology, material sciences, telecommunications, 

and many other industries. Predictive inferences 

(predictive distributions, prediction or tolerance 

limits (or intervals), confidence limits (or intervals) 

for future random quantities on the basis of the past 

and present knowledge represent a fundamental 

problem of statistics, arising in many contexts and 

producing varied solutions. Statistical prediction is 

the process by which values for unknown 

observables (potential observations yet to be made 

or past ones which are no longer available) are 

inferred based on current observations and other 

information at hand. The approach used here is a 

special case of more general considerations 

applicable whenever the statistical problem is 

invariant under a group of transformations, which 

acts transitively on the parameter space [1-12].  

There are the following types of prediction 

problems: 

 

1.1 New-Sample Prediction Problem 
In this case, the data from a past sample of size n are 

used to make prediction on one or more future units 

in a second sample of size m from the same process 

or population. For example, based on previous 

(possibly censored) life test data, one could be 

interested in predicting the following: (1) time to 

failure of a new item (m = 1); (2) time until the kth 

failure in a future sample of m units, m ≥ k; (3) 

number of failures by time   in a future sample of 

m units. Formally we call the problems in this 

category as two-sample problems. 

 

1.2 Within-Sample Prediction Problem 
In this case, the problem is to predict future events 

in a sample or process based on the early-failure 

data from that sample or process. For example, if n 

units are followed until censoring time 
c  and there 

are r observed ordered failure times, 
1 ... rX X  , 

one could be interested in predicting the following: 

1) time of next failure; 2) time until l additional 

failures, l ≤ n ‒ r; 3) number of additional failures in 
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a future interval  ,c   . Formally we call the 

problems in this category as one-sample problems. 

 

 

2 Adequate Mathematical Models of 

the Cumulative Distribution Function 

of Order Statistics to Construct New-

Sample Tolerance Limits (One-Sided) 
Theorem 1.Let us assume that there is a random 

sample of t ordered observations Z1 … Zt from a 

known distribution with a probability density 

function (pdf) ( ),f z cumulative  ´ distribution 

function (cdf) ( ),F z where   is the parameter (in 

general, vector), then the adequate mathematical 

models of the cumulative distribution function (cdf) 

of the rth order statistic Zr, r{1, 2, …, t}, to 

construct one-sided −content tolerance limits with 

confidence level , are given (for a new sample) as 

follows: 

 

2.1 Adequate Mathematical Model 2.1 

( )
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0

( ) ( | ),
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On the other hand, it follows from (1) that 
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Thus, ( )rF z is the generalized pivotal quantity: 

, 1
( ) ~ ( )

r t rrF z u f u  
  

 
1 ( 1) 11
(1 ) ,    0 1.
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r t ru u u
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  (6)   

This ends the proof. 
 

2.2 Adequate Mathematical Model 2.2 
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0 1,u                            (8)   

is the probability density function (pdf) of the beta 
distribution ( ( 1, ))Beta t r r   with shape 

parameters t  r+1 and r, 
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It follows from (5) and (9) that 
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Thus,1 ( )rF z is the generalized pivotal quantity: 
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1 ( ) ~ ( )
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(1 ) ,    0 1.
1,

m l lu u u
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 (11) 

This ends the proof. 
 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.20

Nicholas Nechval, 
Gundars Berzins, Konstantin Nechval

E-ISSN: 2224-2880 155 Volume 22, 2023



2.3 Adequate Mathematical Model 2.3 
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is the probability density function (pdf) of the F 
distribution ( ( , 1))F r t r  with parameters r and 

t−r+1, which are positive integers known as the 
degrees of freedom for the numerator and the 
degrees of freedom for the denominator. 

Proof. It follows from (12) that 
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This ends the proof. 

 

2.4 Adequate Mathematical Model 2.4 
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is the probability density function (pdf) of the F 
distribution ( ( 1, )F t r r  with parameters t  r 

+1 and r, which are positive integers known as 
the degrees of freedom for the numerator and 
the degrees of freedom for the denominator.   

Proof. It follows from (16) that  
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This ends the proof. 
 

 
 

3 Adequate Mathematical Models of 

the Cumulative Distribution Function 

(Conditional) of Order Statistics to 

Construct Within-Sample Tolerance 

Limits (One-Sided)  
Theorem 2.  Let us assume that there is a random 

sample of t ordered observations Z1 … Zt from a 

known distribution with a probability density 

function (pdf) ( )f z , cumulative distribution 

function (cdf) ( ),F z where   is the parameter (in 

general, vector), then the adequate mathematical 

models of the conditional cumulative distribution 

function (cdf) of the rth order statistic Zr (1  k < r 

 t) given Zk=zk are determined (for the same 

sample) as follows: 
 

3.1 Adequate Mathematical Model 3.1 
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is the probability density function (pdf) of the beta 
distribution ( ( , 1))Beta r k t r    with shape 

parameters r−k and t−r+1. 

