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Abstract: In this paper, we show that (n, x, y, z) = (2, 3, 0, 3) is the unique non-negative integer solution of
the Diophantine equation nx + 10y = z2, where n is a positive integer with n ≡ 2 (mod 30) and x, y, z are
non-negative integers. If n = 5, then the Diophantine equation has exactly one non-negative integer solution
(x, y, z) = (3, 2, 15). We also give some conditions for non-existence of solutions of the Diophantine equation.
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1 Introduction
In 2014, Sroysang, [1], proved that the Diophantine
equation 4x + 10y = z2 has no non-negative integer
solution. After that, in 2019, Burshtein, [2], showed
that the Diophantine equation 7x + 10y = z2 has
no positive integer solution. In 2020, Orosram and
Comemuang, [3], found that the Diophantine equa-
tion 8x + ny = z2, where n is a positive integer
with n ≡ 10 (mod 15), has the unique non-negative
integer solution (x, y, z) = (1, 0, 3). In 2021, N.
Viriyapong and C. Viriyapong, [4], proved that the
Diophantine equation nx + 13y = z2, where n is a
positive integer with n ≡ 2 (mod 39) and n + 1 is
not a square number, has the unique non-negative in-
teger solution (n, x, y, z) = (2, 3, 0, 3). Tangjai and
Chubthaisong, [5], studied the Diophantine equation
3x + py = z2, where p is prime and p ≡ 2 (mod 3)
and found that if y = 0, then (p, x, y, z) = (p, 1, 0, 2)
is the only one non-negative integer solution and if 4 ∤
y, then the equation has the unique non-negative inte-
ger solution (p, x, y, z) = (2, 0, 3, 3). In 2022, Wan-
naphan and Tadee, [6], found all non-negative integer
solutions of the Diophantine equation n2x+2y = z2,
where n is an odd positive integer. In the same year,
N. Viriyapong and C. Viriyapong, [7], proved that
the Diophantine equation nx + 19y = z2, where n
is a positive integer with n ≡ 2 (mod57) has the
unique non-negative integer solution (n, x, y, z) =
(2, 3, 0, 3). Borah and Dutta, [8], studied the Dio-
phantine equationnx+24y = z2, where n is a positive
integer with n ≡ 5, 7 (mod 8).

Inspired by the work mentioned earlier, we study
the Diophantine equation nx + 10y = z2, where n
is a positive integer. We can easily notice that if
n ≡ 1( mod 3), then the Diophantine equation has no
non-negative integer solution. Since n ≡ 1 (mod 3),

we have z2 = nx + 10y ≡ 2 (mod 3), a contradic-
tion since z2 ≡ 0, 1 (mod 3). Cases that have not yet
been considered, are n ≡ 0, 2 (mod 3). In this re-
search, we will consider the case n ≡ 2 (mod 3) and
n ≡ 2 (mod 10). That is n ≡ 2 (mod 30). More-
over, we study in case n = 5.

2 Preliminaries
In the beginning this section, we present some helpful
Theorems.

Theorem 1. If z is an integer, then z2 ≡ 0, 1, 4,
5, 6, 9 (mod 10).

Proof. Let z be an integer. Then there exists a
non-negative integer r such that z ≡ r (mod10),
where 0 ≤ r ≤ 9.

Case 1: r = 0. Then z2 ≡ 0 (mod 10).

Case 2: r = 1. Then z2 ≡ 1 (mod 10).

Case 3: r = 2. Then z2 ≡ 4 (mod 10).

Case 4: r = 3. Then z2 ≡ 9 (mod 10).

Case 5: r = 4. Then z2 ≡ 16 ≡ 6 (mod 10).

Case 6: r = 5. Then z2 ≡ 25 ≡ 5 (mod 10).

Case 7: r = 6. Then z2 ≡ 36 ≡ 6 (mod 10).

Case 8: r = 7. Then z2 ≡ 49 ≡ 9 (mod 10).

Case 9: r = 8. Then z2 ≡ 64 ≡ 4 (mod 10).

Case 10: r = 9. Then z2 ≡ 81 ≡ 1 (mod 10).
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Theorem 2. [9], (x, y, z) ∈ {(3, 0, 3), (2, 1, 3)} are
exactly two non-negative integer solutions of the
Diophantine equation 2x + 5y = z2.

