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Abstract: This paper focuses on the reliability evaluation of a one-unit system based on uncertain Bayesian rule, in
which the unit’s lifetime is assumed to be an uncertain variable. Considering two types of the posterior uncertainty
distribution of the lifetime, the Bayesian estimation method of uncertainty parameter is first proposed. Then
reliability evaluation is carried out by calculating uncertainty reliability R(T ) with a specific time T and mean
time between failureMTBF . Finally, some numerical examples are conducted to illustrate the application of the
new method.
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1 Introduction
Reliability evaluation is an essential aspect of re-

liability research, which assesses the ability of elec-
tronic equipment or systems to realize their functions
under specific conditions based on the life distribution
function. Its method mainly uses mathematical statis-
tics theory to analyze the specific distribution of the
lifetime and evaluates the reliability of systems by es-
timating the distribution parameters. Commonly, re-
liability is characterized by reliability function, mean
time between failures (MTBF ), and other indicators,
[1], [2], [3] and [4].

Bayes method has become an important means
of reliability evaluation, which can improve the ac-
curacy of parameter estimation by introducing the
prior engineering knowledge of systems into reliabil-
ity evaluation in the form of the prior distribution, [5],
[6]. First, the prior distribution of the assumed pa-
rameters and the likelihood function associated with
the observed data are obtained. Second, the posterior
distribution of the parameter is deduced. Finally, the
analytical solution or approximate solution of the pa-
rameter is determined.

In the Bayesian framework, the lifetime of the sys-
tem is regarded as an unknown parameter, which is
generally estimated using the expectation algorithm.
In [7] Breipohl et al. indicated the application of
Bayesian theory in making typical reliability deci-
sions via decision theory. Tillman et al. in [8] re-
viewed some reliability problems using Bayesian in-
ference. In [9] Sharma et al. analyzed various en-
gineering systems to their reliability characteristics
and studied the Bayesian analysis of system avail-
ability. Ando, T. in [10] proposed a Bayesian pre-

diction information criterion to estimate the posterior
mean of the expected log-likelihood of the predic-
tion distribution. In [11] Guo et al. investigated the
Bayesianmeldingmethod (BMM) for system reliabil-
ity analysis by effectively integrating various avail-
able sources of expert knowledge and data at both
subsystem and system levels. In [12] Lu and L. pro-
posed a Bayesian approach for evaluating the system
structure based on estimating the multiplicative or ad-
ditive discrepancy between the system and compo-
nent test data under the assumed structure while quan-
tifying the uncertainty. The real systems are mostly
uncertain random systems that are affected by both
aleatory and epistemic uncertainties. It is of great
significance to study effective reliability evaluation
methods in various fields. Song et al. in [13] pro-
posed a system reliability evaluation method based on
Bayesian theory and multi-source information fusion.
In [14] Alharbi et al. proposed a fuzzy Bayesian pro-
cedure to estimate the unknown parameters and fuzzy
reliability function and applied it to compare estima-
tors of cancer data set.

As mentioned in previous literature, the lifetime of
the system was usually assumed as a stochastic vari-
able. In practical cases, it is known that the estimated
distribution is not close enough to the frequency in
the world of eternal change. Therefore, the classical
method is not available and it should be treated as an
uncertainty distribution, [15],[16]. To deal with this
kind of problem, uncertainty theory was founded by
Liu in [17] and refined by Liu in [18]. It has become
a branch of axiomatic mathematics for modeling hu-
man uncertainty.

At present, the uncertainty theory has been fur-
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ther developed and popularized. It has become a
mathematical branch of modeling epistemic uncer-
tainties under small data sizes or no data and has been
introduced to the field of reliability. Zhang et al.
in [19],[20] developed some system belief reliability
formulas for different systems configurations. Zhang
et al. in [21] considered the structure component’s
failure time as an uncertain variable because of the ab-
sence of historical data. In recent years, based on un-
certainty theory, how to use limited failure time data
to obtain reliability distribution has become the focus
of scholars. For example, Z. et al. in [22] developed
a new method called the graduation formula to con-
struct belief reliability distribution with limited obser-
vations. In [23] Kang presented the lifetime model
and reliability evaluations based on uncertainty the-
ory. In [24] Lio and Kang gave a method to update
a prior uncertainty distribution to a posterior uncer-
tainty distribution based on the likelihood function
and observation data in the sense of uncertainty the-
ory.