Proof. On the one hand, it follows from (20) that 
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This ends the proof. 
 

3.2 Adequate Mathematical Model 3.2 
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is the probability density function (pdf) of the beta 
distribution ( ( 1, ))Beta t r r k    with shape 

parameters t−r+1 and r−k. 

Proof. On the one hand, it follows from (25) that 
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This ends the proof. 
 

3.3 Adequate Mathematical Model 3.3 
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(0, ),u                              (31) 

is the probability density function (pdf) of the F 
distribution ( ( , 1))F r k t r   with parameters r−k 

and t−r+1, which are positive integers known as the 
degrees of freedom for the numerator and the 
degrees of freedom for the denominator.  

Proof. It follows from (30) that                          
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This ends the proof. 

3.4 Adequate Mathematical Model 3.4 
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is the probability density function (pdf) of the F 

distribution ( ( 1, ))F t r r k   with parameters t 

r+1 and r  k, which are positive integers known as 
the degrees of freedom for the numerator and the 
degrees of freedom for the denominator. 

Proof. It follows from (30) that  

1, ,

( ) ( )
1

1 ( ) ( )

( )

r r

k k

t r r k

r F z F zr k

t r F z F z

d
u du

dz
 

 




  

 
  
    

   

( | ; )r r k k

r

d
P Z z Z z t

dz
                (36) 

Thus,  

   ( ) ( ) 1 ( ) ( )
1

r k r k

r k
F z F z F z F z

t r
   




 
is the 

generalized pivotal quantity: 

( ) ( )
1

( ) ( )1

r r

k k

F z F zr k

F z F zt r

 

 

 
     

 

 
1

1,~ ( ) ( 1, )t r r ku u t r r k


         

1

1

1

1
,    (0, ).

1
1

t r

t r

t r
u

t rr k
u

r kt r
u

r k

 

 

  
    

  
  

  

  (37) 

This ends the proof. 
 
      

4 Two-Parameter Exponential 

Distribution 

 Let Z = (Z1  ...  Zr) be the first r ordered 
observations (order statistics) in a sample of size t 
from the two-parameter exponential distribution 
with the probability density function (pdf) 
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and the cumulative distribution function (cdf) 
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where ( , ),    is the shift parameter and  is 

the scale parameter. It is assumed that these 
parameters are unknown. In Type II censoring, 
which is of primary interest here, the number of 
survivors is fixed and Zk is a random variable. In 
this case, the likelihood function is given by 
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is the pivotal quantity, the probability density 
function of which is given by 
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4.1 Constructing One-Sided γ-Content  

       Tolerance Limit with a    Confidence Level 

        β (where Model 2.1 is used) 
Theorem 3. Let Z1…Zr  be the first r ordered 
observations from the preliminary sample of size t 
from a two-parameter exponential distribution 
defined by the probability density function (37). 
Then the lower one-sided γ-content tolerance limit 
with a confidence level β, Lk = Lk (S) (on the kth 
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(37)), which satisfies  
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Proof. It follows from (1), (39) and (49) that 

 Pr ( | )k kP Y L n    
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It follows from (49) and (52) that 
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It follows from (54) that 
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It follows from (55) that 
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It follows from (56) that  
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Then (50) follows from (56), (57) and (58). This 
ends the proof. 

Corollary 3.1. Let Z1…Zr  be the first r 

ordered observations from the preliminary sample of 

size t from a two-parameter exponential distribution 

defined by the probability density function (38). 

Then the upper one-sided γ-content tolerance limit 

with a confidence  level β, Uk Uk (S) (on the kth 

order statistic Yk from a set of n future ordered 

observations Y1…Yn also from the distribution 

(38), which satisfies 
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where 
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4.2  Numerical Practical Example  

Let us assume that k =1, r = m = n =15, γ = β = 0.95,
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Then the lower one-sided γ-content tolerance limit 
with a confidence level β, Lk=1 Lk=1(S) can be 
obtained from (50). Since  
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where the quantile of ( , - 1) 1, Beta k n k    is 
given by
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it follows from (50) and (64) that  
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Statistical inference. From (65) it follows that   

there is a 95% certainty that failures will not occur 

in the proportion γ=0.95 or more of a set of n 

selected items before the end of the lower one-sided 

γ-content tolerance limit L1(S) = 6 monthly 

intervals.   

