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Abstract: Let 𝐺 be a connected graph. 𝐺 is said to be unicyclic if it contains exactly one cycle, and bicyclic if 
the number of edges equals the number of vertices plus one. For a 𝑘-ordered set 𝑊 =  {𝑠1, 𝑠2, … , 𝑠𝑘} ⊂ V(G), 
the multiset representation of a vertex 𝑥 in 𝐺 with respect to 𝑊 is given as 𝑟𝑚(𝑥|𝑊) =
{𝑑(𝑥, 𝑠1), 𝑑(𝑥, 𝑠2), … , 𝑑(𝑥, 𝑠𝑘)}, where 𝑑(𝑥, 𝑠𝑖) is the distance between 𝑥 and the ordered subset 𝑠𝑖 of 𝑊 
together with their multiplicities. The set 𝑊 is called a local 𝑚-resolving set of 𝐺 if for every 𝑢𝑣 ∈ 𝐸(𝐺), 
𝑟𝑚(𝑢|𝑊) ≠  𝑟𝑚(𝑣|𝑊). The local 𝑚-resolving set with minimum cardinality is called the local multiset basis 
and its cardinality is called the local multiset dimension of 𝐺, denoted by 𝑚𝑑𝑙(𝐺). If 𝐺 has no local 𝑚-
resolving set, we write 𝑚𝑑𝑡(𝐺)  =  ∞ and say that 𝐺 has an infinite local multiset dimension. In this paper, we 
determine the local multiset dimension of the unicyclic and bicyclic graphs. 
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1 Introduction 
In this paper, we consider graphs 𝐺 that are simple, 
connected and finite. The vertex set and edge set are 
denoted, respectively, as 𝑉(𝐺) and 𝐸(𝐺). The 
distance between u and v, denoted as 𝑑𝐺(𝑢, 𝑣) or 
simply as 𝑑(𝑢, 𝑣), is the length of the shortest path 
between 𝑢 and 𝑣 in 𝐺. A vertex 𝑥 is said to resolve a 
pair 𝑢, 𝑣 ∈  𝑉(𝐺) if 𝑑(𝑥, 𝑢)  ≠  𝑑(𝑥, 𝑣). A subset 
𝑆 ⊆  𝑉(𝐺) is then said to be a resolving set of 𝐺 if 
any pair of adjacent vertices of 𝐺 can be resolved by 
some vertex in 𝑆. The set 𝑆 with minimum 
cardinality in 𝐺 is called a metric basis and its 
cardinality is the metric dimension of 𝐺, denoted as 
𝑑𝑖𝑚(𝐺) by [2].  

A new variant of the resolving set problems 
introduced by Okamoto et al., [9], is the local 

resolving set problems. For a 𝑘-ordered set, 𝑊 =
{𝑠1, 𝑠2, … , 𝑠𝑘} ⊂  𝑉(𝐺), the vertex representations of 
vertex 𝑥 to the set 𝑊 is an ordered 𝑘-tuple, 
𝑟(𝑥|𝑊) = (𝑑(𝑥, 𝑠1), 𝑑(𝑥, 𝑠2), … , 𝑑(𝑥, 𝑠𝑠𝑘)).  The 
set W is called a local resolving set if ∀ 𝑥𝑦 ∈
 𝐸(𝐺), 𝑟(𝑥|𝑊) ≠  𝑟(𝑦|𝑊). The minimum 
cardinality of a local resolving set is called local 

basis and its cardinality is called the local metric 

dimension of 𝐺, denoted by 𝑙𝑑𝑖𝑚(𝐺). 
Both the revolving set problems and the local 

set resolving problems are topics in distances in 
graphs that have increased in popularity over the 
past few decades due to their applications in many 
real-life problems, especially in network 
infrastructures, chemical structures, computer 
connectivity and navigation robots optimization 
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problems. More detail about these applications can 
be seen in Khuller et al., [1]. 

