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1 Introduction
The multiple-sets split feasibility problem (MSSFP)
is to find 𝑥∗ ∈ 𝐻1 such that

𝑥∗ ∈
𝑡∩

𝑖=1

𝐶𝑖 , 𝐴𝑥∗ ∈
𝑟∩
𝑗=1

𝑄 𝑗 , (1)

where 𝐶𝑖 , 𝑖 = 1, 2, · · · , 𝑡 ⊂ 𝐻1, 𝑄 𝑗 , 𝑗 = 1, 2, · · · , 𝑟 ⊂
𝐻2 are nonempty, closed and convex subsets of
Hilbert spaces 𝐻1 and 𝐻2, respectively, and 𝐴 :
𝐻1 → 𝐻2 is a bounded linear operator.

It is obviously that if 𝑟 = 𝑡 = 1, the MSSFP is
reduced to the split feasibility problem (SFP).

The SFP and the MSSFP were first proposed by
Censor and Elfving in [1] and [2] for modeling cer-
tain inverse problems, which have been widely used
in many application fields, such as, medical image re-
construction, [1, 3, 4], intensity-modulated radiation
therapy (IMRT), [5, 6], and gene regulatory network
inference, [7], etc. Many authors have also made a
continuation of the study on the MSSFP and its vari-
ant form, for instance, see, [8–16].

Recently, Reich et al. proposed the split feasibil-
ity problem with multiple output sets in [14]. Let
𝐻, 𝐻 𝑗 , 𝑗 = 1, 2, · · · , 𝑟 , be real Hilbert spaces and let
𝐴 𝑗 : 𝐻 → 𝐻 𝑗 , 𝑗 = 1, 2, · · · , 𝑟 , be bounded linear op-
erators. Let 𝐶 and 𝑄 𝑗 be nonempty, closed and con-
vex subsets of𝐻 and𝐻 𝑗 , 𝑗 = 1, 2, · · · , 𝑟 , respectively.
Find an element 𝑥∗, such that

𝑥∗ ∈ 𝑆 = 𝐶 ∩ (
𝑟∩
𝑗=1

𝐴−1
𝑗 (𝑄 𝑗)). (2)

They also provided algorithms for solving this prob-
lem.

In this paper, we study a slightly generalized
multiple-sets split feasibility problem with multi-
ple output sets: Let 𝐻, 𝐻 𝑗 , 𝑗 = 1, 2, · · · , 𝑟 , be
real Hilbert spaces and let 𝐴 𝑗 : 𝐻 → 𝐻 𝑗 , 𝑗 =
1, 2, · · · , 𝑟 , be bounded linear operators. Let 𝐶𝑖 and
𝑄 𝑗 be nonempty, closed and convex subsets of 𝐻 and
𝐻 𝑗 , 𝑗 = 1, 2, · · · , 𝑟 , respectively. Find an element 𝑥∗,
such that

𝑥∗ ∈ 𝑆 =
𝑡∩

𝑖=1

𝐶𝑖 ∩ (
𝑟∩
𝑗=1

𝐴−1
𝑗 (𝑄 𝑗)). (3)

In other words, the aim is to find an 𝑥∗ ∈ 𝐶𝑖 such that
𝐴 𝑗𝑥

∗ ∈ 𝑄 𝑗 for all 𝑖 = 1, 2, · · · , 𝑡, 𝑗 = 1, 2 · · · , 𝑟 .
If 𝑡 = 1, the problem (3) reduces to the problem

(2). If 𝐴 𝑗 ≡ 𝐴, 𝐻 𝑗 ≡ 𝐻1, the problem (3) reduces to
the MSSFP (1).

Many iterative methods have been proposed for
solving the SFP. One of the well-known algorithms
is the CQ method proposed by Byrne, [3], which is
formulated as follows

𝑥𝑛+1 = 𝑃𝐶 (𝑥𝑛 − 𝛼𝑛𝐴
∗(𝐼 − 𝑃𝑄)𝐴𝑥𝑛), (4)

where the step size 𝛼𝑛 ∈ (0, 2
∥𝐴∥2 ), and 𝑃𝐶 and 𝑃𝑄

stand for the metric projection onto 𝐶 and 𝑄, respec-
tively.

Since the projections onto a general nonempty
closed convex subset is hard to be implemented, Yang
[15] proposed the half-space relaxation projection CQ
algorithm. Yu et al. [16] introduced the ball-relaxed
projection CQ algorithms.

Since the norm estimation of | |𝐴 𝑗 | | for step size is
hard to get, Several choice of the self-adaptive step
size have been presented, see for instance, Yang [17],
López et al. [18], Gibali et a.l. [19], etc.
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To achieve a faster convergence of the algorithms,
many references have investigated the inertial tech-
nique, see for example, Suantai et al. [20], etc.

In this paper, we adopt the ball-relaxation, a new
self-adaptive step size and inertial acceleration tech-
nique to the algorithm solving the problem (3). Since
the orthogonal projections onto balls and the self-
adaptive step size can be directly calculated, the pro-
posed algorithm is easy to implement.

The rest is outlined as follows. Some useful con-
cepts and lemmas for our analysis are reviewed in the
next section. In section 3, we present our algorithm
and prove its strong convergence. Finally, in section
4, we exhibit a numerical example in order to illus-
trate our results and observe the performance of our
algorithm.

2 Preliminaries
In this section, we introduce some definitions and ba-
sic lemmas that will be used in the sequel. Let 𝐻 be a
real Hilbert space, and its inner product and norm be
expressed by ⟨·, ·⟩ and ∥ · ∥, respectively. Besides, we
use the symbol 𝑥𝑛 → 𝑥 (𝑥𝑛 ⇀ 𝑥) to express that the
sequence {𝑥𝑛} converges strongly (weakly) to 𝑥.
Definition 2.1 Let 𝐶 be a nonempty closed convex
subset of 𝐻. Then the mapping 𝑇 : 𝐶 → 𝐻 is said to
be:
(1) nonexpansive if

∥𝑇𝑥 − 𝑇𝑦∥ ≤ ∥𝑥 − 𝑦∥, ∀𝑥, 𝑦 ∈ 𝐶. (5)

(2) firmly nonexpansive if

∥𝑇𝑥 − 𝑇𝑦∥2 ≤ ∥𝑥 − 𝑦∥2 − ∥(𝐼 − 𝑇)𝑥 − (𝐼 − 𝑇)𝑦∥2,
∀𝑥, 𝑦 ∈ 𝐶, (6)

or equivalently if

∥𝑇𝑥 − 𝑇𝑦∥2 ≤ ⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩, ∀𝑥, 𝑦 ∈ 𝐶, (7)

where 𝐼 is the identity operator.