In practical engineering, since system reliability
testing is widely costly and with high reliability, the
sample size of the system is normally very small,
and the problem of non-failure frequently occurs. In
addition, they have few historical operating data of
their lifetime. The above issues can lead to a lack
of knowledge in evaluating system reliability. Es-
pecially under the small sample size, the probability
theory based on large samples is not appropriate any-
more. However, using the system reliability in un-
certain Bayesian rule has not been investigated in the
literature. Therefore, this paper will propose a new
method to present the lifetime distribution and relia-
bility evaluations based on uncertain Bayesian rule.

The remainder of this paper is organized as fol-
lows: Section 2 is a preliminary basic knowledge
about uncertainty theory. In Section 3 and Section 4,
the definitions and theorems for calculating parameter
values and evaluating the reliability from two special
uncertainty distributions are provided. Some numeri-
cal examples with reliability evaluation are conducted
to illustrate the application of the new method in Sec-
tion 5. Finally, a concise conclusion is made in Sec-
tion 6.

2 Preliminary
This section introduces some fundamental defini-

tions and theorems of uncertainty theory.

Definition 1. (Liu, [17]) An uncertain variable is
a measurable function ξ from the uncertainty space
(Γ,L,M) to the set of real numbers such that {ξ ∈
B} is an event for any Borel set B of real numbers.

Definition 2. (Liu, [17]) The uncertainty distribution

Φ of an uncertain variable ξ is defined by

Φ(x) = M{ξ ≤ x}

for any real number x.

Definition 3. (Liu, [18]) Let ξ be an uncertain vari-
able with regular uncertainty distributionΦ(x). Then
the inverse function Φ−1(α) is called the inverse un-
certainty distribution of ξ.

An uncertain variable ξ is called linear if it has a
linear uncertainty distribution

Φ(x) =

 0 , if x ≤ a
x−a
b−a , if a < x ≤ b
1 , if x > b

denoted by L(a, b) where a and b are real numbers
with a < b and the inverse uncertainty distribution of
linear uncertain variable L(a, b) is

Φ−1(α) = (1− α)a+ αb.

An uncertain variable ξ is called normal if it has a
normal uncertainty distribution

Φ(x) = (1 + exp(
π(e− x)√

3σ
))−1, x ∈ R

denoted by N(e, σ) where e and σ are real numbers
with σ > 0 and the inverse uncertainty distribution of
normal uncertain variable N(e, σ) is

Φ−1(α) = e+

√
3σ

π
ln

α

1− α
.

Expected value is the average value of uncertain
variable in the sense of uncertain measure. It is an
important feature of distribution and reflects the av-
erage value of the uncertain variable.

Theorem 1. (Liu, [17]) Let ξ be an uncertain vari-
able with uncertainty distribution Φ. Then

E[ξ] =

∫ +∞

0
(1− Φ(x))dx−

∫ 0

−∞
Φ(x)dx

.

Remark 1. (Liu, [18]) Let ξ be an uncertain variable
with regular uncertainty distribution Φ. Then

E[ξ] =

∫ 1

0
Φ−1(α)dα

Theorem 2. (Lio and Liu, [26], Likelihood Func-
tion) Suppose η1,η2, . . .,ηn are iid uncertain vari-
ables with uncertainty distribution F (y|θ) where θ
is an unknown parameter, and have observed values
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y1,y2,. . .,yn, respectively. If F (y|θ) is differentiable
at y1,y2,. . .,yn, then the likelihood function associ-
ated with y1,y2,. . .,yn is

L(s|y1, y2, . . . , yn) =
m∧
i=1

F ′(yi|s). (1)

Definition 4. (Lio, [24])Suppose ξ is an uncertain
variable with prior uncertainty distributionΦ(x), and
η1,η2, . . .,ηn are iid uncertain variables from a popu-
lation with uncertainty distribution F (y|ξ). Suppose
Φ′(x) and F ′(y|ξ) can be obtained, and η1,η2, . . .,ηn
have observed values y1,y2,. . .,yn, respectively. Then
the posterior uncertainty distribution is defined by

Ψ(x|y1, y2, . . . , yn)

=

∫ x
−∞ L(s|y1, y2, . . . , yn) ∧ Φ′(x)ds∫ +∞
−∞ L(s|y1, y2, . . . , yn) ∧ Φ′(x)ds

=

∫ x
−∞

m∧
i=1

F ′(yi|s) ∧ Φ′(x)ds∫ +∞
−∞

m∧
i=1

F ′(yi|s) ∧ Φ′(x)ds

.