 

 

5 Adequate Mathematical Models of 

the Cumulative Distribution Function 

of Order Statistics to Construct Equal 

Tails or Shortest Length Confidence 

Intervals 
Let Z = (Z1  ...  Zr) be the first r ordered 

observations (order statistics) in a sample of size t 

from the exponential distribution with the 

probability density function  
1( ) exp( / ),    0,  z 0,f z z              (66) 

and the cumulative probability distribution function 

( ) 1 exp( / ),F z z   
                 

(67) 

where μ is the scale parameter. It is assumed that the 

parameter  
 
is unknown. In Type II censoring, 

which is of primary interest here, the number of 

survivors is fixed and Zr is a random variable. It is 

known that  
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is the complete sufficient statistic for μ. The 

probability density function of Sr is given by 
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r rV S                            (70) 

is the pivotal quantity, the probability density 

function of which is given by 

11
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r r r rf v v v v
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(  ( ,1)).Gamma r (71)       

Consider the above example, where t units, whose 

lifetimes are distributed according to the same 

exponential distribution (66), are put on test 

simultaneously, and where all units are observed 

until failure. In this case, Z1 ≤ ... ≤ Zr are the first r 

ordered observations (the Type II censored sample 

and the parameter μ is unknown).  

1) What is the 100(1)% shortest-length 

confidence interval for μ  based on Zr ? Answer 1: 

5.1 Application of Mathematical Model 2.1 

It follows from (6) that ( )rF z is the generalized 

pivotal quantity: 
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Using (72), it can be obtained a 100(1)% 
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by suitably choosing the decision variables 1u  and 

2u . Hence, the statistical confidence interval for    

is given by 
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The length of the statistical confidence interval for 

  is given by 

     1 2

1 2

( , | ) .
ln 1/ 1 ln 1/ 1

r r
r

z z
L u u z

u u

 
  
   

(75)

  

 

In order to find the shortest length confidence 

interval 1 2( , | )rL u u z , we should find a pair of 

decision variables 1u  and 2u  such that 1 2( , | )rL u u z  

is minimum. 

It follows from (73) and (74) that 
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where p (0 )p    is a decision variable, 
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Then 2u represents the   1 p  - quantile, which 

is given by 

2 1 ;( , 1) ,p r t ru q                       (79) 

1u represents the  p - quantile, which is given by 

1 ;( , 1).p r t ru q                        (80) 

The shortest length confidence interval for μ can 

be found as follows: 
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subject to 

0 ,p                              (82) 

Numerical Solutions. The optimal numerical 

solution minimizing L(u1, u2| zr) can be obtained 

using the computer software "Solver". If, for 

example, t=10, r = 4,  = 0.05, then the optimal 

numerical solution is given by 

1 ;( , 1)0.048394 0.148512,,    p r t rp u q      

1 , 1)2 ;(   0.779435p r t ru q                  (83) 

with the 100(1)% shortest-length confidence 

interval 

1 2( , | ) 1026.313 109.1584 917.1544.rL u u z    (84) 

The 100(1)% equal tails confidence interval is 

given by 
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Relative efficiency. The relative efficiency of 

L(u1,u2 | zr ; p =/2) as compared with L(u1,u2 | zr) is 
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2) What is the 100(1)% shortest-length 

confidence interval for μ  based on Sr ? Answer 2: 

5.2 Application of Gamma (r,1) 
It follows from (71) that /rS u   represents the 

pivotal quantity: 
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Using (88), it can be obtained a 100(1)% 

confidence interval for μ from 
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by suitably choosing the decision variables 1u  and 

2u . Hence, the statistical confidence interval for   

is given by 
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In order to find the shortest length confidence 

interval 1 2( , | )rL u u s , we should find a pair of 

decision variables 1u  and 2u  such that 1 2( , | )rL u u s  

is minimum. 
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and 
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Then 2u represents the   1 p  - quantile, which 

is given by 

2 1 ;( ,1) ,p ru q                          (95) 

1u represents the p - quantile, which is given by 

1 ;( ,1).p ru q                           (96) 
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subject to 

0 ,p                            (98) 

The optimal numerical solution minimizing L(u1, 

u2 | sr) can be obtained using the standard computer 

software "Solver" of Excel 2016. If, for example, 

t=10, r = 4,  = 0.05, then the optimal numerical 

solution is given by 

1 ;( ,1),    1.350.048393 ,1362p rp u q    

,1)2 1 ;(  12.45735p ru q                 (99) 

with the 100(1)% shortest-length confidence 

interval 

1 2( , | ) 1035.992 112.3884 923.6087.rL u u s    (100) 

The 100(1)% equal tails confidence interval is 

given by 

1 2 ( , | ; / 2)rL u u s p    
 

 1284.562 159.6848 1124.878         (101) 

with 

1 20.025,   1.0898 .,   8.76727365p uu   (102) 

Relative efficiency. The relative efficiency of 

L(u1,u2 | sr ; p =/2) as compared with L(u1,u2 | sr) is 

given by  
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Inference. Two completely different versions of 

constructing confidence intervals of the shortest 

length and equal tails gave practically the same final 

results. This confirms the validity of the analytical 

conclusions and computational algorithms presented 

in this paper. 