A generalized form of the local resolving set 
problem is the multiset dimension of a graph first 
defined by Simanjuntak et al., [3]. The multiset 
dimension of a graph 𝐺 is defined as the set 𝑊 =
{𝑠1, 𝑠2, … , 𝑠𝑘} ⊂  𝑉(𝐺), such that the vertex 
representations of a vertex 𝑥 ∈  𝑉(𝐺) to the set 𝑊 is 
the multiset, 𝑟𝑚(𝑥|𝑊) =
{𝑑(𝑥, 𝑠1), 𝑑(𝑥, 𝑠2), … , 𝑑(𝑥, 𝑠𝑘)} where 𝑑(𝑥, 𝑠𝑖) is the 
length of the shortest path between 𝑥 and a vertex in 
𝑊 together with their multiplicities. The set 𝑊 is 
called an 𝑚-resolving set if ∀ 𝑥𝑦 ∈  𝐸(𝐺), 
𝑟𝑚(𝑥|𝑊) ≠  𝑟𝑚(𝑦|𝑊). If 𝐺 has an 𝑚-resolving set, 
then the minimum resolving set 𝑊 is a multiset 

basis of 𝐺 and its cardinality is called the multiset 

dimension of 𝐺, denoted as 𝑚𝑑(𝐺). Otherwise, we 
say that 𝐺 has an infinite multiset dimension and we 
write 𝑚𝑑(𝐺) = ∞.  

Several results on multiset dimensions can be 
found in the literature. For example, for multiset 
dimensions at least 3 were proven by Bong et al., 
[12], for almost hypercube graphs by Alfarisi et al., 
[5], trees by Hafidh et al., [11], starphene and 
zigzag-edge coronoid by Liu et al., [13]. A new 
notion based on the multiset dimension of 𝐺 was 
defined by Alfarisi et al., [4], as the local multiset 

dimension. 
As in previous definitions, for a given set 

𝑊 = {𝑠1, 𝑠2, … , 𝑠𝑘} ⊂  𝑉(𝐺), the vertex 
representations of a vertex 𝑥 ∈  𝑉(𝐺) to the set 𝑊 is 
𝑟𝑚 (𝑥|𝑊) = {𝑑(𝑥, 𝑠1), 𝑑(𝑥, 𝑠2), … , 𝑑(𝑥, 𝑠𝑘)}. The 
set 𝑊 is called a local 𝑚-resolving set of 𝐺 if 
𝑟𝑚(𝑣|𝑊)  ≠  𝑟𝑚(𝑢|𝑊)  for 𝑢𝑣 ∈  𝐸(𝐺). The 
minimum cardinality of a local 𝑚-resolving set is 
called the 𝑙𝑜𝑐𝑎𝑙 𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑡 𝑏𝑎𝑠𝑖𝑠 and its cardinality 
is called the 𝑙𝑜𝑐𝑎𝑙 𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛, denoted by 
𝑚𝑑𝑙(𝐺): otherwise, we say that 𝐺 has an infinite 
local multiset dimension and we write 𝑚𝑑𝑙(𝐺) =
∞. 

We illustrate this concept in Fig. 1. In this 
case, we have the resolving set 𝑊 = {𝑣2, 𝑣6}, shown 
in Fig. 1(a) whose metric dimension is 𝑑𝑖𝑚(𝐺) = 2. 
Furthermore, the 𝑚-resolving set is 𝑊 =
{𝑣2, 𝑣3, 𝑣6}, shown in Fig. 1(b) with multiset 
dimension, 𝑚𝑑(𝐺) = 3. The representations of 𝑣 ∈
 𝑉(𝐺) with respect to 𝑊 are all distinct. We only 
need to make sure the adjacent vertices have distinct 
representations for the local multiset dimension. 
Thus, we have the local 𝑚-resolving 𝑊 = {𝑣1}, 
shown in Fig. 1(c) that the local multiset dimension 
is 𝑚𝑑𝑙 (𝐺) = 1. The vertex representation 𝑣 with 
respect to basis can be seen in Fig.1. In Fig. 1(a) and 
(b), every vertex in 𝐺 has distinct representations. 

For Fig. 1(c), every two adjacent vertices have a 
different representation.   
 
  
 
 
 
 
 
 
 
Fig. 1: (a) A graph with metric dimension 2; (b) A 
graph with multiset dimension 3; (c) A graph with 
local multiset dimension 1. 
 

The natural question what the local multiset 
dimension of some special graphs namely paths, 
stars, trees and cycles and also the local multiset 
dimension of graph operations namely, the cartesian 
product was answered, for example, in a classical 
paper by Alfarisi et al., [4]. Other known results are, 
for example, the 𝑚-shadow graph by Adawiyah et 

al., [8], and the local multiset dimension of 
unicyclic graphs was also studied by Adawiyah et 

al., [7]. 
This paper aims to provide similar results for 

the unicyclic and bicyclic graphs. In particular, we 
show that if 𝐺 is a unicyclic graph of order 𝑝 ≥  3, 
then 𝑚𝑑𝑙(𝐺) is 1 for 𝑝 even and 2 for 𝑝 odd. 
Similarly, if 𝐺 is bicyclic with cycles of order 
𝑝1, 𝑝2  ≥  3, then 𝑚𝑑𝑙(𝐺) is 1 if both 𝑝1 and 𝑝2 are 
even, and 2 otherwise.  