Theorem 3. (Mihăilescu’s Theorem), [10], The
Diophantine equation ax − by = 1 has the unique
solution (a, b, x, y) = (3, 2, 2, 3), where a, b, x, y are
integers and min{a, b, x, y} > 1.

Next, we prove two useful Lemmas by using
Mihăilescu’s Theorem.

Lemma 4. The Diophantine equation

1 + 10y = z2 (1)

has no non-negative integer solution.

Proof. Assume that (y, z) is a non-negative integer
solution of (1). Then z2−10y = 1. It is easy to check
that y > 1 and z > 1. Thus min {z, 10, 2, y} > 1. By
Theorem 3, this is impossible.

Lemma 5. Let n be a positive integer with n ≡
2 (mod 10). Then the Diophantine equation

nx + 1 = z2 (2)

has a unique non-negative integer solution. The solu-
tion is (n, x, z) = (2, 3, 3).

Proof. Let (x, z) be a non-negative integer solution of
(2). If n = 1 or x = 0, then z2 = 2, a contradiction.
Thus n > 1 and x ≥ 1. If x = 1, then n + 1 = z2.
Since n ≡ 2 (mod 10), we have z2 ≡ 3 (mod 10).
This is impossible by Theorem 1. Then x > 1. Next
we consider z. If z = 0 or z = 1, then nx = −1
or nx = 0, respectively, a contradiction. Thus z > 1
and so min{z, n, 2, x} > 1. By Theorem 3 and (2),
we have (n, x, z) = (2, 3, 3).

3 Main Results
In this section, we give our results.

Theorem 6. The Diophantine equation

5x + 10y = z2 (3)

has a unique non-negative integer solution. The solu-
tion is (x, y, z) = (3, 2, 15).

Proof. Let (x, y, z) be a non-negative integer solution
of (3). Suppose that x ≥ y. From (3), we have

5y(5x−y + 2y) = z2. (4)

Then y is even and there exists a positive integer z1
such that

5x−y + 2y = z21 . (5)

By Theorem 2, we have y = 2 and x − y = 1.
Then x = 3, and so z2 = 53 + 102 = 225. Hence
(x, y, z) = (3, 2, 15) is a non-negative integer solu-
tion of (3). Now, we consider x < y. From (3), it
follows that

5x(1 + 2y · 5y−x) = z2. (6)

Thus, x is even and there exists a positive integer z2
such that 1 + 2y · 5y−x = z22 . It implies that

(z2 − 1)(z2 + 1) = 2y · 5y−x. (7)

Then there exists two non-negative integers u and v
such that

z2 − 1 = 2u · 5v (8)

and
z2 + 1 = 2y−u · 5y−x−v. (9)

From (8) and (9), we get

2 = 2y−u · 5y−x−v − 2u · 5v. (10)

Now, we consider three following cases:

Case 1: y − x− v = 0. From (10), we obtain that

2 = 2y−u − 2u · 5v. (11)

Subcase 1.1: y − u ≥ u. From (11), we ob-
tain that 2 = 2u

(
2y−2u − 5v

)
. Then u = 1 and

1 = 2y−2u − 5v. It is easy to check that y − 2u > 1
and v > 1. This is impossible by Theorem 3.

Subcase 1.2: y − u < u. From (11), we get
2 = 2y−u

(
1− 22u−y · 5v

)
. Then y − u = 1 and

1 = 1 − 22u−y · 5v. Thus 22u−y · 5v = 0, a contra-
diction.

Case 2: v = 0. From (10), we obtain that

2 = 2y−u · 5y−x − 2u. (12)

Subcase 2.1: y − u ≥ u. From (12), we get
2 = 2u

(
2y−2u · 5y−x − 1

)
. Then u = 1 and

1 = 2y−2u · 5y−x − 1. Thus 2y−2u · 5y−x = 2, and so
y − x = 0. This is impossible since x < y.

Subcase 2.2: y − u < u. From (12), we get
2 = 2y−u

(
5y−x − 22u−y

)
. Then y − u = 1 and

5y−x − 22u−y = 1. It is easy to check that y − x > 1
and 2u− y > 1. This is impossible by Theorem 3.

Case 3: y− x− v > 0 and v > 0. From (10), we get
5 | 2, a contradiction.
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Theorem 7. Let n be a positive integer with n ≡
2 (mod 30). Then the Diophantine equation

nx + 10y = z2 (13)

has a unique non-negative integer solution. The solu-
tion is (n, x, y, z) = (2, 3, 0, 3).