Definition 2.2 Let 𝐶 be a nonempty, closed and con-
vex subset of 𝐻. The metric projection 𝑃𝐶 : 𝐻 → 𝐶
defined by

𝑃𝐶 (𝑥) = argmin
𝑦∈𝐶

∥𝑥 − 𝑦∥2, 𝑥 ∈ 𝐶. (8)

Definition 2.3 Let 𝑓 : 𝐻 → (−∞, +∞] be a proper
function. Then 𝑓 is said to be weakly lower semicon-
tinuous at 𝑥 if 𝑥𝑛 ⇀ 𝑥 implies

𝑓 (𝑥) ≤ lim inf
𝑛→∞

𝑓 (𝑥𝑛). (9)

𝑓 is lower semicontinuous on𝐻 if it is lower semicon-
tinuous at every point 𝑥 ∈ 𝐻 and 𝑓 is weakly lower
semicontinuous on 𝐻 if it is weakly lower semicon-
tinuous at every point 𝑥 ∈ 𝐻.

Lemma 2.1 [21] Let 𝐶 be a nonempty closed and
convex subset of 𝐻. Then for all 𝑥, 𝑦 ∈ 𝐻 and 𝑧 ∈ 𝐶,
we have the following statements:
(1) ⟨𝑥 − 𝑃𝐶 (𝑥), 𝑦 − 𝑃𝐶 (𝑥)⟩ ≤ 0;
(2) 𝑃𝐶 and 𝐼 − 𝑃𝐶 are both firmly nonexpansive;
(3) ⟨𝑥, 𝑦⟩ = 1

2 ∥𝑥∥2 +
1
2 ∥𝑦∥2 −

1
2 ∥𝑥 − 𝑦∥2;

(4) ∥𝑥 + 𝑦∥2 ≤ ∥𝑥∥2 + 2⟨𝑦, 𝑥 + 𝑦⟩.

Lemma 2.2 [21] Let 𝑓 : 𝐻 → (−∞, +∞] be a
strongly convex function with constant 𝜆. Then for
all 𝑥, 𝑦 ∈ 𝐻,

𝑓 (𝑦) ≥ 𝑓 (𝑥) + ⟨𝜉, 𝑦 − 𝑥⟩ + 𝜆

2
∥𝑦 − 𝑥∥2, 𝜉 ∈ 𝜕 𝑓 (𝑥)

(10)

Lemma 2.3 [4] Let 𝐻1 and 𝐻2 be real Hilbert spaces
and 𝑓 : 𝐻1 → R is given by 𝑓 (𝑥) = 1

2 ∥(𝐼 − 𝑃𝑄)𝐴𝑥∥2
where 𝑄 is closed convex subset of 𝐻2 and
𝐴 : 𝐻1 → 𝐻2 be a bounded linear operator.
Then
(1) the function 𝑓 is convex and weakly lower
semicontinuous on 𝐻1;
(2) ∇ 𝑓 (𝑥) = 𝐴∗(𝐼 − 𝑃𝑄)𝐴𝑥, for 𝑥 ∈ 𝐻1;
(3) ∇ 𝑓 is ∥𝐴∥2-Lipschitzian continuous, i.e.,
∥∇ 𝑓 (𝑥) − ∇ 𝑓 (𝑦)∥ ≤ ∥𝐴∥2∥𝑥 − 𝑦∥, ∀𝑥, 𝑦 ∈ 𝐻1.

Lemma 2.4 [22] Assume that {𝑠𝑛} is a sequence of
nonnegative real numbers such that

𝑠𝑛+1 ≤ (1 − 𝛼𝑛)𝑠𝑛 + 𝛼𝑛𝛿𝑛, 𝑛 ≥ 1, (11)
𝑠𝑛+1 ≤ 𝑠𝑛 − 𝜂𝑛 + 𝛾𝑛, 𝑛 ≥ 1, (12)

where {𝛼𝑛} is a sequence in (0, 1), {𝜂𝑛} is a sequence
of nonnegative real numbers, {𝛿𝑛} and {𝛾𝑛} are two
sequences in R such that
(1) ∑∞

𝑛=1 𝛼𝑛 = ∞;
(2) lim

𝑛→∞
𝛾𝑛 = 0;

(3) lim
𝑘→∞

𝜂𝑛𝑘 = 0 implies lim sup
𝑘→∞

𝛿𝑛𝑘 ≤ 0 for any sub-

sequence {𝑛𝑘} of {𝑛}.
Then lim

𝑛→∞
𝑠𝑛 = 0.

3 Algorithm and its convergence
In this section, we introduce ball-relaxed algorithm
with a new self-adaptive step size and inertial acceler-
ation for solving the problem (3) and prove its strong
convergence.

Set

𝐶𝑖 = {𝑥 ∈ 𝐻 : 𝑐𝑖 (𝑥) ≤ 0}, (13)
𝑄 𝑗 = {𝑦 ∈ 𝐻 𝑗 : 𝑞 𝑗 (𝑦) ≤ 0}, (14)

where 𝑐𝑖 (𝑥), 𝑖 = 1, 2, · · · , 𝑡 and 𝑞 𝑗 (𝑦), 𝑗 = 1, 2, · · · , 𝑟
are convex, weakly lower semi-continuous functions,
respectively.
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If 𝑐𝑖 (𝑥), 𝑖 = 1, 2, · · · , 𝑡 and 𝑞 𝑗 (𝑦), 𝑗 = 1, 2, · · · , 𝑟
are 𝜆𝑖- and 𝛾 𝑗- strongly convex, define a series of sets
𝐶𝑏
𝑖,𝑛 and 𝑄

𝑏
𝑗,𝑛, 𝑛 ≥ 1, by

𝐶𝑏
𝑖,𝑛 = {𝑥 ∈ 𝐻 : 𝑐𝑖 (𝑥𝑛) + ⟨𝜉𝑛𝑖 , 𝑥 − 𝑥𝑛⟩

+ 𝜆𝑖
2
∥𝑥 − 𝑥𝑛∥2 ≤ 0}, (15)

𝑄𝑏
𝑗,𝑛 = {𝑦 ∈ 𝐻 𝑗 : 𝑞 𝑗 (𝐴 𝑗𝑥𝑛) + ⟨𝜁𝑛𝑗 , 𝑦 − 𝐴 𝑗𝑥𝑛⟩

+
𝛾 𝑗

2
∥𝑦 − 𝐴 𝑗𝑥𝑛∥2 ≤ 0}, (16)

where 𝜉𝑛𝑖 ∈ 𝜕𝑐𝑖 (𝑥𝑛), 𝑖 = 1, 2, · · · , 𝑡 and 𝜁𝑛𝑗 ∈
𝜕𝑞 𝑗 (𝐴 𝑗𝑥𝑛), 𝑗 = 1, 2, · · · 𝑟.

