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1 Introduction
A geodesic triangle ∆(u1, u2, u3) in a geodesic met-
ric space (X, d) consists of three points in X (called
vertices of ∆) and a geodesic segment between each
pair of vertices (the edges of ∆). A comparison tri-
angle for geodesic triangle ∆(u1, u2, u3) in (X, d) is
a triangle ∆̄(u1, u2, u3) := ∆(ū1, ū2, ū3) in R2 such
that dR2(ūi, ūj) = d(ui, uj) for i, j ∈ {1, 2, 3}. Such
a triangle always exists, [1].

Let ∆ be a geodesic triangle in X and ∆ its
comparison triangle in R2. Then ∆ is said to satisfy
CAT(0) inequality if for all u, v ∈ ∆ and all com-
parison points u, v ∈ ∆, d(u, v) ≤ dR2(u, v). A
geodesic metric space X is called a CAT(0) space if all
geodesic triangles satisfy the above comparison ax-
iom (i.e. CAT(0) inequality). Some well known ex-
amples of CAT(0) spaces are complete. The complete
CAT(0) spaces are often called Hadamard spaces.

Fixed point theory in a CAT(0) space has been first
studied by Kirk (see [2]). He showed that every non-
expansive mapping defined on a bounded closed con-
vex subset of a complete CAT(0) space always has a
fixed point.

Let K be a nonempty closed subset of a CAT(0)
space X , and T be a self map defined on K. Then T
is said to be:
• nonexpansive if

d(T u, T v) ≤ d(u, v), ∀u, v ∈ K,

• asymptotically nonexpansive if there exists a
sequence{ζn} in [1,∞) with limn→∞ ζn = 1
such that
d(T nu, T nv) ≤ ζnd(u, v), ∀u, v ∈ K, ∀n ≥ 1,

• uniformly L-Lipschitzian if there exists a con-
stant L > 0 such that

d(T nu, T nv) ≤ L(u, v), ∀u, v ∈ K ∀n ≥ 1.

Moreover, every asymptotically nonexpansive
mapping is a uniformly L-Lipschitzian mapping with
L = supn∈N{ζn}.

A mapping T is said to have a fixed point u∗ if
T u∗ = u∗ and a sequence {un} is said to be asymp-
totic fixed point sequence if

lim
n→∞

d(un, T un) = 0.

Authors create many new iterative processes to
achieve a relatively effective rate of convergence
and overcome such difficulties (see, e.g., Mann [4],
Ishikawa [5], Agarwal et al. [6], Noor [7], Abbas and
Nazir [8] and Thakur et al. [9]).

Şahin and Basarir, [10], suggested an effective two
step iterative scheme for approximating fixed points
of asymptotically quasi-nonexpansive mapping and
sequence {un} as follows:{

u1 ∈ K,
vn = (1− ρn)un ⊕ ρnT nun,
un+1 = (1− λn)T nun ⊕ λnT nvn, ∀n ≥ 1,

(1)
where and throughout the paper {λn}, {ρn} are the
sequence such that 0 ≤ λn, ρn ≤ 1 for all n ≥ 1.
They established some strong convergence results un-
der some suitable conditions such that generalizing
some results of Khan and Abbas, [11].

Niwongsa and Panyanak, [12], suggested an effec-
tive two step iterative scheme for approximating fixed
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points of asymptotically nonexpansive mapping and
sequence {un} as follows:

u1 ∈ K,
yn = τnT nun ⊕ (1− τn)un,
vn = ρnT nyn ⊕ (1− ρn)un,
un+1 = λnT nvn ⊕ (1− λn)un, ∀n ≥ 1,

(2)
where {λn}, {ρn} and {τn} are real sequence in
[0, 1]. They proved ∆ and strong convergence theo-
rems of the following Noor iteration for an asymptot-
ically nonexpansive mapping in CAT(0) spaces.