The following known definitions and results 
will be useful in the proof of our main results. 
 
Proposition 1.1 [10] A graph is bipartite if and only 
if it contains no odd cycle. 
 
Proposition 1.2 [4] Let 𝐾𝑛 be a complete graph 
with 𝑛 ≥ 3. Then 𝑚𝑑𝑙(𝐾𝑛 ) = ∞. 
 
Proposition 1.3 [6] Let 𝐺 be a connected graph. 
Then 𝑚𝑑𝑙  (𝐺) = 1 if and only if 𝐺 is a bipartite 
graph. 
 
Definition 1.1 The unicyclic graph is a graph that 
has only one cycle. 
 
Definition 1.2 The bicyclic graph is a graph that has 
only two cycles. 
 

By Definition 1.1, it is obvious that the 
unicyclic graph can be obtained from a tree by 
connecting any two vertices by an edge. An 
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example of a unicyclic graph (left) and a bicyclic 
graph (right) can be seen in Fig. 2. 
 

 
Fig. 2: Unicyclic (left) and bicyclic (right) graphs 
 

 

2 Results and Discussion 
In this section, we investigate the local multiset 
dimension of a unicyclic and bicyclic graph.  

2.1 For Unicyclic Graphs 
Let 𝐺 be a unicyclic graph obtained from a tree 𝑇 by 
adding an edge 𝑒 = 𝑢𝑣 between two non-adjacent 
vertices 𝑢, 𝑣 ∈  𝑉(𝑇). We state our first results for 
both even and odd cycle subgraphs of 𝐺. 

Proposition 2.1 Let 𝐺 be a unicyclic graph that 

contains an even cycle. Then 𝑚𝑑𝑙(𝐺) = 1. 

Proof. Let 𝐶𝑝 be the cycle subgraph of 𝐺, where 𝑝 is 
the number of vertices in 𝐶𝑝 . If 𝑝 is even, then 𝐺 is 
bipartite by Proposition 1.1 and 𝑚𝑑𝑙(𝐺) = 1 by 
Proposition 1.3 

Lemma 2.1 Let 𝐺 be a unicyclic graph that contains 

an odd cycle 𝐶𝑝 . For every 𝑣 ∈ 𝑉(𝐺), there exists 

exactly one pair of adjacent vertices 𝑥 and 𝑦 

satisfying 𝑑(𝑥, 𝑣) = 𝑑(𝑦, 𝑣) where 𝑥 and 𝑦 are in a 

cycle 𝐶𝑝 . 

Proof. Let 𝐺 be a unicyclic graph containing an odd 
cycle 𝐶𝑝  where 𝑝 ≥ 3. Suppose 𝑉(𝐶𝑝 ) =

{𝑣1, 𝑣2, … , 𝑣𝑝} and 𝐸(𝐶𝑝 ) = {𝑣1𝑣𝑝, 𝑣𝑖𝑣{𝑖+1}; 1 ≤

 𝑖 ≤  𝑝 − 1} with 𝑝 = 2𝑘 + 1 for 𝑘 ≥  1. Let 𝐺′ =
𝐺 − 𝐸(𝐶𝑝 ). Then 𝐺′ is a disconnected graph that 
contains 𝑝 components where each component is a 
tree. For 𝑖 ∈  {1,2,3, … , 𝑝}, we define 𝑇𝑖 as the 
component of 𝐺′ containing vertex 𝑣𝑖 ∈  𝑉(𝐶𝑝 ). 

Suppose 𝑣 is a vertex in 𝐺, then there are 𝑖 ∈
 {1,2,3, … , 𝑝} such that 𝑣 ∈  𝑉(𝑇𝑖). Suppose 𝑥 and 𝑦 
are two adjacent vertices in 𝐺 and there are 𝑗 ∈
 {1,2,3, … , 𝑝} such that 𝑥, 𝑦 ∈  𝑉(𝑇𝑗), then 𝑑(𝑣, 𝑧) =

𝑑(𝑣, 𝑣𝑖) + 𝑑(𝑣𝑖 , 𝑣𝑗) + 𝑑(𝑣𝑗, 𝑧) for 𝑧 ∈ {𝑥, 𝑦}. Since 
𝑇𝑗 are a tree and every two distinct vertices in the 

tree have a unique path between them, we get that 
either 𝑑(𝑣𝑗, 𝑥) < 𝑑(𝑣𝑗, 𝑦) or 𝑑(𝑣𝑗, 𝑥) > 𝑑(𝑣𝑗 , 𝑦), 
which implies 𝑑(𝑣, 𝑥) ≠  𝑑(𝑣, 𝑦). Therefore, 𝑥 and 
𝑦 must be two different components of 𝐺′, implying 
that 𝑥 and 𝑦 must be in 𝐶𝑝 . 