It is easy to verify that 𝐶𝑏
𝑖,𝑛, 𝑖 = 1, 2, · · · , 𝑡 and

𝑄𝑏
𝑗,𝑛, 𝑗 = 1, 2, · · · , 𝑟 are closed balls containning 𝐶

and 𝑄, respectively, see, [23].
Define that

𝑑𝑛 = max
𝑖=1, · · · ,𝑡

∥𝑥 − 𝑃𝐶𝑖 (𝑥)∥,

𝑣𝑛 = max
𝑗=1, · · · ,𝑟

∥𝐴 𝑗𝑥 − 𝑃𝑄 𝑗 (𝐴 𝑗𝑥)∥,
(17)

Then the problem (3) is equivalent to the following
minimization problem:

min 𝑓 (𝑥) = 1

2

𝑡∑
𝑖=1

𝑙𝑖 ∥𝑥 − 𝑃𝐶𝑖 (𝑥)∥2

+ 1

2

𝑟∑
𝑗=1

𝜆 𝑗 ∥𝐴 𝑗𝑥 − 𝑃𝑄 𝑗 (𝐴 𝑗𝑥)∥2. (18)

where 𝑙𝑖 , 𝑖 = 1, · · · , 𝑡 and 𝜆 𝑗 , 𝑗 = 1, · · · , 𝑟 are all pos-
itive constants such that

∑𝑡
𝑖=1 𝑙𝑖 +

∑𝑟
𝑗=1 𝜆 𝑗 = 1.

Using (17), the problem (18) is equivalent to the
following minimization problem:

min 𝑓 (𝑥) = 1

2
Φ2

𝑛. (19)

where Φ𝑛 = max{𝑑𝑛, 𝑣𝑛}.
In the sequel, we assume that the following three

assumptions hold.
(A1) The solution set 𝑆 of (3) is nonempty.
(A2) The functions 𝑐𝑖 : 𝐻 → R and 𝑞 𝑗 : 𝐻 𝑗 →

R defined in (13) and (14) are 𝜆𝑖- and 𝛾 𝑗- strongly
convex lower semicontinuous functions.

(A3) For any 𝑥 ∈ 𝐻 and 𝑦 𝑗 ∈ 𝐻 𝑗 , at least one sub-
gradient 𝜉𝑖 ∈ 𝜕𝑐𝑖 (𝑥) and 𝜁 𝑗 ∈ 𝜕𝑞 𝑗 (𝑦 𝑗) can be calcu-
lated. The subdifferentials 𝜕𝑐𝑖 and 𝜕𝑞 𝑗 are bounded
on the bounded sets.

Algorithm 3.1 For any initial point 𝑥0, 𝑥1 ∈ 𝐻, the
sequence {𝑥𝑛} be defined as follows:

1. Compute 𝑦𝑛

𝑦𝑛 = 𝑥𝑛 + 𝛽𝑛 (𝑥𝑛 − 𝑥𝑛−1). (20)

2. Compute 𝑑𝑛 and define 𝐿𝑛

𝑑𝑛 = max
𝑖=1, · · · ,𝑡

∥𝑦𝑛 − 𝑃𝐶𝑏
𝑖,𝑛
(𝑦𝑛)∥, (21)

𝐿𝑛 = {𝑖 ∈ {1, 2, · · · , 𝑡} : ∥𝑦𝑛 − 𝑃𝐶𝑏
𝑖,𝑛
(𝑦𝑛)∥ = 𝑑𝑛}.

(22)

3. Compute 𝑣𝑛 and define 𝐻𝑛

𝑣𝑛 = max
𝑗=1, · · · ,𝑟

∥𝐴 𝑗 𝑦𝑛 − 𝑃𝑄𝑏
𝑗,𝑛
(𝐴 𝑗 𝑦𝑛)∥, (23)

𝐻𝑛 = { 𝑗 ∈ {1, 2, · · · , 𝑟} : ∥𝐴 𝑗 𝑦𝑛 − 𝑃𝑄𝑏
𝑗,𝑛
(𝐴 𝑗 𝑦𝑛)∥ = 𝑣𝑛}.

(24)

4. If 𝑑𝑛 ≥ 𝑣𝑛, then choose 𝑖𝑛 ∈ 𝐿𝑛 and let Δ = 𝐼,
𝜇𝑛 = 𝑃𝑏

𝐶𝑖𝑛,𝑛
𝑦𝑛, 𝑓𝑛 (𝑦𝑛) = 1

2 ∥(𝐼 − 𝑃𝐶𝑏
𝑖𝑛,𝑛

)𝑦𝑛∥2;
else choose 𝑗𝑛 ∈ 𝐻𝑛 and let Δ = 𝐴 𝑗𝑛 , 𝜇𝑛 =
𝑃𝑏
𝑄 𝑗𝑛,𝑛

𝐴 𝑗𝑛 𝑦𝑛, 𝑓𝑛 (𝑦𝑛) = 1
2 ∥(𝐼 − 𝑃𝑄𝑏

𝑗𝑛,𝑛
)𝐴 𝑗𝑛 𝑦𝑛∥2.

5. Compute 𝑥𝑛+1

𝑥𝑛+1 = 𝛼𝑛𝑔(𝑦𝑛) + (1 − 𝛼𝑛) (𝑦𝑛 − 𝜏𝑛∇ 𝑓𝑛 (𝑦𝑛)), (25)

where

𝜏𝑛 = 𝜌𝑛
∥Δ𝑦𝑛 − 𝜇𝑛∥2

∥Δ∗(Δ𝑦𝑛 − 𝜇𝑛)∥2 + 𝜃𝑛
, (26)

𝛼𝑛 ∈ (0, 1), 𝜌𝑛 ∈ (0, 2) and {𝜃𝑛} is a bounded
sequence of positive real numbers. 𝑔 : 𝐻 → 𝐻
is a strict contraction mapping 𝐻 into itself with
the contraction coefficient 𝑐 ∈ [0, 1).

Now we establish the strong convergence for Al-
gorithm 3.1.

Theorem 3.1 Let 𝐻 and 𝐻 𝑗 be real Hilbert spaces,
𝐶𝑖 , 𝑖 = 1, 2, · · · , 𝑡 and 𝑄 𝑗 , 𝑗 = 1, 2, · · · , 𝑟 be
nonempty, closed and convex subsets of 𝐻 and 𝐻 𝑗 ,
respectively. Let 𝐴 𝑗 : 𝐻 → 𝐻 𝑗 , 𝑗 = 1, 2, · · · , 𝑟 be
bounded linear operators with their adjoint denoted
by 𝐴∗

𝑗 . Assume that {𝛼𝑛}, {𝛽𝑛} and 𝜌𝑛 satisfy the
following conditions:
(C1) lim

𝑛→∞
𝛼𝑛 = 0 and

∑∞
𝑛=1 𝛼𝑛 = ∞;

(C2) inf
𝑛∈N

𝜌𝑛 (2 − 𝜌𝑛) > 0;
(C3) {𝛽𝑛} ⊂ [0, 𝛽], where 𝛽 ∈ [0, 1) and
lim
𝑛→∞

𝛽𝑛
𝛼𝑛

∥𝑥𝑛 − 𝑥𝑛−1∥ = 0;
(C4) 0 < inf{𝜃𝑛} ≤ sup{𝜃𝑛} < +∞.
Then the sequence {𝑥𝑛} generated by Algorithm 3.1
converges strongly to 𝑧 ∈ 𝑆, and 𝑧 is the unique solu-
tion to the variational inequality:

⟨(𝐼 − 𝑔)(𝑧), 𝑦 − 𝑧⟩ ≥ 0, ∀𝑦 ∈ 𝑆, (27)
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Proof Note that 𝑔 : 𝐻 → 𝐻 is contractive, so 𝑃𝑆𝑔
is also contractive, thus 𝑃𝑆𝑔 has a unique fixed point
𝑧, which by Lemma 2.1(1) is the unique solution of
(27).

