
 

 

  

Abstract:  This article introduces and discusses a new three-parameter lifespan distribution called Zero-Truncated Poisson Pareto 

distribution ZTPP. that is built on compounding Pareto distribution as a continuous distribution and Zero-Truncated Poisson 

distribution as a discrete distribution. Various statistical properties and reliability characteristics of the proposed distribution have 

been investigated including explicit expressions for the moments, moment generating function, quantile function, and median. 

With three parameters, the suggested distribution has an advantage over other distributions in that it makes estimating the model 

parameters simpler. To estimate the unknown parameters of the ZTPP distribution, the maximum likelihood method, and L. 

Moments method are employed. Moreover, a real data set is used to evaluate the significance and ensure the applicability of the 

proposed distribution as compared to other probability distributions. The derived model proved to be the best compared to other 

fitted models, where the criteria values of (AIC), (CAIC), and (BIC) are minimum values by using the ZTPP distribution. The 

proposed model is hoped to attract a wider application      
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1. Introduction 

 he processes of installing distributions results in new 

distributions. One such complex probability distribution 

that is important in practical applications is the Poisson 

composite distribution [1]. Since the nature of some data or 

occurrences necessitates the use of composite distributions, 

which are more flexible than standard distributions, 

composites distributions are more adaptable to describe some 

data that cannot be well represented by traditional statistical 

distributions. For example, failures in electronic devices, the 

phenomenon of the strength of slime, the phenomenon of 

rainfall that can occur in certain specific places, and other 

phenomena in working life. In these cases, the appropriate 

distribution is one of the composite distributions. Under its 

name, this distribution involves many distributions. Recently, 

new distributions have been proposed by integrating 

continuous distribution with another discrete distribution. For  

 

 

example, we can cite some of them such as the exponential 

geometric by Adamidis.[2]; Silva proposed the generalized 

exponential geometric [3]; Barreto-Souza et al. [4] proposed 

the Weibull geometric; the Poisson exponential by Cancho et 

al. [5]; the flexible Zero-truncated Poisson by Abouelmagd et 

al.[6]; the Poisson Burr X Weibull by Abouelmagd et al. [7]; 

the Zero Truncated Poisson Exponentiated Gamma by 

Guilherme et al. [1]; the Exponential-Truncated Poisson by 

Rezaei et al.[8]; the Pareto Poisson Lindley by Asgharzadeh et 

al. [9]; the Poisson Nadarajah by Muhammad Mansoor et 

al.[10]; and the Binomial-exponential 2 by Bakouch et al. 

[11]. The Pareto Geometric by Nassar et al.[12] can also be 

cited with some distributions related to the Pareto distribution 

beta modified Weibull by Silva et al.[13]; the Pareto-type 

distribution by Bourguignon et al.[14]; the bivariate Pareto by 

Sankaran et al.[15]; and the beta generalized Pareto by 

Mahmoudi et al.[16]. 

     The shape and scale characteristics of the Generalized 

Pareto Distribution GPD can be estimated using a variety of 

methods. Moments-based approaches, maximum likelihood, 

probability-weighted moments, and others are examples of 

classical methods. The references [17], [18]  provide a 

thorough analysis of them. Other academics have suggested 

the following generalizations of the GPD: To estimate Value 

at Risk, references [17] provided a three-parameter Pareto 

distribution and used POT; references [19] introduced an 

extension of the GPD and used parametric estimation. 

Classical approaches, however, might not be appropriate in all 

circumstances, as stated in [18]. That is why Zero-Truncated 

Poisson inference could be advisable.  

    There aren't many approaches for combining the Pareto and 

Poisson distributions. We can cite [20], who suggested using 

conjugate prior distributions; thus in this paper, we derive 

some structural properties of the (ZTP) and (P) distributions 

based on a double integrating mechanism to it’s with a three-

parameter lifetime distribution, installing new distribution 

called the Zero-Truncated Poisson Pareto distribution or in 

short ZTPP distribution with three parameters, make ZTPP has 

an advantage over other distributions in that it makes 

estimating the model parameters simpler.  To estimate the 

unknown parameters of the ZTPP distribution, the maximum 

likelihood method and L- method, are employed.  