Now let 𝑥 and 𝑦 be two adjacent vertices at 
𝐶𝑝 and 𝑣 ∈  𝑉(𝑇𝑖). Suppose 𝑑(𝑣𝑖, 𝑥) <

𝑑𝑖𝑎𝑚(𝐶𝑝 ) = 𝑘, then 𝑑(𝑣𝑖, 𝑥)  <  𝑑(𝑣𝑖, 𝑦) or 
𝑑(𝑣𝑖 , 𝑥)  >  𝑑(𝑣𝑖 , 𝑦), which implies 𝑑(𝑣, 𝑥) ≠
𝑑(𝑣, 𝑦). So, 𝑑(𝑣𝑖 , 𝑥)  =  𝑘 =  𝑑(𝑣𝑖 , 𝑦). When 𝑝 is 
odd, two adjacent vertices are obtained, namely 𝑥 =
𝑣{𝑖+𝑘} and 𝑦 = 𝑣{𝑖+𝑘+1} where both indices are at 
modulo 𝑝. 

Suppose there are two distinct pairs of 
adjacent vertices 𝑥1, 𝑦1 and 𝑥2, 𝑦2 of 𝐺 such that for 
any vertices 𝑣 ∈  𝑉(𝐺), 𝑑(𝑥1, 𝑣)  =  𝑑(𝑦1, 𝑣) and 
𝑑(𝑥2, 𝑣) = 𝑑(𝑦2, 𝑣). With the same arguments 
above, we get that 𝑥1, 𝑦1 and 𝑥2, 𝑦2 come from 
different cycles in 𝐺. Therefore, 𝐺 contains at least 
two cycles which is a contradiction.  

Theorem 2.1 Let 𝐺 be a unicyclic graph of order at 

least 3. If 𝐺 contains a circle of order 𝑝, then 

 

𝑚𝑑𝑙(𝐺) = {
1, 𝑓𝑜𝑟 𝑝 𝑖𝑠 𝑒𝑣𝑒𝑛
2, 𝑓𝑜𝑟 𝑝 𝑖𝑠 𝑜𝑑𝑑 

 

 
Proof. Let 𝐶𝑝  be a cycle of 𝐺. We consider two 
cases for 𝑝 as follows. 
Case 1. For 𝑝 even 
Since 𝑝 is even, 𝐺 is a bipartite graph by Proposition 
1.3 and 𝑚𝑑𝑙(𝐺) = 1 by Proposition 2.1. 
Case 2. For 𝑝 odd. 
If 𝑝 is odd, then 𝐺 is not bipartite based on 
Proposition 1.1 implying that 𝑚𝑑𝑙(𝐺)  ≤  2 by 
Proposition 1.3. Furthermore, we will prove the 
upper bound of the local multiset dimension of 𝐺 
that 𝑚𝑑𝑙(𝐺)  ≤  2. Let 𝐶𝑝  be a cycle contained in 
𝐺. By Lemma 2.1, there is exactly one pair of 𝑥 and 
𝑦 adjacent vertices in 𝐶𝑝  such that 𝑑(𝑥, 𝑣) =

𝑑(𝑦, 𝑣) for every 𝑣 ∈  𝑉(𝐺). Now, define 𝑊 =
{𝑣, 𝑥|𝑣 ∈  𝑉(𝑇𝑖) and 𝑥 ∈  𝑉(𝐶𝑝 )}. Since no two 
adjacent vertices have the same representation of 𝑊, 
𝑊 is a local multiset resolving set of 𝐺 and thus, 
𝑚𝑑𝑙(𝐺) = 2.  
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Fig. 3: (a) 𝑚𝑑𝑙(𝐺) = 2 with 𝑝 is odd and (b) 
𝑚𝑑𝑙(𝐺) = 1 with 𝑝 is even 
 

2.2 For Bicyclic Graphs 
Let 𝐻 be a bicyclic graph. Recall that a bicyclic 
graph is obtained from a tree 𝑇 by adding two edges 
say, 𝑒1 = 𝑢1 𝑣1 and 𝑒2 = 𝑢2 𝑣2 with two non-
adjacent vertices 𝑢1, 𝑣1 ∈  𝑉(𝑇) and  𝑢2, 𝑣2 ∈
 𝑉(𝑇), respectively. In other words, a bicyclic graph 
is a graph that contains only two cycle subgraphs. 
Suppose 𝑝1 is the number of vertices in the cycle 
subgraph 𝐶1 and 𝑝2 is the number of vertices in the 
cycle subgraph 𝐶2.  