(2)

It is clear that if∫ +∞
−∞

m∧
i=1

F ′(yi|s)
∧

Φ′(x)ds ̸= 0

then the posterior uncertainty distribution defined by
Eq. (2) is a continuous monotone increasing function
satisfying

0 ≤ Ψ(x|y1, y2, . . . , yn) ≤ 1,

Ψ(x|y1, y2, . . . , yn) ̸= 0,

Ψ(x|y1, y2, . . . , yn) ̸= 1.

It was proved by Peng and Iwamura, [25], and Liu and
Lio, [26], that Eq.(2) is indeed an uncertainty distri-
bution.

3 Uncertain Bayesian parameter
estimation

In this section, we first present an estimation
method of uncertainty parameters based on the pos-
terior uncertainty distribution.

Definition 5. (Uncertain Posterior Expected Estima-
tion) Suppose ξ is an uncertain variable with the pos-
terior uncertainty distribution Ψ(x|y1, y2, . . . , yn)
and y1, y2, . . . , ym are observed values, respectively.
If the inverse uncertainty distribution Ψ−1(α) exists,

then the posterior expected estimation of ξ is

ξ̂E = E(ξ|y1, y2, . . . , yn)

=

∫ +∞

0
(1−Ψ(x|y1, y2, . . . , yn))dx

=

∫ 1

Ψ(0)
Ψ−1(α)dα.

(3)

To present the lifetime distribution of systems in
the uncertainty theory, we consider two simple and
commonly use situations.
Lemma 1. (Lio, [24]) Suppose ξ is an uncertain vari-
able with linear prior uncertainty distributionL(a, b),
and η1, η2, . . . , ηn are iid uncertain variables from a
population with linear uncertainty distribution L(ξ−
c, ξ + d), c,d≥0 and observed values y1, y2, . . . , ym,
respectively. If it is assumed that

n∨
i=1

(yi − d) ∨ a ≤
n∧

i=1
(yi + c) ∧ b,

then the posterior uncertainty distribution is

L(

n∨
i=1

(yi − d) ∨ a,

n∧
i=1

(yi + c) ∧ b). (4)

Theorem 3. Suppose an uncertain variable
ξ has the posterior uncertainty distribution
Ψ(x|y1, y2, . . . , yn) and y1, y2, . . . , ym are ob-
served values, when the prior distribution L(a, b)
is assumed to be linear and the data are observed
from a population whose distribution function
L(ξ − c, ξ + d), c,d≥0 is also linear. If the inverse
uncertainty distribution Ψ−1(α) exists, then the
posterior expected estimation is

ξ̂E =

(
n∨

i=1
(yi − d) ∨ a) + (

n∧
i=1

(yi + c) ∧ b)

2
.

(5)

Proof. It follows from Definition 5 and Lemma 1 that
the posterior expected estimation is

ξ̂E =

∫ 1

0
Ψ−1(α)dα

=

∫ 1

0
((

n∨
i=1

(yi − d) ∨ a)− (

n∧
i=1

(yi + c) ∧ b))α

+ (

n∧
i=1

(yi + c) ∧ b)dα

=

(
n∨

i=1
(yi − d) ∨ a) + (

n∧
i=1

(yi + c) ∧ b)

2

The Theorem is proved.
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According to Eq.(5), then the uncertainty distribu-
tion F of the unit can be obtained.