     The researchers in this research were interested in installing 

the Zero-Truncated Poisson distribution with the Pareto 
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distribution, which resulted in a new distribution called the 

Zero-Truncated Poisson Pareto distribution (ZTPP). Thus the 

primary goal of this paper is propose a new life distribution 

consisting of three parameters, which is a direct extension of 

the Pareto distribution with two parameters. It is obtained by 

integrating the Pareto distribution as a continuous distribution 

with the Zero-Truncated Poisson distribution as a discrete 

distribution and the new distribution is called the Zero-

Truncated Poisson Pareto distribution (ZTPP). The probability 

mass function of the Zero-Truncated Poisson distribution is: 

𝑃(𝑁 = 𝑛) =
𝜆𝑛𝑒−𝜆

𝑛! (1 − 𝑒−𝜆)
  ; 𝑛 = 1,2, … ,∞ (1)   

And, the cumulative distribution function of the Pareto 

distribution is: 

𝐹1(𝑋|𝛾, 𝛽) = 1 − (
𝛽

𝑋
)
𝛾

 , 𝑋 > 𝛽      𝛾, 𝛽 > 0    (2)  

Let  𝑌1, …… . . , 𝑌𝑁 be the series of independent symmetric 

distributions: 𝑈 = min (𝑌1, …… . . , 𝑌𝑁)then the 

distribution function for U and its dynasty function are: 

 

 F(u|θ, λ) =
1-e-λF1(U/θ)

1-e-λ
                                  (3) 

 

𝑓(𝑢|𝜃, 𝜆) =
𝜆𝑒−𝜆𝐹1(𝑈/𝜃)𝑓1(𝑣|𝜃)

1 − 𝑒−𝜆
 , 

respectively. The RV 𝑉 = max  (Y1, …… . . , YN) has a 

cumulative distribution function (cdf) and its probability 

density function (pdf), given by: 

 

𝐹(𝑣|𝜃, 𝜆) =
𝑒−𝜆𝑆1(

𝑣

𝜃
) − 𝑒−𝜆

1 − 𝑒−𝜆
                       (4) 

And  

𝑓(𝑣|𝜃, 𝜆) =
𝜆𝑒−𝜆𝑠1(

𝑣

𝜃
)𝑓1(𝑣|𝜃)

1 − 𝑒−𝜆
  , 

 

    This paper is structured as follows: in Section II is derived 

the cumulative distribution function, density function, and 

failure function. We also present in Section III the statistical 

characteristics of the distribution and in Section IV we present 

two different methods of estimation: the maximum likelihood 

method and the L. Moments method. In Section V we present 

the application on real data and compare the results we 

obtained for the distribution with other distributions. Section 

VI is the conclusion. 

2. The ZTPP Distribution:  

    Let the (𝑌1, … , 𝑌𝑛) series of identical independent 

distributions of random variables, the cumulative distribution 

function, the probability density function, and the failure 

function, respectively: (𝑦|𝜃) , 𝑓(𝑦|𝜃)  ,  𝑆1(𝑦|𝜃) where N 

has ZTP distribution with parameter λ. is given by (1) then a 

random variable 𝑈 = min (𝑌1, …… . . , 𝑌𝑁) is the 

cumulative distribution function and its probability density 

function, respectively: 

𝐹(𝑦|𝜃) , 𝑓(𝑦|𝜃)  ,  𝑆1(𝑦|𝜃) where N has ZTP distribution 

with parameter λ. is given by (1) then a random variable 𝑈 =
min (𝑌1, …… . . , 𝑌𝑁) is the cumulative distribution function 

and its probability density function, respectively: by equation 

(2) and (3) we get cumulative distribution function and its 

probability density function, respectively with ZTPP: 

𝐹(𝑋|𝛾, 𝛽, 𝛼) =
1 − 𝑒

−𝛼[1−(
𝛽

𝑋
)
𝛾
]

1 − 𝑒−𝛼
 ,        (5) 

 

where: 0 < 𝛼 = 𝜆 𝑖𝑓 𝑋 = 𝑚𝑖𝑛 (𝑌1, … , 𝑌𝑁)               
 

 
Figure 1. Plots of the ZTPP CDF for some parameter values 

 

𝑓(𝑋|𝛾, 𝛽, 𝛼) =
𝛼𝛾𝛽𝛾𝑋−𝛾−1𝑒

−𝛼[1−(
𝛽

𝑋
)
𝛾
]