Notice that
∥𝑥𝑛+1 − 𝑧∥

= ∥𝛼𝑛𝑔(𝑦𝑛) + (1 − 𝛼𝑛)(𝑦𝑛 − 𝜏𝑛∇ 𝑓𝑛 (𝑦𝑛)) − 𝑧∥
≤ 𝛼𝑛∥𝑔(𝑦𝑛) − 𝑧∥
+ (1 − 𝛼𝑛)∥𝑦𝑛 − 𝜏𝑛∇ 𝑓𝑛 (𝑦𝑛) − 𝑧∥.

(28)
Next, we consider the following two cases.
Case A: 𝑑𝑛 ≥ 𝑣𝑛.

In this case, 𝜏𝑛 =
𝜌𝑛 | | (𝐼−𝑃𝐶𝑏

𝑖𝑛,𝑛
)𝑦𝑛 | |2

| | (𝐼−𝑃
𝐶𝑏
𝑖𝑛,𝑛

)𝑦𝑛 | |2+𝜃𝑛 , 𝑓𝑛 (𝑦𝑛) =

1
2 | | (𝐼 − 𝑃𝐶𝑏

𝑖𝑛,𝑛
)𝑦𝑛 | |2 and ∇ 𝑓𝑛 (𝑦𝑛) = (𝐼 − 𝑃𝐶𝑏

𝑖𝑛,𝑛
)𝑦𝑛.

Applying Lemma 2.1 (2-3) and the nonexpansivity of
𝑃𝐶𝑏

𝑖𝑛,𝑛
that

∥𝑦𝑛 − 𝜏𝑛∇ 𝑓𝑛 (𝑦𝑛) − 𝑧∥2

= ∥𝑦𝑛 − 𝑧∥2 + 𝜏2𝑛 ∥∇ 𝑓𝑛 (𝑦𝑛)∥2
− 2𝜏𝑛⟨∇ 𝑓𝑛 (𝑦𝑛), 𝑦𝑛 − 𝑧⟩

= ∥𝑦𝑛 − 𝑧∥2 + 𝜏2𝑛 ∥(𝐼 − 𝑃𝐶𝑏
𝑖𝑛,𝑛

)𝑦𝑛∥2

− 2𝜏𝑛⟨(𝐼 − 𝑃𝐶𝑏
𝑖𝑛,𝑛

)𝑦𝑛, 𝑦𝑛 − 𝑧⟩

= ∥𝑦𝑛 − 𝑧∥2 + 𝜏2𝑛 ∥(𝐼 − 𝑃𝐶𝑏
𝑖𝑛,𝑛

)𝑦𝑛∥2

− 2𝜏𝑛⟨(𝐼 − 𝑃𝐶𝑏
𝑖𝑛,𝑛

)𝑧 − (𝐼 − 𝑃𝐶𝑏
𝑖𝑛,𝑛

)𝑦𝑛, 𝑦𝑛 − 𝑧⟩

≤ ∥𝑦𝑛 − 𝑧∥2 + 𝜏2𝑛 ∥(𝐼 − 𝑃𝐶𝑏
𝑖𝑛,𝑛

)𝑦𝑛∥2

− 2𝜏𝑛∥𝐼 − 𝑃𝐶𝑏
𝑖𝑛,𝑛

)𝑧 − (𝐼 − 𝑃𝐶𝑏
𝑖𝑛,𝑛

)𝑦𝑛∥2

= ∥𝑦𝑛 − 𝑧∥2 + 𝜏2𝑛 ∥(𝐼 − 𝑃𝐶𝑏
𝑖𝑛,𝑛

)𝑦𝑛∥2

− 2𝜏𝑛∥(𝐼 − 𝑃𝐶𝑏
𝑖𝑛,𝑛

)𝑦𝑛∥2

≤ ∥𝑦𝑛 − 𝑧∥2 + 𝜌2𝑛

∥(𝐼 − 𝑃𝐶𝑏
𝑖𝑛,𝑛

)𝑦𝑛∥4

(∥(𝐼 − 𝑃𝐶𝑏
𝑖𝑛,𝑛

)𝑦𝑛∥2 + 𝜃𝑛)2

(∥(𝐼 − 𝑃𝐶𝑏
𝑖𝑛,𝑛

)𝑦𝑛∥2 + 𝜃𝑛)

− 2𝜌𝑛
∥(𝐼 − 𝑃𝐶𝑏

𝑖𝑛,𝑛
)𝑦𝑛∥4

∥(𝐼 − 𝑃𝐶𝑏
𝑖𝑛,𝑛

)𝑦𝑛∥2 + 𝜃𝑛

= ∥𝑦𝑛 − 𝑧∥2 − 𝜌𝑛 (2 − 𝜌𝑛)
∥(𝐼 − 𝑃𝐶𝑏

𝑖𝑛,𝑛
)𝑦𝑛∥4

∥(𝐼 − 𝑃𝐶𝑏
𝑖𝑛,𝑛

)𝑦𝑛∥2 + 𝜃𝑛
.

(29)
Case B: 𝑑𝑛 < 𝑣𝑛.

In this case, 𝜏𝑛 =
𝜌𝑛 ∥ (𝐼−𝑃𝑄𝑏

𝑗𝑛,𝑛
)𝐴 𝑗𝑛 𝑦𝑛 ∥2

∥𝐴∗
𝑗𝑛
(𝐼−𝑃

𝑄𝑏
𝑗𝑛,𝑛

)𝐴 𝑗𝑛 𝑦𝑛 ∥2+𝜃𝑛
,

𝑓𝑛 (𝑦𝑛) = 1
2 | | (𝐼 − 𝑃𝑄𝑏

𝑗𝑛,𝑛
)𝐴 𝑗𝑛 𝑦𝑛 | |2 and ∇ 𝑓𝑛 (𝑦𝑛) =

𝐴∗
𝑗𝑛
(𝐼 − 𝑃𝑄𝑏

𝑗𝑛,𝑛
)𝐴 𝑗𝑛 𝑦𝑛. Similar with the deduction of

Case A, we obtain that

∥𝑦𝑛 − 𝜏𝑛∇ 𝑓𝑛 (𝑦𝑛) − 𝑧∥2

≤ ∥𝑦𝑛 − 𝑧∥2 − 𝜌𝑛 (2 − 𝜌𝑛)
∥ (𝐼−𝑃

𝑄𝑏
𝑗𝑛,𝑛

)𝐴 𝑗𝑛 𝑦𝑛 ∥4

∥𝐴∗
𝑗𝑛
(𝐼−𝑃

𝑄𝑏
𝑗𝑛,𝑛

)𝐴 𝑗𝑛 𝑦𝑛 ∥2+𝜃𝑛
.