F (y|ξ̂E) =


0 , if y ≤ ξ̂E − c
y−(ξ̂E−c)

d+c , if ξ̂E − c < y ≤ ξ̂E + d

1 , if y > ξ̂E + d
(6)

Lemma 2. (Lio, [24]) Suppose ξ is an uncertain
variable with normal prior uncertainty distribution
N(e, σ), and η1, η2, . . . , ηn are iid uncertain vari-
ables from a population with normal uncertainty dis-
tributionN(ξ, σ) and observed values y1, y2, . . . , ym,
respectively. Then the posterior uncertainty distribu-
tion is

Ψ(x|y1, y2, . . . , yn)

=

{
ΦM (x)

ΦM ((m+M)/2)+1−Φm((m+M)/2) , if x ≤ m+M
2

ΦM ((m+M)/2)+Φm(x)−Φm((m+M)/2)
ΦM ((m+M)/2)+1−Φm((m+M)/2) , if x > m+M

2

(7)
where ΦM and Φm are the uncertainty distributions
N(M,σ) and N(m,σ), respectively, and

M =

n∨
i=1

yi ∧ e,m =

n∧
i=1

yi ∧ e.

Theorem 4. Suppose an uncertain variable
ξ has the posterior uncertainty distribution
Ψ(x|y1, y2, . . . , yn) and y1, y2, . . . , ym are ob-
served values, when the prior distribution N(e, σ) is
assumed to be normal and the data are observed from
a population whose distribution function N(ξ, σ) is
also normal. If the inverse uncertainty distribution
Ψ−1(α) exists, then the posterior expected estimation
is

ξ̂E =
m+M

2
(8)

where

M =

n∨
i=1

yi ∧ e,m =

n∧
i=1

yi ∧ e.

Proof. It follows from Definition 5 and Lemma 2 that
the posterior expected estimation is

ξ̂E =

∫ 1

0
Ψ−1(α)dα

=

∫ 1

0
(
m+M

2
−

√
3σ

π
ln

α

1− α
)dα

=
m+M

2

The Theorem is verified.

According to Eq.(8), then the uncertainty distribu-
tion F of the unit can be obtained.

F (y|ξ̂E) = (1 + exp(
π(ξ̂E − y)√

3σ
))−1 (9)

4 Uncertain Bayesian reliability
evaluation

In this section, we consider uncertainty reliability
evaluation, which is defined as the measure that it will
perform a required function under stated conditions
for a stated period. To assess the system reliability,
two indicators theMTBF and R(T ) for uncertainty
assessment are first defined.
Definition 6. (Mean Time Between Failure)Suppose
the failure free time η (η ≥ 0) is a nonnegative uncer-
tain variable, and the uncertainty distribution of the
unit is F (y) ≡ M{η ⩽ y}. The MTBF of the unit is
defined as

MTBF =

∫ +∞

0
M{η > y}dy

=

∫ +∞

0
(1− F (y))dy

=

∫ 1

F (0)
F−1(α)dα

(10)

where F−1 is the inverse uncertainty distributions of
F .

In practical application, the uncertainty measure
of failure free time over a certain value T is also an
important index, which represent the unceratinty re-
liability R(T ) that a system will perform a required
function at the specific time T under stated operating
conditions using the uncertainty theory, expressed as,

R(T ) = M{y > T} = 1− F (T ). (11)
Theorem 5. Suppose the failure free time η is a non-
negative uncertain variable, and the uncertainty dis-
tribution of the unit F (y|ξ̂E) is L(ξ̂E − c, ξ̂E + d).
If the inverse uncertainty distribution F−1(α) exists,
the MTBF of the unit and uncertainty reliability R
are

MTBF =

∫ 1

0
(1− α)(ξ̂E − c) + α(ξ̂E + d)dα

(12)

R(T ) =


1 , if y ≤ ξ̂E − c
(ξ̂E+d)−T

d+c , if ξ̂E − c < y ≤ ξ̂E + d

0 , if y > ξ̂E + d

.

(13)
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Proof. It follows from Definition 6 and

F (y|ξ̂E) =


0 , if y ≤ ξ̂E − c
y−(ξ̂E−c)

d+c , if ξ̂E − c < y ≤ ξ̂E + d

1 , if y > ξ̂E + d

that theMTBF of the unit is

MTBF =

∫ +∞

0
(1− F (y|ξ̂E))dy

=

∫ 1

0
F−1(α)dα

=

∫ 1

0
(1− α)(ξ̂E − c) + α(ξ̂E + d)dα

where F−1 is the inverse uncertainty distributions
of F , and uncertainty reliability R is

R(T ) = M{y > T}
= 1− F (T |ξ̂E)

=


1 , if y ≤ ξ̂E − c
(ξ̂E+d)−T

d+c , if ξ̂E − c < y ≤ ξ̂E + d

0 , if y > ξ̂E + d

The theorem is proved.