Recently, Yambangwai et al., [13], suggested an
effective three step iterative scheme for approximat-
ing fixed points of asymptotically nonexpansive map-
ping and sequence {un} as follows:

u1 ∈ K,
yn = τnT nun ⊕ (1− τn)un,
vn = ρnT nyn ⊕ (1− ρn)yn,
un+1 = λnT nvn ⊕ (1− λn)T nyn, ∀n ≥ 1,

(3)
where {λn}, {ρn} and {τn} are real sequence in
[0, 1]. They established some convergence theorems
to approximate the fixed points of asymptotically
nonexpansive mapping in the setting CAT(0) spaces.

Motivated by the preceding work, we present a
new iterative scheme, which is defined as follows:

u1 ∈ K,
yn = T n(τnT nun ⊕ (1− τn)un),
vn = T n(ρnT nyn ⊕ (1− ρn)yn),
un+1 = T n(λnT nvn ⊕ (1− λn)vn), ∀n ≥ 1,

(4)
where {λn}, {ρn} and {τn} are real sequence in [0, 1]
and T is an asymptotically nonexpansive mapping on
a nonempty closed bounded and convex subset of a
Hadamard space X .

2 Preliminaries
Definition 2.1. [14] A sequence {un} inX is said to
∆-converge to u∗ ∈ X if u∗ is the unique asymptotic
center of {wn} for every subsequence {wn} of {un}.
In this case we

write ∆-limn→∞ un = u∗ and we call u∗ the ∆-
limn→∞ un = u∗

Lemma 2.2. [14]
(i) Every bounded sequence in X has ∆-

convergence subsequence.

(ii) If K is a closed convex subset of X and if {un}
is a bounded sequence in K, then the asymptotic
center of {un} is in K.

The asymptotic radius r({un}) of {un} is given
by

r({un}) = inf{r(u, {un}) : u ∈ X},

and the asymptotic centerA({un}) of {un} is the set

A({un}) = {u ∈ X : r(u, {un}) = r({un})}.

Lemma 2.3. [15] Let X be a complete CAT(0)
space and {un} be a bounded sequence in X. If
A({un}) = {u}, {wn} is a subsequence of {un}
such that A({wn}) = {w} and d(un, w) converges,
then u = w.

Lemma 2.4. [16] Let K be a closed and convex
subset of a complete CAT(0) space X and T :
K → K be an asymptotically nonexpansive map-
ping. Let {un} be a bounded sequence inK such that
limn→∞ d(un, T un) = 0 and ∆-limn→∞ un = u∗.
Then u∗ = T u∗.

Lemma 2.5. [17] LetX be a CAT(0) space, u, v, w ∈
X and t ∈ [0, 1]. Then

(i) d((1− t)u⊕ tv, w) ≤ (1− t)d(u,w)+ td(v, w).

(ii) d2((1 − t)u ⊕ tv, w) ≤ (1 − t)d2(u,w) +
td2(v, w)− t(1− t)d2(u, v).

Lemma 2.6. [18] Let {δn} and {σn} be sequences of
nonnegative real numbers satisfying the inequality

δn+1 ≤ (1 + σn)δn, n ≥ 1.

If
∑∞

n=1 σn < ∞, then limn→∞ δn exists.

Lemma 2.7. [19] LetX be a complete CAT(0) space
and let u∗ ∈ X. Suppose {αn} is a sequence in
[e, f ] for some e, f ∈ (0, 1) and {un}, {wn} are
sequences in X such that lim supn→∞ d(un, u

∗) ≤
l, lim supn→∞ d(wn, u

∗) ≤ l and limn→∞ d((1 −
αn)un ⊕ αnwn, u

∗) = l for some l ≥ 0. Then
d(un, wn) = 0.

Theorem 2.8. [20] Let K be a nonempty bounded
closed and convex subset of a complete CAT(0) space
X and T : K → K be asymptotically nonexpansive.
Then T has a fixed point.

.

3 Main results
Theorem 3.1. Let K be a closed bounded and con-
vex subset of a Hadamard space X and a self map T
defined onK be an asymptotically nonexpansive map-
ping with {ζn}. Assume that the following conditions
hold:

(i) {ζn} ≥ 1 and
∑∞

n=1(ζn − 1) < ∞,

(ii) there exist constants c1, c2 with 0 < c1 ≤ τn ≤
c2 < 1 for each n ∈ N,

(iii) there exist constants b1, b2 with 0 < b1 ≤ ρn ≤
b2 < 1 for each n ∈ N,
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(iv) there exist constants a1, a2 with 0 < a1 ≤ λn ≤
a2 < 1 for each n ∈ N.