(30)
From (C2), (29) and (30) we have that

∥𝑦𝑛 − 𝜏𝑛∇ 𝑓𝑛 (𝑦𝑛) − 𝑧∥ ≤ ∥𝑦𝑛 − 𝑧∥. (31)

By (20), we also have

∥𝑦𝑛 − 𝑧∥ = ∥𝑥𝑛 + 𝛽𝑛 (𝑥𝑛 − 𝑥𝑛−1) − 𝑧∥
≤ ∥𝑥𝑛 − 𝑧∥ + 𝛽𝑛∥𝑥𝑛 − 𝑥𝑛−1∥.

(32)

Combining (28), (31) and (32)

∥𝑥𝑛+1 − 𝑧∥ ≤ 𝛼𝑛 | |𝑔(𝑦𝑛) − 𝑔(𝑧) | | + 𝛼𝑛 | |𝑔(𝑧) − 𝑧 | |
+ (1 − 𝛼𝑛) | |𝑦𝑛 − 𝜏𝑛∇ 𝑓𝑛 (𝑦𝑛) − 𝑧 | |

≤ 𝛼𝑛𝑐 | |𝑦𝑛 − 𝑧 | | + 𝛼𝑛 | |𝑔(𝑧) − 𝑧 | |
+ (1 − 𝛼𝑛) | |𝑦𝑛 − 𝑧 | |

≤ [1 − 𝛼𝑛 (1 − 𝑐)] ∥𝑥𝑛 − 𝑧∥
+ [1 − 𝛼𝑛 (1 − 𝑐)]𝛽𝑛∥𝑥𝑛 − 𝑥𝑛−1∥
+ 𝛼𝑛∥𝑔(𝑧) − 𝑧∥

= [1 − 𝛼𝑛 (1 − 𝑐)] ∥𝑥𝑛 − 𝑧∥ + 𝛼𝑛 (1 − 𝑐)
∥𝑔(𝑧) − 𝑧∥ + 1−𝛼𝑛 (1−𝑐)

𝛼𝑛
𝛽𝑛∥𝑥𝑛 − 𝑥𝑛−1∥

1 − 𝑐
.

(33)
According to (C3), we see that 𝑡𝑛 =

[1−𝛼𝑛 (1−𝑐) ]𝛽𝑛 ∥𝑥𝑛−𝑥𝑛−1 ∥
𝛼𝑛

→ 0. Hence the sequence 𝑡𝑛
is bounded. There exists some 𝑀 > 0 such that

∥𝑥𝑛+1 − 𝑧∥ ≤ [1 − 𝛼𝑛 (1 − 𝑐)] ∥𝑥𝑛 − 𝑧∥ + 𝛼𝑛 (1 − 𝑐)𝑀
≤ max{∥𝑥𝑛 − 𝑧∥, 𝑀}
...

≤ max{∥𝑥0 − 𝑧∥, 𝑀}.
(34)

We conclude that {𝑥𝑛} is bounded and hence {𝑦𝑛} is
bounded.

According to the definition of 𝑦𝑛, it holds that

∥𝑦𝑛 − 𝑧∥2 = ∥𝑥𝑛 + 𝛽𝑛 (𝑥𝑛 − 𝑥𝑛−1) − 𝑧∥2

= ∥𝑥𝑛 − 𝑧∥2 + 2𝛽𝑛⟨𝑥𝑛 − 𝑥𝑛−1, 𝑥𝑛 − 𝑧⟩
+ 𝛽2𝑛∥𝑥𝑛 − 𝑥𝑛−1∥2.

(35)
By Lemma 2.1(3), the following equation holds.

⟨𝑥𝑛 − 𝑥𝑛−1, 𝑥𝑛 − 𝑧⟩ = −1
2
∥𝑥𝑛−1 − 𝑧∥2 + 1

2
∥𝑥𝑛 − 𝑧∥2

+ 1

2
∥𝑥𝑛 − 𝑥𝑛−1∥2. (36)
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Substituting the equality (36) into (35), we obtain

∥𝑦𝑛 − 𝑧∥2 = ∥𝑥𝑛 − 𝑧∥2 + 𝛽𝑛 (−∥𝑥𝑛−1 − 𝑧∥2

+ ∥𝑥𝑛 − 𝑧∥2 + ∥𝑥𝑛 − 𝑥𝑛−1∥2)
+ 𝛽2𝑛∥𝑥𝑛 − 𝑥𝑛−1∥2

≤ ∥𝑥𝑛 − 𝑧∥2 + 𝛽𝑛 (∥𝑥𝑛 − 𝑧∥2 − ∥𝑥𝑛−1 − 𝑧∥2)
+ 2𝛽𝑛∥𝑥𝑛 − 𝑥𝑛−1∥2

≤ ∥𝑥𝑛 − 𝑧∥2 + 𝛽𝑛∥𝑥𝑛 − 𝑥𝑛−1∥(∥𝑥𝑛 − 𝑧∥
− ∥𝑥𝑛−1 − 𝑧∥) + 2𝛽𝑛∥𝑥𝑛 − 𝑥𝑛−1∥2

= ∥𝑥𝑛 − 𝑧∥2 + 𝐸𝑛,
(37)

where 𝐸𝑛 = 𝛽𝑛∥𝑥𝑛 − 𝑥𝑛−1∥(∥𝑥𝑛 − 𝑧∥ − ∥𝑥𝑛−1 − 𝑧∥) +
2𝛽𝑛∥𝑥𝑛 − 𝑥𝑛−1∥2.

According to the boundedness of {𝜃𝑛} and {𝑦𝑛},
put

𝐿 = max{sup
𝑛
{∥(𝐼 − 𝑃𝐶𝑏

𝑖𝑛,𝑛
)𝑦𝑛∥2 + 𝜃𝑛},

sup
𝑛
{∥𝐴∗

𝑗𝑛
(𝐼 − 𝑃𝑄𝑏

𝑗𝑛,𝑛
)𝐴 𝑗𝑛 𝑦𝑛∥2 + 𝜃𝑛}}. (38)

It follows from (29) and (30) that

Φ4
𝑛 ≤ 𝐿

𝜌𝑛 (1 − 𝜌𝑛)
(∥𝑦𝑛−𝑧∥2−∥𝑦𝑛−𝜏𝑛∇ 𝑓𝑛 (𝑦𝑛)−𝑧∥2),

(39)
where Φ𝑛 = max{𝑑𝑛, 𝑣𝑛}.