1 − 𝑒−𝛼
   

, 𝑋 > 𝛽    𝛾, 𝛽, 𝛼 > 0( 6) 

 
Figure 2. Plots of the ZTPP PDF for some parameter values 

2.1 Survival and Hazard Rate Functions: 

The survival function for the ZTPP distribution and hazard 

rate function of X the random variable with, 𝑓(𝑥) probability 

density function, 𝐹(𝑥) cumulative distribution function and 

survival function, 𝑠(𝑥) is assumed respectively, to be given 

by: 
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𝑆(𝑥) = 1 − 𝐹(𝑥) =
𝑒

−𝛼[1−(
𝛽
𝑋

)
𝛾
]
−𝑒−𝛼

1−𝑒−𝛼  and 

ℎ(𝑥) =
𝑓(𝑥)

𝑆(𝑥)
=

𝛼𝛾𝐵𝛾𝑒
−𝛼[1−(

𝛽

𝑋
)
𝛾
]

𝑥𝛾+1 [𝑒
−𝛼[1−(

𝛽

𝑋
)
𝛾
]
− 𝑒−𝛼]

 

 
Figure 3. Plots of the ZTPP HF for some parameter values 

3. Mathematical Properties 

     The following is a derivation of some statistical properties 

of the ZTPP distribution, which include moments and the 

quantile function and median. 

3.1 General Properties 

The other ordinary moment of X is given by  𝜇𝑟
/
= 𝐸[𝑋𝑟] =

∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥
∞

−∞
 

Using (6), we obtain:  

𝜇𝑟 = 𝐸[𝑋𝑟] = (1 − 𝑒𝛼)−1𝛽𝛾 

(
1

1 − 𝛽𝛾
)

−𝑟−1

𝛾

∑
(−𝛼)𝑗+1

𝑗!
(

𝛾

−𝑟 − 1 + 𝛾𝑗 + 𝛾
)

∞

𝑗=0

 

𝜇 = 𝐸[𝑋] = (1 − 𝑒𝛼)−1𝛽𝛾 

(
1

1 − 𝛽𝛾
)

−2

𝛾

∑
(−𝛼)𝑗+1

𝑗!
(

𝛾

−𝑟 − 1 + 𝛾𝑗 + 𝛾
)

∞

𝑗=0

 

(𝐸[𝑋2] = (1 − 𝑒𝛼)−1𝛽𝛾 (
1

1 − 𝛽𝛾
)

−3

𝛾

 

∑
(−𝛼)𝑗+1

𝑗!
(

𝛾

−𝑟 − 1 + 𝛾𝑗 + 𝛾
)

∞

𝑗=0

 

𝜎2 = 𝐸[𝑋2] − [𝐸[𝑋]]
2

= (1 − 𝑒𝛼)−1 ∗ 

𝛽𝛾 (
1

1 − 𝛽
𝛾)

−3
𝛾

∑
(−𝛼)𝑗+1

𝑗!
(

𝛾
−𝑟− 1 + 𝛾𝑗 + 𝛾

)

∞

𝑗=0

− 

[(1 − 𝑒𝛼)−1𝛽𝛾 (
1

1 − 𝛽𝛾
)

−2

𝛾

∑
(−𝛼)𝑗+1

𝑗!
(

𝛾

−𝑟 − 1 + 𝛾𝑗 + 𝛾
)

∞

𝑗=0

]

2

 

3.2 Quantile Function: 

We obtained a quantile function, which is the inverse function 

of equation (5), by solving the following equation F (𝑋) = q 

for 0 ≤ q ≤ 1: 

𝐹(𝑥) =
1 − 𝑒

−𝛼[1−(
𝛽

𝑥
)
𝛾
]

1 − 𝑒−𝛼
= 

𝑞𝑞[1 − 𝑒−𝛼] − 1 = −𝑒
−𝛼[1−(

𝛽

𝑥
)
𝛾
]
 

By entering the natural logarithm on both sides of the previous 

equation and solving it, we get: 

𝑥 = 𝛽{𝛼−1([𝛼 − ln(𝑞(1 − 𝑒−𝛼)] − 1)}
−

1

𝛾 

By Substituting 𝑞 = 𝑢 in the previous equation for, where u 

follows the uniform distribution [0,1], we get: 

𝑥 = 𝛽{𝛼−1([𝛼 − ln(𝑈(1 − 𝑒−𝛼)] − 1)}
−

1

𝛾             (7) 

We can use the previous inverse function to generate random 

numbers to simulate the random variable of the ZTTP 

distribution.      