It is important to note the following 
conditions for the type of bicycle graph with 𝐶1 and 
𝐶2 being considered.  

1. the bicyclic graph contains two disjoint 
cycles.  

2. 𝐶1 and 𝐶2 are disjoint with the property that 
𝑉(𝐶1 ) ∩  𝑉(𝐶2) = ∅. The example can be 
seen in Fig. 4. 

For conditions 1 and 2, if 𝑝1 and 𝑝2 are even, 
then 𝐻 is a bipartite graph, and so by Proposition 
1.3, 𝑚𝑑𝑙 (𝐻) = 1. Our next lemma shows the 
condition if at least one of 𝐶1 and 𝐶2 is odd.  
 
 

 
 
 
 
 
 
 
 
 
 
Fig. 4: Bicyclic graph with cycle 𝐶1 and 𝐶2 is 
disjoint with properties 𝑉(𝐶1) ⋂ 𝑉(𝐶2) = Ø 
 

Lemma 2.2. Let G be a bicyclic graph that contains 

an odd cycle 𝐶1 or 𝐶2. For every 𝑣 ∈  𝑉(𝐻), there 

exists exactly one pair of adjacent vertices 𝑥 and 𝑦 

that satisfy 𝑑(𝑥, 𝑣) = 𝑑(𝑦, 𝑣) where 𝑥 and 𝑦 are in 

an odd cycle 𝐶1 or 𝐶2. 

Proof. Let 𝐻 be a unicyclic graph containing an odd 
cycle 𝐶1 or 𝐶2 where 𝑝1, 𝑝2 ≥  3. Suppose 𝑉(𝐶1) =
{𝑣1, 𝑣2, … , 𝑣 𝑝1

}, 𝑉(𝐶2) = {𝑣1, 𝑣2, … , 𝑣 𝑝1
} 𝐸(𝐶1) =

{𝑣1𝑣 𝑝1
, 𝑣𝑖𝑣𝑖+1; 1 ≤  𝑖 ≤  𝑝1 − 1} and 𝐸(𝐶2) =

{𝑣1𝑣𝑝2
, 𝑣𝑖𝑣𝑖+1; 1 ≤  𝑖 ≤  𝑝2 − 1} with 𝑝1 = 2𝑘 + 1  

for 𝑘 ≥ 1 and 𝑝2 = 2𝑙 + 1 for 𝑙 ≥  1. Let 𝐻1
′  be a 

subgraph of 𝐻 such that 𝐻1
′ = 𝐺 \ 𝐸(𝐶1). So, 𝐻1

′  is 
a disconnected graph that contains 𝑝1 − 1 
components where each component is a tree. For 𝑖 ∈
{1,2,3, … , 𝑝1 − 1}, we define 𝑇1𝑖

 as the component 
of 𝐻1

′  containing vertex 𝑣𝑖 ∈  𝑉(𝐶1). 
Suppose 𝑣 is a vertex in 𝐻, then there are 𝑖 ∈

 {1,2,3, … , 𝑝1 − 1} such that 𝑣 ∈ 𝑉(𝑇1𝑖
). Suppose 𝑥 

and 𝑦 are two adjacent vertices in 𝐻 and there are 
𝑗 ∈  {1,2,3, … , 𝑝1 − 1} such that 𝑥, 𝑦 ∈  𝑉(𝑇1𝑗

), then 
𝑑(𝑣, 𝑧) = 𝑑(𝑣, 𝑣𝑖)  + 𝑑(𝑣𝑖, 𝑣𝑗) + 𝑑(𝑣𝑗, 𝑧) for 𝑧 ∈

 {𝑥, 𝑦}. Since 𝑇1j
 is a tree and every two distinct 

vertices in the tree have a unique path between 
them, we get that either 𝑑(𝑣𝑗, 𝑥) < 𝑑(𝑣𝑗 , 𝑦) or 
𝑑(𝑣𝑗, 𝑥) > 𝑑(𝑣𝑗, 𝑦), which implies 𝑑(𝑣, 𝑥) ≠

 𝑑(𝑣, 𝑦). Therefore, 𝑥 and 𝑦 must be two different 
components of 𝐻1

′ . Hence, 𝑥 and 𝑦 must be in 𝐶𝑝1
. 