Using (31) and (39), we have

∥𝑥𝑛+1 − 𝑧∥2
= ⟨𝛼𝑛𝑔(𝑦𝑛) + (1 − 𝛼𝑛) (𝑦𝑛 − 𝜏𝑛∇ 𝑓𝑛 (𝑦𝑛)) − 𝑧, 𝑥𝑛+1 − 𝑧⟩
= (1 − 𝛼𝑛)⟨𝑦𝑛 − 𝜏𝑛∇ 𝑓𝑛 (𝑦𝑛) − 𝑧, 𝑥𝑛+1 − 𝑧⟩
+ 𝛼𝑛⟨𝑔(𝑦𝑛) − 𝑧, 𝑥𝑛+1 − 𝑧⟩

≤ 1 − 𝛼𝑛

2
(∥𝑥𝑛+1 − 𝑧∥2 + ∥𝑦𝑛 − 𝜏𝑛∇ 𝑓𝑛 (𝑦𝑛) − 𝑧∥2)

+ 𝛼𝑛⟨𝑔(𝑦𝑛) − 𝑔(𝑧), 𝑥𝑛+1 − 𝑧⟩
+ 𝛼𝑛⟨𝑔(𝑧) − 𝑧, 𝑥𝑛+1 − 𝑧⟩

≤ 1 − 𝛼𝑛

2
(∥𝑥𝑛+1 − 𝑧∥2 + ∥𝑦𝑛 − 𝜏𝑛∇ 𝑓𝑛 (𝑦𝑛) − 𝑧∥2)

+ 𝛼𝑛

2
(𝑐2∥𝑦𝑛 − 𝑧∥2 + ∥𝑥𝑛+1 − 𝑧∥2)

+ 𝛼𝑛⟨𝑔(𝑧) − 𝑧, 𝑥𝑛+1 − 𝑧⟩

≤ 1 − 𝛼𝑛

2
(∥𝑥𝑛+1 − 𝑧∥2 + ∥𝑦𝑛 − 𝑧∥2 − 𝜌𝑛 (1 − 𝜌𝑛)

Φ4
𝑛

𝐿
)

+ 𝛼𝑛

2
(𝑐∥𝑦𝑛 − 𝑧∥2 + ∥𝑥𝑛+1 − 𝑧∥2)

+ 𝛼𝑛⟨𝑔(𝑧) − 𝑧, 𝑥𝑛+1 − 𝑧⟩,
(40)

which is rearranged to obtain

∥𝑥𝑛+1 − 𝑧∥2

≤ (1 − 𝛼𝑛)∥𝑦𝑛 − 𝑧∥2

− (1 − 𝛼𝑛)𝜌𝑛 (1 − 𝜌𝑛)
Φ4

𝑛

𝐿
+ 𝛼𝑛𝑐∥𝑦𝑛 − 𝑧∥2

+ 2𝛼𝑛⟨𝑔(𝑧) − 𝑧, 𝑥𝑛+1 − 𝑧⟩
= [1 − 𝛼𝑛 (1 − 𝑐)] ∥𝑦𝑛 − 𝑧∥2

− (1 − 𝛼𝑛)𝜌𝑛 (1 − 𝜌𝑛)
Φ4

𝑛

𝐿
+ 2𝛼𝑛⟨𝑔(𝑧) − 𝑧, 𝑥𝑛+1 − 𝑧⟩.

(41)

Substituting (37) into (41) yields that

∥𝑥𝑛+1 − 𝑧∥2 ≤ [1 − 𝛼𝑛 (1 − 𝑐)] (∥𝑥𝑛 − 𝑧∥2 + 𝐸𝑛)

− (1 − 𝛼𝑛)𝜌𝑛 (1 − 𝜌𝑛)
Φ4

𝑛

𝐿
+ 2𝛼𝑛⟨𝑔(𝑧) − 𝑧, 𝑥𝑛+1 − 𝑧⟩

= [1 − 𝛼𝑛 (1 − 𝑐)] ∥𝑥𝑛 − 𝑧∥2
+ [1 − 𝛼𝑛 (1 − 𝑐)]𝐸𝑛

− (1 − 𝛼𝑛)𝜌𝑛 (1 − 𝜌𝑛)
Φ4

𝑛

𝐿
+ 2𝛼𝑛⟨𝑔(𝑧) − 𝑧, 𝑥𝑛+1 − 𝑧⟩.

(42)
Set

𝑠𝑛 = ∥𝑥𝑛 − 𝑧∥2;
𝛾𝑛 = [1 − 𝛼𝑛 (1 − 𝑐)]𝐸𝑛 + 2𝛼𝑛⟨𝑔(𝑧) − 𝑧, 𝑥𝑛+1 − 𝑧⟩;

𝛿𝑛 = [1 − 𝛼𝑛 (1 − 𝑐)] 𝐸𝑛

𝛼𝑛 (1 − 𝑐)

+ 2

1 − 𝑐
⟨𝑔(𝑧) − 𝑧, 𝑥𝑛+1 − 𝑧⟩;

𝜂𝑛 = (1 − 𝛼𝑛)𝜌𝑛 (1 − 𝜌𝑛)
Φ4

𝑛

𝐿
.

(43)
From (42) and (43), we derive that

𝑠𝑛+1 ≤ [1 − 𝛼𝑛 (1 − 𝑐)]𝑠𝑛 + 𝛼𝑛 (1 − 𝑐)𝛿𝑛, 𝑛 ≥ 1,

(44)
𝑠𝑛+1 ≤ 𝑠𝑛 − 𝜂𝑛 + 𝛾𝑛, 𝑛 ≥ 1. (45)

Let {𝑛𝑘} be a subsequence of {𝑛} such that
lim sup
𝑘→∞

𝜂𝑛𝑘 ≤ 0. (46)

That is

lim sup
𝑘→∞

(1 − 𝛼𝑛𝑘 )𝜌𝑛𝑘 (1 − 𝜌𝑛𝑘 )
Φ4

𝑛𝑘

𝐿
≤ 0, (47)

which by conditions (C1) and (C2) implies

lim
𝑘→∞

Φ𝑛𝑘 = 0. (48)
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By the definition of Φ𝑛, it indicates that

lim
𝑘→∞

∥(𝐼 − 𝑃𝐶𝑏
𝑖𝑛𝑘 ,𝑛𝑘

)𝑦𝑛𝑘 ∥ = 0, (49)

lim
𝑘→∞

∥(𝐼 − 𝑃𝑄𝑏
𝑗𝑛𝑘 ,𝑛𝑘

)𝐴 𝑗𝑛 𝑦𝑛𝑘 ∥ = 0. (50)

The definitions of 𝑖𝑛𝑘 and 𝑗𝑛𝑘 ensure that

lim
𝑘→∞

∥(𝐼 − 𝑃𝐶𝑏
𝑖,𝑛𝑘

)𝑦𝑛𝑘 ∥ = 0, 𝑖 = 1, 2, · · · , 𝑡, (51)

lim
𝑘→∞

∥(𝐼 − 𝑃𝑄𝑏
𝑗,𝑛𝑘

)𝐴 𝑗 𝑦𝑛𝑘 ∥ = 0, 𝑗 = 1, 2, · · · , 𝑟 .
(52)

Since 𝜕𝑞 𝑗 , 𝑗 = 1, 2, · · · , 𝑟 are bounded on
bounded sets , there exists a constant 𝜇 > 0 such
that ∥𝜁𝑛𝑘𝑗 ∥ ≤ 𝜇, 𝑗 = 1, 2, · · · , 𝑟, 𝑘 ∈ N, where
𝜁𝑛𝑘𝑗 ∈ 𝜕𝑞 𝑗 (𝑦𝑛𝑘 ). Note that 𝑃𝑄𝑏

𝑗,𝑛𝑘

𝐴 𝑗 𝑦𝑛𝑘 ∈ 𝑄𝑏
𝑗,𝑛𝑘

and
from (52) we obtain

𝑞 𝑗 (𝐴 𝑗 𝑦𝑛𝑘 ) ≤ ⟨𝜁𝑛𝑘𝑗 , 𝐴 𝑗 𝑦𝑛𝑘 − 𝑃𝑄𝑏
𝑗,𝑛𝑘

𝐴 𝑗 𝑦𝑛𝑘 ⟩

−
𝛾 𝑗

2
∥𝐴 𝑗 𝑦𝑛𝑘 − 𝑃𝑄𝑏

𝑗,𝑛𝑘

𝐴 𝑗 𝑦𝑛𝑘 ∥2

≤ ∥𝜁𝑛𝑘𝑗 ∥∥𝐴 𝑗 𝑦𝑛𝑘 − 𝑃𝑄𝑏
𝑗,𝑛𝑘

𝐴 𝑗 𝑦𝑛𝑘 ∥

≤ 𝜇∥(𝐼 − 𝑃𝑄𝑏
𝑗,𝑛𝑘

)𝐴 𝑗 𝑦𝑛𝑘 ∥ → 0, 𝑘 → ∞.