 

6 New Mathematical Approach to 

Constructing Statistical Estimates of 

the Probability Density and 

Cumulative Distribution Function 

Let Z = (Z1  ...  Zr) be the first r ordered 
observations (order statistics) in a sample of size t 
from the two-parameter exponential distribution 
with the probability density function (pdf) (38) and 
the cumulative distribution function (cdf) (39), 
where the parametric vector μ is equal to ( , );  the 

shift parameter   and the scale parameter   are 
unknown. 

6.1 Example of Constructing Statistical 

       Estimates for the Two-Parameter 

       Exponential Distribution 

Let us suppose that Z is a future observation from 

the same distribution (39), independent of Z = (Z1  

...  Zr). Then a statistical estimate of (39) can be 
determined as follows. 

Step 1. Invariant embedding of S1 in (39) to 
isolate the unknown parameter   from the problem 
through V1 (45),  
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Step 2. Averaging  (104) over the probability 
distribution of the pivotal quantity V1 to eliminate 
unknown parameter from the problem. It follows 
from (104) and (46) that the pivot-based estimate of 
the cumulative distribution function (39) (obtained 
through the pivot-based method) is given by 
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Since 
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It follows from (107) that the probability density 
function (pdf) of Z is given by 

1

1
, 1

1
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with the cumulative distribution function  
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Step 3. Invariant embedding of Sr in (109) to 

isolate the unknown parameter   from the problem 

through Vr (47),  
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Step 4. Averaging  (111) over the probability 

distribution of the pivotal quantity Vr to eliminate 

unknown parameter from the problem. It follows 

from (110) and (48) that the pivot-based estimate of 

the cumulative distribution function (39) (obtained 

through the pivot-based method) is given by 
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The pivot-based estimate of the probability density 
function (38) is given by  

1
1
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It follows from (111) that the cumulative 
distribution function of the ancillary statistic  
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r

Z S
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is given by 
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The probability density function of the ancillary 
statistic (114) is given by 

( ) 1
( ) ,    0.

(1 )r

dF w r
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Constructing Confidence Interval for Z. Using 

(114) and (115), it can be obtained a 100(1)% 

confidence interval for Z from 
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 1 1 2 1Pr 1 .r rw S S Z w S S          (117) 

by suitably choosing the decision variables 1w  and 

2w . Hence, the statistical confidence interval for Z 

is given by 

 1 1 2 1, .r rw s s w s s                   (118) 

The length of the statistical confidence interval for Z 

is given by 

   1 2 2 1 2 1( , | ) .r r r rL w w s w s w s w w s    (119) 

In order to find the shortest length confidence 

interval 1 2( , | )rL w w s , we should find a pair of 

decision variables 1w and 2w such that 1 2( , | )rL w w s  

is minimum. 

It follows from (116) and (117) that 

2 2 1

1 0 0

( ) ( ) ( )

w w w

w

f w dw f w dw f w dw       

 2 1( ) ( ) 1 1 ,F w F w p p          (120) 

where p (0 )p    is a decision variable, 
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Then 2u represents the   1 p  - quantile, which 

is given by 
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1w represents the p - quantile, which is given by 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.20

Nicholas Nechval, 
Gundars Berzins, Konstantin Nechval

E-ISSN: 2224-2880 164 Volume 22, 2023



1/( 1)

1

1
1.

1

r

pw q
p



 
   

 
            (124) 

The shortest length confidence interval for Z can 

be found as follows: 

Minimize 
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subject to 

0 ,p                            (126) 

The optimal numerical solution minimizing L(w1, 

w2 | sr) can be obtained using the standard computer 

software "Solver" of Excel 2016. If, for example, r 

= 4,  = 0.05, then the optimal numerical solution is 

given by 

0p                               (127) 

with the 100(1)% shortest-length confidence 

interval 

1 2( , | ) 1.114743 .r rL w w s s            (128) 

The 100(1)% equal tails confidence interval is 

given by 

1 2 ( , | ; / 2) 1.508517r rL w w s p s      (129)  
 

with 

5.0.02p                          (130) 

Relative efficiency. The relative efficiency of 

1 2 ;, / 2( |  )rs pL w w  as compared with L(w1,w2| sr) 

is given by  
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w s

s
  

0.738966.                     (131) 

 

7 Conclusion 
The new intelligent computational methods 

proposed in this paper are conceptually simple, 

efficient, and useful for constructing accurate 

statistical tolerance limits and shortest-length or 

equal-tailed confidence intervals under the 

parametric uncertainty of applied stochastic models. 

The methods listed above are based on adequate 

mathematical models of the cumulative distribution 

function of order statistics and constructive use of 

the principle of invariance in mathematical 

statistics. We have illustrated proposed intelligent 

computational methods for the exponential 

distribution. Applications to other log-location-scale 

distributions can follow directly. 
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