Median: 

The median for the distribution is obtained by substituting in 

the previous inverse function for (𝑈 =
1

2
 ) as follows: 

M𝑒𝑑𝑖𝑎𝑛 = 𝛽 [𝛼−1 [𝛼 − 𝑙𝑛 (
1

2
(1 − 𝑒−𝛼) − 1)]]

−
1

𝛾

 

4. Estimation Methods 

In this section, we offer two methods for estimating 

distribution parameters in (a): Maximum Likelihood Method 

and L. Moments in (b). 

4.1 Maximum Likelihood Method: 

The Maximum Likelihood method is one of the traditional 

and widely used methods for estimating the parameters of the 

model ZTPP that makes the logarithm of the Likelihood 

function at its end and is easy to use analytically or 

numerically with parameter estimators for large samples. 

𝐿 (𝛼, 𝛽,
𝛾

𝑥
) = 𝛼𝑛𝛾𝑛𝛽

𝑛𝛾
(1 − 𝑒−𝛼)−𝑛𝑒−𝑛𝛼           

+ 𝛼∑ (
 𝛽
𝑥𝑖

)

𝛾𝑛

𝑖=1

∏𝑋𝑖
−𝛾−1

𝑛

𝑖=1

 

Let   ℓ = ln 𝐿(𝛼, 𝛽, 𝛾/𝑥) then: 

ℓ = 𝑛 ln 𝛼 +𝑛 ln 𝛾 + 𝑛𝛾 ln𝛽 − 𝑛 ln(1 − 𝑒−𝛼) − 𝑛𝛼 
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+∑ (
𝛽

𝑥𝑖
)
𝛾𝑛

𝑖=1

− (𝛾 + 1)∑ln 𝑥𝑖

𝑛

𝑖=1

 

By deriving the function L for the parameters (𝛼, 𝛽, 𝛾) is given 

by: 

𝜕ℓ

𝜕𝛽
=

𝑛𝛾

𝛽
+ 𝛼 ∑

1

𝑥𝑖
𝛾

𝑛

𝑖=1

(𝛾𝛽𝛾−1) = 0 

𝜕2ℓ

𝜕𝛼2
=

−𝑛

𝛼2
+

𝑛𝑒−𝛼

(1 − 𝑒−𝛼)2
 

The second partial derivation of L with respect to the 

parameters of the distribution is given by: 

𝜕2ℓ

𝜕𝛽2
=

−𝑛𝛾

𝛽2
+ 𝛼𝛾(𝛾 − 1)𝛽𝛾−2 ∑ 𝑥𝑖

−𝛾

𝑛

𝑖=1

 

𝜕2ℓ

𝜕𝛾2
=

−𝑛

𝛾2
+ 𝛼 ∑(

 𝛽

𝑥𝑖
)
𝛾𝑛

𝐼=1

(ln (
𝛽

𝑥𝑖
))

2

 

𝜕2ℓ

𝜕𝛼𝜕𝛾
=  ∑(

 𝛽

𝑥𝑖
)
𝛾𝑛

𝐼=1

(ln (
𝛽

𝑥𝑖
)),   

𝜕2𝐿

𝜕𝛼𝜕𝛽

= ∑𝛾𝛽−1 (
𝛽

𝑥𝑖
)
𝛾𝑛

𝑖=1

 

𝜕2ℓ

𝜕𝛽𝜕𝛾
=

𝜕2ℓ

𝜕𝛾𝜕𝛽
=

𝑛

𝛽
+ 𝛼𝛽𝛾−1 ∑𝑥𝑖

−𝛾

𝑛

𝑖=1

[1 + 𝛾 ln (
 𝛽

𝑥𝑖
)] 

Covariance Matrix: 

      Is a square and symmetric matrix that contains 

approximate covariances of the Maximum Likelihood 

estimators for the parameters of the ZTPP model of that 

matrix, representing the covariance between each pair of 

estimators and its main diagonal contains variances. It can be 

used to estimate model parameters with confidence intervals. 