(53)
Since {𝑦𝑛𝑘 } is bounded, there exists a subsequence

{𝑦𝑛𝑘𝑚 } ⊂ {𝑦𝑛𝑘 } such that 𝑦𝑛𝑘𝑚 ⇀ 𝑥∗ and

lim sup
𝑘→∞

⟨𝑔(𝑧) − 𝑧, 𝑦𝑛𝑘 − 𝑧⟩ = lim
𝑚→∞

⟨𝑔(𝑧) − 𝑧, 𝑦𝑛𝑘𝑚 − 𝑧⟩.
(54)

Since 𝑞 𝑗 (·) is convex and weakly lower semicon-
tinuous and that 𝐴 𝑗 𝑦𝑛𝑘𝑚 ⇀ 𝐴 𝑗𝑥

∗, by (53) we have

𝑞 𝑗 (𝐴 𝑗𝑥
∗) ≤ lim inf

𝑚→∞
𝑞 𝑗 (𝐴 𝑗 𝑦𝑛𝑘𝑚 ) ≤ 0. (55)

Hence 𝐴 𝑗𝑥
∗ ∈ 𝑄 𝑗 .

By the definition of𝐶𝑏
𝑖,𝑛𝑘

, the assumption (A3) and
(51), there exists a constant 𝜀 > 0 such that

𝑐𝑖 (𝑦𝑛𝑘 ) ≤ ⟨𝜉𝑛𝑘𝑖 , 𝑦𝑛𝑘 − 𝑃𝐶𝑏
𝑖,𝑛𝑘

(𝑦𝑛𝑘 )⟩

− 𝜆𝑖
2
∥𝑦𝑛𝑘 − 𝑃𝐶𝑏

𝑖,𝑛𝑘

(𝑦𝑛𝑘 )∥2

≤ 𝜀∥𝑦𝑛𝑘 − 𝑃𝐶𝑏
𝑖,𝑛𝑘

(𝑦𝑛𝑘 )∥ → 0, 𝑘 → ∞.

(56)
By the weakly lower semi-continuity of 𝑐𝑖 and

𝑦𝑛𝑘𝑚 ⇀ 𝑥∗, we have

𝑐𝑖 (𝑥∗) ≤ lim inf
𝑚→∞

𝑐𝑖 (𝑦𝑛𝑘𝑚 ) ≤ 0. (57)

Therefore 𝑥∗ ∈ 𝐶𝑖 (𝑖 = 1, ..., 𝑡). So 𝑥∗ ∈ 𝑆.

From Lemma 2.1(1) and (54) we obtain:

lim sup
𝑘→∞

⟨𝑔(𝑧) − 𝑧, 𝑦𝑛𝑘 − 𝑧⟩

= lim
𝑚→∞

⟨𝑔(𝑧) − 𝑧, 𝑦𝑛𝑘𝑚 − 𝑧⟩

= ⟨𝑔(𝑧) − 𝑧, 𝑥∗ − 𝑧⟩ ≤ 0.

(58)

On the other hand, by (C3), we have

∥𝑦𝑛 − 𝑥𝑛∥ = 𝛽𝑛∥𝑥𝑛 − 𝑥𝑛−1∥ → 0, 𝑛 → ∞. (59)

So we have
∥𝑥𝑛+1 − 𝑥𝑛∥

= ∥𝛼𝑛 (𝑔(𝑦𝑛) − 𝑥𝑛) + (1 − 𝛼𝑛)(𝑦𝑛 − 𝜏𝑛∇ 𝑓𝑛 (𝑦𝑛) − 𝑥𝑛)∥
≤ 𝛼𝑛∥𝑔(𝑦𝑛) − 𝑥𝑛∥ + (1 − 𝛼𝑛)∥𝑦𝑛 − 𝑥𝑛∥
+ (1 − 𝛼𝑛)𝜏𝑛∥∇ 𝑓𝑛 (𝑦𝑛)∥.

(60)
Note that

𝜏𝑛 = 𝜌𝑛
Φ2

𝑛

| |∇ 𝑓𝑛 (𝑦𝑛) | |2 + 𝜃𝑛

≤ 2

inf{𝜃𝑛}
Φ2

𝑛 → 0, 𝑛 → ∞.

(61)

Thus

∥𝑥𝑛+1 − 𝑥𝑛∥ → 0, 𝑛 → ∞. (62)

From (58), (59) and (62), we derive that

lim sup
𝑘→∞

⟨𝑔(𝑧) − 𝑧, 𝑥𝑛𝑘+1 − 𝑧⟩ ≤ 0. (63)

Then (C3) and (63) implies that

lim sup
𝑘→∞

𝛿𝑛𝑘 ≤ 0. (64)

Using Lemma 2.4 , we conclude that 𝑥𝑛 → 𝑧. The
proof is complete. □

4 Numerical experiments
In this section, we provide some numerical experi-
ments to show the efficiency of Algorithm 3.1 and
compare the convergence rates of our algorithm and
other algorithms. The codes are written in Matlab
R2018b and run on Inter(R) Core(TM) i9-12900H
CPU @ 2.50 GHz , RAM 16.00 GB.

The inertial coefficient 𝛽𝑛 is given by

𝛽𝑛 =

{ 𝜀𝑛
| |𝑥𝑛 − 𝑥𝑛−1 | |

, | |𝑥𝑛 − 𝑥𝑛−1 | | > 1

𝜀𝑛, | |𝑥𝑛 − 𝑥𝑛−1 | | ≤ 1.
(65)

It is easy to check that 𝛽𝑛 ≤ 𝜀𝑛 and that 𝛽𝑛 | |𝑥𝑛 −
𝑥𝑛−1 | | ≤ 𝜀𝑛. It also can be proved, see [24], that if
𝜀𝑛 ≥ 0 and

∑∞
𝑛=0 𝜀𝑛 < +∞, the corresponding algo-

rithms are strongly convergent.
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Example 4.1 Consider the following problem: find
an element 𝑥∗ ∈ R𝑁 such that

𝑥∗ ∈ 𝑆 =
𝑡∩

𝑖=1

𝐶𝑖 ∩ (
𝑟∩
𝑗=1

𝐴−1
𝑗 (𝑄 𝑗)), (66)

where the closed convex subsets 𝐶𝑖 and 𝑄 𝑗 are given
by

𝐶𝑖 = {𝑥 ∈ R𝑁 :
𝑁∑
𝑘=𝑖

10
𝑘−1
𝑁−1 𝑥2𝑘 − 1 ≤ 0}, (67)

𝑄 𝑗 = {𝑦 ∈ R𝑁 ( 𝑗+1) :
𝑁 ( 𝑗+1)∑
𝑘= 𝑗

10
𝑘−1

𝑁 ( 𝑗+1)−1 𝑦2𝑘 − 1 ≤ 0}.