Theorem 6. Suppose the failure free time η is a non-
negative uncertain variable, and the uncertainty dis-
tribution of the unit F (y|ξ̂E) is N(ξ̂E , σ). If the
inverse uncertainty distribution F−1(α) exists, the
MTBF of the unit and uncertainty reliability R are

MTBF =

∫ 1

(1+exp(
πξ̂E√

3σ
))−1

(ξ̂E +

√
3σ

π
ln α

1− α
)dα

(14)

R(T ) = 1− (1 + exp(
π(ξ̂E − T )√

3σ
))−1. (15)

Proof. It follows from Definition 6 and

F (y|ξ̂E) = 1 + exp(
π(ξ̂E − y)√

3σ
)−1

that theMTBF of the unit is

MTBF =

∫ +∞

0
(1− F (y|ξ̂E))dy

=

∫ 1

(1+exp(
πξ̂E√

3σ
))−1

F−1(α)dα

=

∫ 1

(1+exp(
πξ̂E√

3σ
))−1

(ξ̂E +

√
3σ

π
ln α

1− α
)dα

where F−1 is the inverse uncertainty distributions
of F , and uncertainty reliability R is

R(T ) = M{y > T}
= 1− F (T |ξ̂E)

= 1− (1 + exp(
π(ξ̂E − T )√

3σ
))−1

The theorem is verified.

5 Numerical examples
This section will provided some examples to illus-

trate the application of the new method.
Example 1. Suppose ξ is an uncertain variable with
linear prior uncertainty distribution L(1510, 1550),
and η1, η2, η3 are iid uncertain variables from a pop-
ulation with linear uncertainty distribution L(ξ −
10, ξ + 20) and observed values y1 = 1520, y2 =
1530, y3 = 1540, respectively. Then it follows from
Lemma 1 that the posterior uncertainty distribution is
L(1520, 1530), i.e.

Ψ(x|1520, 1530, 1540)

=

 0 , if x ≤ 1520
x−1520

10 , if 1520 < x ≤ 1530
1 , if x > 1530

.

Then, using the observation y1, y2, y3, the unknown
parameter can be estimated.

ξ̂E = E(ξ) = 1525

According to Eq.(6), the uncertainty distribution of
the unit and its derivativeF ’ can be obtained(see Fig-
ure 1).

F (y|ξ̂E) =

 0 , if y ≤ 1515
y−1515

30 , if 1515 < y ≤ 1545
1 , if y > 1545

F ′(y|ξ̂E) =
{

y
30 , if 1515 < y ≤ 1545
0 , otherwise
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By substituting the estimation results into Eq.(12) and
Eq.(13) , the MTBF and R(1520) can be obtained.
As shown in Figure 2, it can be seen that the un-
certainty reliability of the unit decreases with the in-
crease in the expected time of failure.

MTBF =

∫ 1

0
1515 + 30αdα = 1530

R(1520) = 1− F (1520) ≈ 83.3%

Figure 1: Function F’ in Example 1

Figure 2: Uncertainty reliability R in Example 1

Example 2. Suppose ξ is an uncertain variable with
normal prior uncertainty distribution N(1540, 3),
and η1, η2 are iid uncertain variables from a popula-
tion with normal uncertainty distributionN(ξ, 3) and
observed values y1 = 1510, y2 = 1550, respectively.
Then it follows from Lemma 2 that the posterior un-

certainty distribution is

Ψ(x|1510, 1550)

=

{
Φ2(x)

Φ2(1530)+1−Φm(1530) , if x ≤ 1530
Φ2(1530)+Φ2(x)−Φ1(1530)

Φ2(1530)+1−Φ1(1530)
, if x > 1530

where Φ2 and Φ1 are the uncertainty distributions
N(1550, 3) and N(1510, 3). Then, using the obser-
vation y1, y2, the unknown parameter can be esti-
mated.

ξ̂E = E(ξ) = 1530

According to Eq.(9), the uncertainty distribution of
the unit and its derivative F ’ can be obtained (see
Figure 3).