 

𝐼(𝛼, 𝛽, 𝛾) = −𝐸

[
 
 
 
 
 

𝜕2ℓ

𝜕𝛼2

𝜕2ℓ

𝜕𝛼𝜕𝛽

𝜕2ℓ

𝜕𝛼𝜕𝛾

𝜕2ℓ

𝜕𝛽𝜕𝛼

𝜕2ℓ

𝜕𝛽2

𝜕2ℓ

𝜕𝛽𝜕𝛾

𝜕2ℓ

𝜕𝛾𝜕𝛼

𝜕2ℓ

𝜕𝛾𝜕𝛽

𝜕2ℓ

𝜕𝛾2 ]
 
 
 
 
 

  

 

4.2 L. Moments (LM) Statistics 

           The characteristics of a one-variable distribution can be 

described using moments such as mean, variance, skewness, 

and kurtosis. Hosking [21] introduced another method called 

L-Moments and this method can be defined as a linear set of 

ordinal statistics in a similar way. Therefore, the mean vector 

and the variance and variance matrix include various elements 

of the covariance and its properties, which are usually used to 

summarize the features of multivariate distributions. To 

overcome this drawback, Serfling and Xiao [22] proposed the 

multivariate L-moments method, and its components are the 

central moments, but this method does not assume the central 

moments of the second and higher than the second must be 

specified. Suppose x is a continuous random variable, the 

cumulative distribution function 𝐹(𝑋) and the quantitative 

function 𝑋𝐹(𝑋), and that: 

𝐿𝑀𝑟+1 = ∑𝑀1,𝑟,0

𝑟

𝑖=0

(−1)𝑟−𝑖 (
𝑟
𝑖
) (

𝑟 + 𝑖
𝑖

) , 𝑟

= 1,2, … . , 𝑛 

For any distribution, the first four moments can easily be 

calculated from the weighted moments as follows: 

𝐿𝑀1 = 𝑀100 = ∫ 𝑋(𝐹
1

0

)𝑑𝐹  

𝐿𝑀2 = 2𝑀110 − 𝑀100 = ∫ 𝑋(𝐹
1

0

)(2𝐹 − 1)𝑑𝐹 

𝐿𝑀3 = 6𝑀120 − 6𝑀110 + 𝑀100 = 

∫ 𝑋(𝐹
1

0

)(6𝐹2 − 6𝐹 − 1)𝑑𝐹 

𝐿𝑀4 = 20𝑀130 − 30𝑀120 + 12𝑀110 − 𝑀100 = 

∫ 𝑋(𝐹
1

0

)(20𝐹3 − 30𝐹2 + 12𝐹 − 1)𝑑𝐹 

 

Hosking (1990) proposed an unbiased estimator of L-moments 

as the following: Considering 𝑋1, 𝑋2, … , 𝑋𝑛 as the complete 

Lifetimes from the (ZPP) distribution with the three 

parameters, which is defined in (a) the probability-weighted 

moment is based on the following steps. 

 𝐿�⃛�𝑟+1 = ∑ �̃�1,𝑟,0(−1)𝑟−𝑖 (
𝑟
𝑖
) (

𝑟 + 𝑖
𝑖

)𝑟
𝑖=0   

Step (1): Obtain the inverse distribution 𝑋𝐹(𝑋) of the 

distribution, which is given by: 𝑋𝐹(𝑋) is the inverse function 

of the function 𝐹 we obtained when U=F in the equation (7). 

𝑋𝐹(𝑋) =  𝛽𝛼
1

𝛾[([(𝛼 − 1)−ln(𝐹(1 − 𝑒−𝛼)])]
−

1

𝛾 

Step (2): Obtain the theoretical probability-weighted moments 

of the 𝑀1,𝑟,0 ,where : 

𝑀1,𝑟,0 = ∫ 𝑋(𝐹)𝐹𝑟𝑑𝐹  ,   𝑟 = 0,1,2…
1

0
  then 

𝑀1,𝑟,0 = ∫ 𝛽𝛼
1

𝛾[([𝛼 − ln(𝐹(1 − 𝑒−𝛼)] − 1)]
−

1

𝛾𝐹𝑟

𝑑𝐹  ,   𝑟 = 0,1,2 …

1

0

 

Letting = (𝐹(1 − 𝑒−𝛼)) , we have 

𝑀1,𝑟,0 =
−𝛽𝛼

1

𝛾

(1 − 𝑒−𝛼)𝑟+1
∫ (𝛼 − ln 𝑍)

−
1

𝛾 ∑(
𝑟
𝑗)𝑍𝑗𝑑𝑧

𝑟

𝑗=0

𝑒−𝛼

1

 

Letting 𝑈 = ln𝑍 we get: 

𝑀1,𝑟,0 =
𝛽𝛼

1

𝛾

(1 − 𝑒−𝛼)𝑟+1
∑(

𝑟
𝑗) ∑

(𝑗 + 1)𝑘

𝑘!