Let 𝑥 and 𝑦 be two adjacent vertices at 𝐶𝑝1
 

and 𝑣 ∈  𝑉(𝑇1𝑖
). Suppose 𝑑(𝑣𝑖, 𝑥) < 𝑑𝑖𝑎𝑚(𝐶𝑝1

) =

𝑘, then 𝑑(𝑣𝑖, 𝑥) < 𝑑(𝑣𝑖, 𝑦) or 𝑑(𝑣𝑖 , 𝑥) > 𝑑(𝑣𝑖 , 𝑦), 
which implies 𝑑(𝑣, 𝑥) ≠  𝑑(𝑣, 𝑦). So, 𝑑(𝑣𝑖, 𝑥) =
𝑘 = 𝑑(𝑣𝑖, 𝑦). When 𝑝 is odd, two adjacent vertices 
are obtained, namely 𝑥 = 𝑣𝑖+𝑘  and 𝑦 =  𝑣𝑖+𝑘+1 
where both indices are at modulo 𝑝.  

Furthermore, we have the properties of two 
odd cycles 𝐶1 or 𝐶2 in Observation 2.1 as follows.  

Observation 2.1 Let 𝐻 be a bicyclic graph that 

contains an odd cycle 𝐶1 or 𝐶2. For 𝑝1is odd and 𝑝2 

is even (or 𝑝1 is even and 𝑝2 is odd). We have some 

properties as follows.  

1. We define two vertices 𝑢, 𝑣 ∈  𝑉(𝐻) with 𝑢 ∈
 𝑉(𝐶1) and 𝑣 ∈  𝑉(𝐶2) where there is a path 𝑢 −
𝑣. This path is called a bridge, denoted by 𝐵𝑟.  

2. If 𝑝2 is even, then 𝑑(𝑣𝑖 , 𝑣) ≠  𝑑(𝑣𝑗, 𝑣) for two 

adjacent vertices 𝑣𝑖, 𝑣𝑗 ∈  𝑉(𝐶2). 

3. For 𝑥2, 𝑦2 ∈  𝑉(𝑇2𝑗
), since 𝑇2𝑗

 is a tree and 

every two distinct vertices in the tree have a 

unique path between them, we get that either 

𝑑(𝑣𝑗, 𝑥2) < 𝑑(𝑣𝑗, 𝑦2) or 𝑑(𝑣𝑗, 𝑥2) > 𝑑(𝑣𝑗, 𝑦2), 

which implies 𝑑(𝑣, 𝑥2) ≠ 𝑑(𝑣, 𝑦2). 

 
Theorem 2.2 Let 𝐻 be a bicyclic graph of order at 

least 3. If 𝐻 contains cycles of order 𝑝1 and 𝑝2, then 
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𝑚𝑑𝑙(𝐻) = {
1, 𝑖𝑓 𝑝1 𝑎𝑛𝑑 𝑝2 𝑎𝑟𝑒 𝑒𝑣𝑒𝑛,
2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     

 

Proof. Let 𝐶1 and 𝐶2 be a cycle graph of 𝐻. There 
are three cases for 𝑝1 and 𝑝2 as follows. 
Case 1. If 𝑝1 and 𝑝2 are even 
Because 𝑝1  and 𝑝2 are even, then 𝐻 is a bipartite 
graph, based on Proposition 1.3 that 𝑚𝑑𝑙(𝐻) = 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: 𝑚𝑑𝑙(𝐻) = 1 with 𝑝1 and 𝑝2  are even 
 
Case 2. If 𝑝1 is odd and 𝑝2 is even. 
If 𝑝1 is odd, then 𝐻 is not a bipartite graph, resulting 
in 𝑚𝑑𝑙(𝐻) ≥ 2. Furthermore, we will prove the 
upper bound of the local multiset dimension of 𝐻 
that 𝑚𝑑𝑙(𝐻) ≤  2. Let 𝐶1 and 𝐶2 be cycles 
contained in 𝐻. By Lemma 2.2, there is exactly one 
pair of 𝑥 and 𝑦 adjacent vertices in 𝐶1 or 𝐶2 such 
that 𝑑(𝑥, 𝑣) = 𝑑(𝑦, 𝑣) for every 𝑣 ∈  𝑉(𝐻). Now, 
define 𝑊 = {𝑢𝑙 , 𝑥|𝑥 ∈  𝑉(𝑇1𝑖

)} and 𝑢𝑙 ∈  𝑉(𝐶𝑛1
). 