F (y|ξ̂E) = (1 + exp(
π(1530− y)

3
√
3

))−1

F ′(y|ξ̂E) =
π

3
√
3
exp(π(1530−y)

3
√
3

)

(1 + exp(π(1530−y)

3
√
3

))2

By substituting the estimation results into Eq.(14) and
Eq.(15), the MTBF and R(1520) can be obtained.
As shown in Figure 4, it can be seen that the un-
certainty reliability of the unit decreases with the in-
crease in the expected time of failure.

MTBF =

∫ 1

(1+exp( 1530π

3
√

3
))−1

(1530 +
3
√
3

π
ln α

1− α
)dα

= 1530

R(1520) = 1− (1 + exp(
π(1530− 1520)

3
√
3

))−1

≈ 99.76%

Example 3. Suppose ξ is an uncertain variable with
normal prior uncertainty distribution N(1540, 3),
and η1, η2 are iid uncertain variables from a popula-
tion with linear uncertainty distributionL(ξ−20, ξ+
10) and observed values y1 = 1530, y2 = 1540, re-
spectively. Then it follows from Definition 4 that the
posterior uncertainty distribution is

Ψ(x|1530, 1540)

=


Φ(x)−0.0024

0.3886 , if 1530 < x ≤ 1538.5
(x−1538.5)/30

0.3886 , if 1538.5 < x ≤ 1541.5
Φ(x)−0.7124

0.3886 , if 1541.5 < x ≤ 1550

where Φ is the uncertainty distributions N(1540, 3).
Then, using the observation y1, y2, the unknown pa-
rameter can be estimated.
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Figure 3: Function F’ in Example 2

Figure 4: Uncertainty reliability R in Example 2

ξ̂E = E(ξ) = 1543.38

Moreover, the uncertainty distribution of the unit and
its derivative F ’ can be obtained(see Figure 6).

F (y|ξ̂E) =

 0 , if y ≤ 1523.38
y−1523.38

30 , if 1523.38 < y ≤ 1553.38
1 , if y > 1553.38

F ′(y|ξ̂E) =
{

y
30 , if 1523.38 < y ≤ 1553.38
0 , otherwise

By substituting the estimation results into Eq.(10) and
Eq.(11) , the MTBF and R(1520) can be obtained.
As shown in Figure 5, it can be seen that the un-
certainty reliability of the unit decreases with the in-

crease in the expected time of failure.

MTBF =

∫ +∞

0
(1− F (y|ξ̂E))dy

=

∫ 1

0
F−1(α)dα

=

∫ 1

0
(1− α)(ξ̂E − c) + α

=

∫ 1

0
1523.38 + 30αdα

= 1538.38

where F−1 is the inverse uncertainty distributions of
F .

R(1520) = 1− F (1520) ≈ 88.74%

Figure 5: Function F’ in Example 3

6 Conclusion
This paper studied the reliability evaluation of the

system based on uncertain Bayesian rule, and the fol-
lowing conclusions can be drawn:

(i)Bayesian estimation method of uncertainty pa-
rameter was first proposed. There was not enough
data to obtain the probability distribution of the life-
time, so the stochastic method did not apply to our re-
search. Thus, the lifetime of the unit was regarded as
an uncertain variable, where two types of the uncer-
tainty distribution (linear and normal) were consid-
ered. It can be extended to Bayesian parameter test-
ing and decision-making, providing a basic method
for the research of uncertain statistical inference.

(ii)Based on the method of uncertain Bayesian
parameter estimation, reliability evaluation was de-
rived by calculating two reliability indexes (MTBF
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Figure 6: Uncertainty reliability R in Example 3

and R(T )). Finally, Some numerical examples were
given to illustrate the application of the new method.
This method can be applied to reliability evaluation
in the engineering field, mainly aiming at the short-
age of failure data and considering the reliability of
experts. It can also be applied to project evaluation
and decision-making in the economic field.

For future works, the uncertain hypothesis testing
and decision-making for the unknown uncertainty pa-
rameters in uncertain Bayesian statistics will be stud-
ied. When the operational data is fully obtained, some
random lifetime can be considered, such as Weibull
distribution.
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