∞

𝑘=0

𝑟

𝑗=0
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∫ (𝛼 − 𝑈)
−1

𝛾  𝑈𝐾𝑑𝑢
𝛼

0

 

 

Where:  

(𝛼 − 𝑈)
−

1

𝛾 = 𝛼
−

1

𝛾 ∑

(

 
𝑣 +

1

𝛾
− 1

1

𝛾
− 1

)

 (
𝑈

𝛼
)
𝑣∞

𝑣=0

 

then: 𝑀1,𝑟,0 = 𝛽 

∑ ∑ ∑(
𝑟
𝑗)

(𝑗 + 1)𝑘

𝑘!

(

 
𝑣 +

1

𝛾
− 1

1

𝛾
− 1

)

 (
1

𝑘 + 𝑣 + 1
)

𝑟

𝑗=0

∞

𝑘=0

∞

𝑣=0

 

𝛼−𝑣𝑀1,0,0 = 𝛽 ∑ ∑
𝛼−𝑣

(𝑘 + 𝑣 + 1)𝑘!

(

 
𝑣 +

1

𝛾
− 1

1

𝛾
− 1

)

 

∞

𝑘=0

∞

𝑣=0

 

𝑀1,1,0 = 𝛽 

∑ ∑
𝛼−𝑣

(𝑘 + 𝑣 + 1)𝑘!

(

 
𝑣 +

1

𝛾
− 1

1

𝛾
− 1

)

 [(
1
0
) (1)𝑘 + (

1
1
) (2)𝑘]

∞

𝑘=0

∞

𝑣=0

= 

𝛽 ∑ ∑
𝛼−𝑣

(𝑘 + 𝑣 + 1)𝑘!

(

 
𝑣 +

1

𝛾
− 1

1

𝛾
− 1

)

 [(1 + 2𝑘)]

∞

𝑘=0

∞

𝑣=0

 

𝑀1,2,0 = 𝛽 

∑ ∑
𝛼−𝑣

(𝑘 + 𝑣 + 1)𝑘!

(

 
𝑣 +

1

𝛾
− 1

1

𝛾
− 1

)

 [(1

∞

𝑘=0

∞

𝑣=0

+ 2𝑘+1 + 3𝑘)] 

From  𝑀1,2,0  , 𝑀1,1,0  , 𝑀1,0,0     We get 

𝛽 =
𝑀1,0,0

∑ ∑
𝛼−𝑣

(𝑘+𝑣+1)𝑘!
(
𝑣 +

1

𝛾
− 1

1

𝛾
− 1

)∞
𝑘=0

∞
𝑣=0

           (8) 

𝛽 =
𝑀1,1,0

∑ ∑
𝛼−𝑣

(𝑘+𝑣+1)𝑘!
(
𝑣 +

1

𝛾
− 1

1

𝛾
− 1

) [(1 + 2𝑘)]∞
𝑘=0

∞
𝑣=0

(9) 

 

𝛽 =
𝑀1,2,0

∑ ∑
𝛼−𝑣

(𝑘+𝑣+1)𝑘!
(
𝑣 +

1

𝛾
− 1

1

𝛾
− 1

) [(1 + 2𝑘+1 + 3𝑘)]∞
𝑘=0

∞
𝑣=0

   (10) 

From the previous three equations, and by 

substitution 
𝛼−𝑣

(𝑘+𝑣+1)𝑘!
(
𝑣 +

1

𝛾
− 1

1

𝛾
− 1

) = 𝑤 

we find that: 
𝑀1,0,0

∑ ∑ 𝑤∞
𝑘=0

∞
𝑣=0

=
𝑀1,1,0

∑ ∑ 𝑤[(1 + 2𝑘)]∞
𝑘=0

∞
𝑣=0

= 

𝑀1,2,0

∑ ∑ 𝑤[(1 + 2𝑘+1 + 3𝑘)]∞
𝑘=0

∞
𝑣=0

 