Proof. Let x, y and z be non-negative integers such
that the equation (13) is true.

Case 1: x = 0. This is impossible by Lemma 4.

Case 2: y = 0. By Lemma 5, it follows that
(n, x, y, z) = (2, 3, 0, 3).

Case 3: x ≥ 1 and y ≥ 1. Assume that x is
even. It follows that x = 2u, for some positive
integer u. Since n ≡ 2 (mod30), we obtain that
n ≡ 2 (mod 3), and so nx ≡ 2x ≡ 4u ≡ 1 (mod 3).
Then z2 = nx + 10y ≡ 2 (mod3). This is im-
possible since z2 ≡ 0, 1 (mod3). Thus x is odd.
There exists a non-negative integer v such that
x = 2v + 1. Since n ≡ 2 (mod 30), we obtain that
nx = n2v+1 ≡ 22v+1 (mod 30).

Subcase 3.1: v is even. Then v = 2a, for some
non-negative integer a. Since 24a ≡ 16a ≡ 1
(mod 5), it follows that nx ≡ 24a+1 ≡ 2 (mod 10),
and so z2 = nx + 10y ≡ 2 (mod10). This is
impossible by Theorem 1.

Subcase 3.2: v is odd. Then there exists a non-
negative integer b such that v = 2b+ 1. Since 24b ≡
16b ≡ 1 (mod5), it follows that nx ≡ 24b+3 ≡
8 (mod 10), and so z2 = nx + 10y ≡ 8 (mod 10).
This is impossible by Theorem 1.

By Theorem 7, we have the following examples
and the corollary.

Example 8. The Diophantine equation 2x+10y = z2

has a unique non-negative integer solution. The so-
lution is (x, y, z) = (3, 0, 3).

Example 9. The Diophantine equation 32x + 10y

= z2 has no non-negative integer solution.

Corollary 10. Let m and n be positive integers with
n ≡ 2 (mod 30). Then the Diophantine equation

nx + 10y = z2m (14)

has a unique non-negative integer solution. The solu-
tion is (n,m, x, y, z) = (2, 1, 3, 0, 3).

Proof. Let a, b and c be non-negative integers such
that the equation (14) is true. Therefore (x, y, z) =

(a, b, cm) is a solution of the equation (13). By The-
orem 7, we get n = 2, a = 3, b = 0 and cm = 3.
Then c = 3 and m = 1. Hence (n,m, x, y, z) =
(2, 1, 3, 0, 3) is the only one solution of the equation
(14).

Theorem 11. Let n be prime with n ≥ 7, n ̸≡
1 (mod 4) and n ̸≡ 1 (mod 5). If y is even, then the
Diophantine equation (13) has no non-negative inte-
ger solution.

Proof. Let x, y and z be non-negative integers such
that the equation (13) is true. Since y is even, we
have y = 2k, for some non-negative integer k.

Case 1: k = 0. Then y = 0. From (13), we have

z2 − nx = 1. (15)

It is easy to check that z > 1 and x > 0. Assume that
x > 1. Then min{z, n, 2, x} > 1. By Theorem 3 and
(15), we have n = 2, a contradiction. Thus x = 1,
and so (z − 1)(z + 1) = n. Since n is prime, we get
z − 1 = 1 and z + 1 = n. Thus z = 2 and n = 3, a
contradiction.

Case 2: k > 0. From (13), it follows that

(z − 10k)(z + 10k) = nx. (16)

Since n is prime, there exists a non-negative integer
h such that

z − 10k = nh (17)
and

z + 10k = nx−h. (18)
From (17) and (18), we get x > 2h and

2 · 10k = nh(nx−2h − 1). (19)

Since n is prime with n ≥ 7, we obtain that h = 0
and

2 · 10k = nx − 1 = (n− 1)(nx−1 + nx−2 + · · ·+1).

Since k > 1 andn−1 > 2, it follows that 4 | (n−1) or
5 | (n − 1). Thus n ≡ 1 (mod 4) or n ≡ 1 (mod 5),
a contradiction.

Corollary 12. The Diophantine equation

7x + 100y = z2 (20)

has no non-negative integer solution.

Proof. Assume that (a, b, c) is a non-negative integer
solution of (20). Therefore 7a + 102b = c2. Thus
(n, x, y, z) = (7, a, 2b, c) is a non-negative integer
solution of (13). This is impossible by Theorem 11.
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