(68)

It is obvious that 𝐶𝑖 and 𝑄 𝑗 are ellipsoids (see
[25]), and 𝑐𝑖 (𝑥) =

∑𝑁
𝑘=𝑖 10

𝑘−1
𝑁−1 𝑥2𝑘 − 1 and 𝑞 𝑗 (𝑦) =∑𝑁 ( 𝑗+1)

𝑘= 𝑗 10
𝑘−1

𝑁 ( 𝑗+1)−1 𝑦2𝑘 − 1 are both 2-strongly convex
functions, see [16]).

Set 𝑁 = 5, 𝑡 = 10, 𝑟 = 20, 𝜌𝑛 = 0.1, 𝛼𝑛 =
1
𝑛 , 𝜀𝑛 = 1

𝑛1.2
, 𝜃𝑛 = 0.1, 𝑔(𝑥) = 0.8𝑥, and 𝑒 denotes

the vector of corresponding dimension of which the
coordinates are all 1. Let 𝐴 𝑗 : R𝑁 → R𝑁 ( 𝑗+1) be
bounded linear operators, of which the elements are
randomly generated in the closed interval [0, 10]. Set

TOL =
1

𝑡 + 𝑟
(

𝑡∑
𝑖=1

∥𝑥𝑛 − 𝑃𝐶𝑖𝑥𝑛∥2

+
𝑟∑
𝑗=1

∥𝐴 𝑗𝑥𝑛 − 𝑃𝑄 𝑗 𝐴 𝑗𝑥𝑛∥2) (69)

for all 𝑛 ≥ 1. Note that if at the 𝑛th step, TOL = 0,
then 𝑥𝑛 ∈ 𝑆, that is, 𝑥𝑛 is a solution to this problem.
We use TOL < 10−3 as a stopping criteria.

First, we consider the impact of inertial term on
the convergence rate under different initial values 𝑥0
and 𝑥1. We use Alg.3.1 to refer to Algorithm 3.1 and
Alg.3.2 to refer to Algorithm 3.1without inertial term.
The results of numerical experiments are reported in
Table 1 and Fig.1.

From Table 1 and Fig.1, we can see that Alg.3.1
has advantage over Alg.3.2 in both the iteration num-
ber and the CPU time. This shows that the inertial
perturbation can improve the convergence of the al-
gorithms.

Next, we consider the impact of 𝜌𝑛 in the self-
adaptive step size on the convergence rate. For 𝜌𝑛 =
0.1, 𝜌𝑛 = 0.3, 𝜌𝑛 = 0.6, 𝜌𝑛 = 0.9, 𝜌 = 1.2, 𝜌 = 1.5,
and 𝜌 = 1.9, with other parameters retaining the same
values as above, we examine the convergence of the
sequence {𝑥𝑛} which is generated by Algorithm 3.1.
The results as shown in Fig.2(e).

1 2 3 4 5 6

Number of iterations

10-2

10-1

T
O

L

Alg.3.1
Alg.3.2

(a) 𝑥0 = 𝑥1 = 1
50 ∗ 𝑟𝑎𝑛𝑑 (𝑁, 1)
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10-2

10-1

100
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(b) 𝑥0 = 𝑥1 = 1
20 ∗ 𝑒
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(c) 𝑥0 = 𝑥1 = 1
10 ∗ 𝑒
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100
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105
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Alg.3.1
Alg.3.2

(d) 𝑥0 = 𝑥1 = 𝑒

Fig.1: Comparison of Alg.3.1 and Alg.3.2 under
different choices of initial values.
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Table 1: The numerical results for Alg.3.1 and
Alg.3.2

Alg.3.1 Alg.3.2
Initial Point 𝑛 Time(s) 𝑛 Time(s)

𝑥0 = 𝑥1 = 1
50 ∗ 𝑟𝑎𝑛𝑑 (𝑁, 1) 4 0.0223 7 0.0330

𝑥0 = 𝑥1 = 1
20 ∗ 𝑒 28 0.0823 33 0.0941

𝑥0 = 𝑥1 = 1
10 ∗ 𝑒 35 0.0986 40 0.1218

𝑥0 = 𝑥1 = 𝑒 54 0.1500 59 0.1495
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n
=0.1

n
=0.3

n
=0.6

n
=0.9

n
=1.1

n
=1.5

n
=1.9

(e) Different choices of 𝜌𝑛
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103

104

105
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(f) Different choices of step sizes

Fig.2: Comparison of different choices of 𝜌𝑛 and
step sizes.

It seems that Algorithm 3.1 converges faster if 𝜌𝑛
takes values around themidpoint of the interval (0, 2).

Finally, we consider the convergence rate under
different choices of self-adaptive step sizes. We de-
note by Alg.3.3 the algorithm the same as ours except
that the the step size is the ordinary self-adaptive one:

𝜏𝑛 = 𝜌𝑛
𝑎1
𝑎2

, (70)

where

𝑎1 =
𝑡∑

𝑖=1

| | (𝐼 − 𝑃𝐶𝑏
𝑖,𝑛
)𝑦𝑛 | |2 +

𝑟∑
𝑗=1

| | (𝐼 − 𝑃𝑄𝑏
𝑗,𝑛
)𝐴 𝑗 𝑦𝑛 | |2,

(71)

𝑎2 = | |
𝑡∑

𝑖=1

(𝐼 − 𝑃𝐶𝑏
𝑖,𝑛
)𝑦𝑛 +

𝑟∑
𝑗=1

𝐴∗
𝑗 (𝐼 − 𝑃𝑄𝑏

𝑗,𝑛
)𝐴 𝑗 𝑦𝑛 | |2,

(72)

with other parameters retaining the same values as
above, we provide the results in Fig.2(f).

From Fig.2(f), we see that our algorithm with step
size defined as in (26) is more effective in that it
used fewer iterates in the experiment. The reason
may be that we applied the largest distance among
∥𝐴 𝑗 𝑦𝑛 − 𝑃𝑄𝑏

𝑗,𝑛
(𝐴 𝑗 𝑦𝑛)∥, 𝑖 = 1, 2, · · · , 𝑡 and ∥𝐴 𝑗 𝑦𝑛 −

𝑃𝑄𝑏
𝑗,𝑛
(𝐴 𝑗 𝑦𝑛)∥, 𝑗 = 1, 2, · · · , 𝑟 while Alg.3.3 use the

sum of them.
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