𝑀1,0,0 ∑ ∑ 𝑤[(1 + 2𝑘)]

∞

𝑘=0

∞

𝑣=0

= 𝑀1,1,0 ∑ ∑ 𝑤

∞

𝑘=0

∞

𝑣=0

  (11) 

𝑀1,1,0 ∑ ∑ 𝑤[(1 + 2𝑘+1 + 3𝑘)] =

∞

𝑘=0

∞

𝑣=0

 

𝑀1,2,0 ∑ ∑ 𝑤

∞

𝑘=0

∞

𝑣=0

[(1 + 2𝑘)]                                   (12) 

𝑀1,0,0 ∑ ∑ 𝑤[(1 + 2𝑘+1 + 3𝑘)]

∞

𝑘=0

∞

𝑣=0

= 𝑀1,2,0 ∑ ∑ 𝑤

∞

𝑘=0

∞

𝑣=0

  (13) 

 

Step(3): Replace the theoretical probability 

weighted moment 𝑀1,0,0  , 𝑀1,1,0  and 𝑀1,2,0 by their 

sample estimator, since the sample estimators are: 

�̂�1,𝑟,0 =
𝑛−1 ∑ 𝑋𝐽 (

𝑗 − 1
𝑟

)𝑛
𝑗=1

(
𝑛 − 1

𝑟
)

 

Where 𝑋𝐽 is the order statistic, the first estimation 

of 𝑀1,0,0  , 𝑀1,1,0  and 𝑀1,2,0 is given by: 

�̂� =
�̂�1,0,0

∑ ∑
𝛼−𝑣

(𝑘+𝑣+1)𝑘!
(
𝑣+

1

𝛾
−1

1

𝛾
−1

)∞
𝑘=0

∞
𝑣=0

  ;    
1

𝛾
 ≥ 1    (14)  

�̂�1,0,0 =

�̂�1,1,0 ∑ ∑
𝛼−𝑣

(𝑘+𝑣+1)𝑘!
(
𝑣+

1

𝛾
−1

1

𝛾
−1

)∞
𝑘=0

∞
𝑣=0

∑ ∑
𝛼−𝑣

(𝑘+𝑣+1)𝑘!
(
𝑣+

1

𝛾
−1

1

𝛾
−1

)[(1+2𝑘)]∞
𝑘=0

∞
𝑣=0

    (15)                      

�̂�1,0,0

=

�̂�1,2,0 ∑ ∑
𝛼−𝑣

(𝑘+𝑣+1)𝑘!
(
𝑣 +

1

𝛾
− 1

1

𝛾
− 1

)∞
𝑘=0

∞
𝑣=0

∑ ∑
𝛼−𝑣

(𝑘+𝑣+1)𝑘!
(
𝑣 +

1

𝛾
− 1

1

𝛾
− 1

) [(1 + 2𝑘+1 + 3𝑘)]∞
𝑘=0

∞
𝑣=0

(16) 

Equation (15) and (16) can be solved for an unknown �̂� , 𝛾 

numerical and  �̂� becomes easy from equation (14). 
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5. Application 

Here, we compare the ZTPP distribution to the BP beta 

distribution, the exponentiated pareto EP distribution, the 

Pareto distribution P, and the BEP beta exponentiated pareto 

distribution using an actual data sample. The models' fit is 

compared with the outcomes. We take into consideration an 

unedited data set that represents to remission times in months 

includes 128 bladder cancer patients chosen at random. Lee et. 

al [23] and Lemonte et.al [24] already examined these data. In 

the case of bladder cancer, abnormal cells in the bladder 

become out of control. Transitional cell carcinoma, the most 

prevalent form of bladder cancer, mimics the typical urothelial 

histology. The statistics data are as follows: 

 