We show that vertex representation for two adjacent 
vertices is distinct as follows. 
1. For two adjacent vertices 𝑢𝑖, 𝑢𝑗 ∈  𝑉(𝐶2), 

𝑑(𝑢𝑖, 𝑢𝑙  ) = 𝑑(𝑢𝑗, 𝑢𝑙) and 𝑑(𝑢𝑖, 𝑥) ≠  𝑑(𝑢𝑗, 𝑥). 
Thus, 𝑟𝑚(𝑢𝑖𝑊) ≠  𝑟𝑚(𝑢𝑗|𝑊). 

2. For two adjacent vertices 𝑥1, 𝑦1 ∈  𝑉(𝑇1𝑘
), 

𝑑(𝑥1, 𝑢𝑘) ≠  𝑑(𝑦1, 𝑢𝑘) by Observation 2.1 (3), 
implying that 𝑑(𝑥1, 𝑢𝑙) ≠  𝑑(𝑦1, 𝑢𝑙) and 
$𝑑(𝑥1, 𝑥) ≠  𝑑(𝑦1, 𝑥). Thus, 𝑟𝑚(𝑥1|𝑊 ≠
 𝑟𝑚(𝑦1|𝑊). 

3. For two adjacent vertices in a bridge, say, 
𝑤𝑖, 𝑤𝑗 ∈  𝑉(𝐵𝑟), 𝑑(𝑤𝑖, 𝑢) ≠  𝑑(𝑤𝑗, 𝑢) implying 
that 𝑑(𝑤𝑖, 𝑢𝑙  ) ≠  𝑑(𝑤𝑖 , 𝑢𝑙) and 𝑑(𝑤𝑗, 𝑥) ≠

 𝑑(𝑤𝑗, 𝑥). Thus, 𝑟𝑚(𝑤𝑖|𝑊) ≠  𝑟𝑚(𝑤𝑗|𝑊). 
4. For two adjacent vertices in 𝐶2, i.e. 𝑣𝑖, 𝑣𝑗 ∈

 𝑉(𝐶2), 𝑑(𝑣𝑖 , 𝑣) ≠  𝑑(𝑣𝑗 , 𝑣) by Observation 2.1 
(2) implying that 𝑑(𝑣𝑖, 𝑢𝑙  ) ≠  𝑑(𝑣𝑖 , 𝑢𝑙) and 
𝑑(𝑣𝑗 , 𝑥) ≠  𝑑(𝑣𝑗, 𝑥). Thus, 𝑟𝑚(𝑣𝑖|𝑊) ≠

 𝑟𝑚(𝑣𝑗|𝑊). 

5. For two adjacent vertices in 𝐶2 and 𝑥2, 𝑦2 ∈
 𝑉(𝑇2𝑘), 𝑑(𝑥2, 𝑣𝑘  ) ≠  𝑑(𝑦2, 𝑣𝑘) and 𝑑(𝑣𝑘 , 𝑣) ≠
 𝑑(𝑣𝑘 , 𝑣) by Observation 2.1 (3) implying that 
𝑑(𝑥2, 𝑢𝑙  ) ≠  𝑑(𝑥2, 𝑢𝑙) and 𝑑(𝑦2, 𝑥) ≠  𝑑(𝑦2, 𝑥), 
respectively. Thus, 𝑟𝑚(𝑥2|𝑊) ≠ 𝑟𝑚(𝑦2|𝑊). 

It is easy to see that by Equations 1. to 5. 
above, 𝑊 is a local m-resolving set of 𝐻. Hence, 
𝑚𝑑𝑙(𝐻) = 2. 
Case 3. If 𝑝1 and 𝑝2 are odd. 
If 𝑝1 and 𝑝2 are odd, then 𝐻 is not a bipartite graph, 
implying that 𝑚𝑑𝑙(𝐻) ≥  2. Furthermore, we will 
prove the upper bound of the local multiset 
dimension of 𝐻  that 𝑚𝑑𝑙(𝐻) ≤  2. Let 𝐶1 and 𝐶2 be 
cycles contained in 𝐻. By Lemma 2.2, there is 
exactly one pair of 𝑥 and 𝑦 adjacent vertices in 𝐶1  
or 𝐶2 such that 𝑑(𝑥, 𝑣) = 𝑑(𝑦, 𝑣) for every 𝑣 ∈
𝑉(𝐻). Now, define 𝑊 = {𝑢𝑙, 𝑣𝑙|𝑢𝑙 ∈  𝑉(𝐶1) and 
𝑣𝑙 ∈  𝑉(𝐶2)} with 𝑑(𝑢𝑙 , 𝑢) ≠  𝑑(𝑣𝑙 , 𝑣). We show 
that vertex representation for two adjacent vertices 
is distinct as follows. 
1. For two adjacent vertices 𝑢𝑖, 𝑢𝑗 ∈  𝑉(𝐶1), 