For the sequence {un} given by (4). Then
limn→∞ d(un, u

∗) exists for all u∗ ∈ F(T ).

Proof. Using Theorem 2.8, we note that F(T ) ̸= ∅.
Putting ζn = 1+κn for all n ≥ 1. Using

∑∞
n=1(ζn−

1) < ∞, we have
∑∞

n=1 κn < ∞. For each u∗ ∈
F(T ), we obtain that

d(yn, u
∗) (5)

= d(T n(τnT nun ⊕ (1− τn)un), u
∗)

≤ (1 + κn)d(τnT nun ⊕ (1− τn)un, u
∗)

≤ (1 + κn)[τnd(T nun, u
∗)

+ (1− τn)d(un, u
∗)]

≤ (1 + κn)[τn(1 + κn)d(un, u
∗)

+ (1− τn)d(un, u
∗)]

= (1 + κn)(1 + τnκn)d(un, u
∗)

≤ (1 + κn)
2d(un, u

∗) (6)

and

d(vn, u
∗) (7)

= d(T n(ρnT nyn ⊕ (1− ρn)yn), u
∗)

≤ (1 + κn)d(ρnT nyn ⊕ (1− ρn)yn, u
∗)

≤ (1 + κn)[ρnd(T nyn, u
∗)

+ (1− ρn)d(yn, u
∗)]

≤ (1 + κn)[ρn(1 + κn)d(yn, u
∗)

+ (1− ρn)d(yn, u
∗)]

= (1 + κn)(1 + ρnκn)d(yn, u
∗)

≤ (1 + κn)
2d(yn, u

∗). (8)

Using (5) and (7), we have

d(un+1, u
∗) (9)

= d(T n(λnT nvn ⊕ (1− λn)vn), u
∗)

≤ (1 + κn)d(λnT nvn ⊕ (1− λn)vn, u
∗)

≤ (1 + κn)[λnd(T nvn, u
∗)

+ (1− λn)d(T nvn, u
∗)]

≤ (1 + κn)[λn(1 + κn)d(vn, u
∗)

+ (1− λn)d(vn, u
∗)]

= (1 + κn)(1 + λnκn)d(vn, u
∗)

≤ (1 + κn)
2d(vn, u

∗)

≤ (1 + κn)
4d(yn, u

∗)

≤ (1 + κn)
6d(un, u

∗). (10)

Because
∑∞

n=1 κn < ∞ and using Lemma 2.6, we
have limn→∞ d(un, u

∗) exists.

Theorem 3.2. Let K be a closed bounded and con-
vex subset of a Hadamard space X and a self map T
defined onK be an asymptotically nonexpansive map-
ping with {ζn}. Assume that the following conditions
hold:

(i) {ζn} ≥ 1 and
∑∞

n=1(ζn − 1) < ∞,

(ii) there exist constants c1, c2 with 0 < c1 ≤ τn ≤
c2 < 1 for each n ∈ N,

(iii) there exist constants b1, b2 with 0 < b1 ≤ ρn ≤
b2 < 1 for each n ∈ N,

(iv) there exist constants a1, a2 with 0 < a1 ≤ λn ≤
a2 < 1 for each n ∈ N.

For the sequence {un} given by (4). Then
limn→∞ d(un, T un) = 0.

Proof. For each u∗ ∈ F(T ). Putting ζn = 1 + κn
for all n ≥ 1. Using

∑∞
n=1(ζn − 1) < ∞, we have∑∞

n=1 κn < ∞. From Theorem 3.1, we support that

lim
n→∞

d(un, u
∗) = l ≥ 0. (11)

From (5), we have

lim sup
n→∞

d(yn, u
∗) ≤ l. (12)

Because T be an asymptotically nonexpansive

d(T yn, u
∗) ≤ (1 + κn)d(yn, u

∗) (13)

Using (12) and (13), we have

lim sup
n→∞

d(T nyn, u
∗) ≤ l. (14)

Similar to that,

lim sup
n→∞

d(T nun, u
∗) ≤ l (15)

and
lim sup
n→∞

d(T nvn, u
∗) ≤ l. (16)

Because

d(un+1, u
∗) ≤ (1 + κn)

4d(yn, u
∗). (17)

Taking limit infimum both sides, we obtain,

l ≤ lim inf
n→∞

d(yn, u
∗). (18)

Using (12) and (18), we obtain that

l = lim
n→∞

d(yn, u
∗)

= lim
n→∞

d(T n(τnT nun ⊕ (1− τn)un), u
∗).