0.08, 0.402.02, 2.02,2.07, 2.09, 2.23, 2.26, 2.46, 2.54, 2.62, 

2.64, 2.69, 2.690.20, 0.50, 0.90, 1.05, 0.51, 0.81, 1.35, 1.40, 

1.19, 1.26, 1.76, , 2.75, 2.831.46, 3.02, 3.25, , 3.36, 3.36, 3.48, 

, 3.31, 3.52, 3.57, 3.70, 3.82, 3.88, 4.18, 3.64,  4.23, 4.26, 

4.33, , 4.40, 4.50, 4.51, 4.34, 4.87, 4.98, 5.06, 5.17, 5.32, 5.32, 

5.09,  5.34, 5.41, 5.49, 5.62, 5.71, 5.41, 5.85, 6.25, 6.54, 6.93, 

6.94, 6.97, 6.76, 7.09, 7.26, 7.32, 7.39, 7.59, 7.28, 7.62, 7.63, 

7.66, 7.87,  8.26, 8.37, 7.93, 8.53, 8.65, 9.02, 9.22, 9.47, 

8.66,9.74, 10.06, 10.34, 10.66, 10.75, 11.25, 11.64, 11.79, 

11.98, 12.02, 12.03, 12.63, 13.11, 12.07, 13.29, 13.80, 14.76, 

14.24, 14.77, 14.83, 16.62, 17.12, 15.96, 17.14, 17.36, 19.13, 

20.28, 18.10, 21.73, 22.69, 25.74, 25.82, 23.63, 26.31, 32.15, 

36.66, 43.01, 46.12, 34.26, 79.05. 

 
Table 1. ML Estimates and Information Criteria 

Model 
MLE Estimates Statistic 

�̂� �̂� �̂� �̂� �̂� AIC BIC CAIC 

ZTPP    0.099 13.84 0.75 603.4 617.3 603.5 

Pareto   0.1519 0.0800 - 1189.3 1192.1 1189.3 

BEP 0.348 15983 0.0508 0.0800 8.6121 874.8 886.2 875.1 

BP 4.805 100.5 0.0109 0.0800 - 970.7 979.2 970.9 

EP   0.4722 0.0800 4.1518 992.2 997.9 992.3 

  Comparisons of models entailed the consideration of various 

criteria such as maximized likelihood −2ℓ̂, Akaike 

Information Criterion (AIC), Consistent Akaike Information 

Criterion (CAIC), Bayesian information criterion (BIC). The 

minimum values rule of AIC, BIC, CAIC is taken into 

consideration for selecting the best model to fit. These 

statistics are given by 𝐴𝐼𝐶 = −2ℓ̂ + 2𝐾, 𝐵𝐼𝐶 = −2ℓ̂ +

𝐾𝐿𝑜𝑔(𝑛), , 𝐶𝐴𝐼𝐶 = −2ℓ̂ + 2𝐾𝑛
(𝑛 − 𝑘 − 1)⁄  where 

n is a sample size, ℓ is log-likelihood and k is the number of 

parameters. Results show that our model satisfied the 

minimum rule, hence it is the best one. 

6. Discussion and Conclusion 

       In this study, we introduce a new distribution of life called 

Zero Truncated Poisson Pareto distribution (ZTPP). Despite 

the multiplicity of research in the field of compound 

distributions, but the authors  do not discuss properties for 

distributions (ZTP) and (P)  based on a double integrating 

mechanism to the Pareto (P) distribution as a continuous 

distribution with the Zero-Truncated Poisson  (ZTP) 

distribution as a discrete distribution, with three parameters, 

thus  in this paper, we derive some structural properties of the 

(ZTP) and (P) distributions based on a double integrating 

mechanism to it’s with three-parameter lifetime which resulted 

in a new distribution called the Zero-Truncated Poisson Pareto 

distribution (ZTPP) or in short ZTPP distribution. with three 

parameters, the suggested distribution has an advantage over 

other distributions in that it makes estimating the model 

parameters simpler.  To estimate the unknown parameters of 

the ZTPP distribution, the maximum likelihood method and L, 

method are employed.  The distribution was applied to real 

data to ensure the possibility of applying it to life data and 

through the application, the distribution ZTPP was compared 

with other distributions, as Pareto, BEP, BP, and EP, by the 

comparison proving that the new distribution is better than the 

distributions that had been compared with its in economics, 

and other fields. Overall the result indicated the ZTPP is better 

than the other distributions where the criteria values of (AIC), 

(CAIC), and (BIC) are minimum values by using the ZTPP 

distribution as shown in table 1.  
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