𝑑(𝑢𝑖, 𝑢𝑙  ) = 𝑑(𝑢𝑗, 𝑢𝑙  ) and 𝑑(𝑢𝑖, 𝑢) = 𝑑(𝑢𝑗 , 𝑢) 
and so 𝑑(𝑢𝑖, 𝑣𝑙) ≠  𝑑(𝑢𝑗, 𝑣𝑙). Thus, 𝑟𝑚(𝑢𝑖|𝑊) ≠

 𝑟𝑚(𝑢𝑗|𝑊). 
2. For two adjacent vertices 𝑥1, 𝑦1 ∈  𝑉(𝑇1𝑘), based 

on Observation 2.1 (3) that 𝑑(𝑥1, 𝑢𝑘  ) ≠
 𝑑(𝑦1, 𝑢𝑘) then 𝑑(𝑥1, 𝑢𝑙) ≠  𝑑(𝑥1, 𝑢𝑙). Since 
(𝑥1, 𝑢) = 𝑑(𝑦1, 𝑢), then 𝑑(𝑥1, 𝑣𝑙  ) ≠  𝑑(𝑦1, 𝑣𝑙). 
Thus, 𝑟𝑚(𝑥1|𝑊) ≠  𝑟𝑚(𝑦1|𝑊). 

3. For two adjacent vertices in bridges 𝑤𝑖, 𝑤𝑗 ∈

 𝑉(𝐵𝑟), 𝑑(𝑤𝑖, 𝑢) ≠  𝑑(𝑤𝑗, 𝑢), then 𝑑(𝑤𝑖, 𝑢𝑙) ≠

 𝑑(𝑤𝑖, 𝑢𝑙) and 𝑑(𝑤𝑖, 𝑣) ≠  𝑑(𝑤𝑗, 𝑣) then 
𝑑(𝑤𝑖 , 𝑣𝑙  ) ≠  𝑑(𝑤𝑖, 𝑣𝑙). Thus, 𝑟𝑚(𝑤𝑖|𝑊) ≠
 𝑟𝑚(𝑤𝑗|𝑊). 

4. For two adjacent vertices 𝑣𝑖 , 𝑣𝑗 ∈  𝑉(𝐶2), 
𝑑(𝑣𝑖 , 𝑣𝑙) = 𝑑(𝑣𝑗, 𝑣𝑙) and 𝑑(𝑣𝑖 , 𝑣) = 𝑑(𝑣𝑗 , 𝑣) 
then 𝑑(𝑣𝑖 , 𝑢𝑙) ≠  𝑑(𝑣𝑗, 𝑢𝑙). Thus, 𝑟𝑚(𝑣𝑖|𝑊) ≠

 𝑟𝑚(𝑣𝑗|𝑊). 
5. For two adjacent vertices in 𝐶2 and 𝑥2, 𝑦2 ∈

 𝑉(𝑇2𝑘), based on Observation 2.1 (3) that 
𝑑(𝑥2, 𝑣𝑘) ≠  𝑑(𝑦2, 𝑣𝑘) then 𝑑(𝑥2, 𝑣𝑙  ) ≠
 𝑑(𝑦2, 𝑣𝑙). Since 𝑑(𝑥2, 𝑣) = 𝑑(𝑦2, 𝑣) then 
𝑑(𝑥2, 𝑢𝑙) ≠  𝑑(𝑦2, 𝑢𝑙). Thus, 𝑟𝑚(𝑥2|𝑊) ≠
 𝑟𝑚(𝑦2|𝑊). 

Based on Equations 1 to 5 above show that 𝑊 
is a local $m$-resolving set of 𝐻. Therefore, 
𝑚𝑑𝑙(𝐻) = 2.  

 
 

3 Conclusion 
In this paper, the local multiset dimensions of 
unicyclic graphs and bicyclic graphs in which the 
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cycles have no common vertex have been studied.  
Based on the results of this research, we propose the 
following open problem. 

Open Problem 3.1 Characterise the local multiset 

dimension of bicyclic graphs in which the two cycles 

have at least one vertex in common. 
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