(19)
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Also,

d(T n(τnT nun ⊕ (1− τn)un), u
∗)

≤ (1 + κn)d(τnT nun ⊕ (1− τn)un, u
∗)

and

l ≤ lim inf
n→∞

d(T n(τnT nun ⊕ (1− τn)un), u
∗)

≤ lim inf
n→∞

d(τnT nun ⊕ (1− τn)un, u
∗). (20)

Using (11) and (15), we have

d(τnT nun ⊕ (1− τn)un, u
∗)

≤ (1 + κn)[τnd(T nun, u
∗) + (1− τn)d(un, u

∗)]

and

lim sup
n→∞

d(τnT nun ⊕ (1− τn)un, u
∗) ≤ l. (21)

Using (20) and (21), we have

lim
n→∞

d(τnT nun ⊕ (1− τn)un, u
∗) = l. (22)

Using (11), (15), (22) and Lemma 2.7, we have

lim
n→∞

d(un, T nun) = 0. (23)

From (9), we have

d(un+1, u
∗) ≤ (1 + κn)

2d(vn, u
∗)

and

l ≤ lim inf
n→∞

d(un+1, u
∗) ≤ lim inf

n→∞
d(vn, u

∗) (24)

From (7), we have

d(vn, u
∗) ≤ (1 + κn)

2d(yn, u
∗)

and

lim sup
n→∞

d(vn, u
∗) ≤ lim sup

n→∞
d(yn, u

∗) ≤ l. (25)

Using (24) and (25), we have

lim
n→∞

d(vn, u
∗) = l (26)

and

l = lim
n→∞

d(vn, u
∗)

= lim
n→∞

d(T n(ρnT nyn ⊕ (1− ρn)yn), u
∗)

which

d(T n(ρnT nyn ⊕ (1− ρn)yn), u
∗)

≤ (1 + κn)d(ρnT nyn ⊕ (1− ρn)yn, u
∗).

Taking limit infimum both sides, we obtain,

l ≤ lim inf
n→∞

d(ρnT nyn ⊕ (1− ρn)yn, u
∗). (27)

Also,

d(ρnT nyn ⊕ (1− ρn)yn, u
∗)

≤ ρnd(T nyn, u
∗) + (1− ρn)d(yn, u

∗)

Using (12) and (14), we have

lim sup
n→∞

d(ρnT nyn ⊕ (1− ρn)yn, u
∗) ≤ l. (28)

Using (27) and (28), we have

lim sup
n→∞

d(ρnT nyn ⊕ (1− ρn)yn, u
∗) = l. (29)

Using (12), (14), (29) and Lemma 2.7, we have

lim
n→∞

d(yn, T nyn) = 0. (30)

From (9), we have

l = lim
n→∞

d(un+1, u
∗)

= lim
n→∞

d(T n(λnT nvn ⊕ (1− λn)vn), u
∗)

and

d(T n(λnT nvn ⊕ (1− λn)vn), u
∗)

≤ (1 + κn)d(λnT nvn ⊕ (1− λn)vn, u
∗).

Taking limit infimum both sides, we obtain,

l ≤ lim inf
n→∞

d(λnT nvn ⊕ (1− λn)vn, u
∗). (31)

Also,

d(λnT nvn ⊕ (1− λn)vn, u
∗)

≤ λnd(T nvn, u
∗) + (1− λn)d(vn, u

∗).

Using (16) and (25), we have

lim sup
n→∞

d(λnT nvn ⊕ (1− λn)vn, u
∗) ≤ l. (32)

Using (31) and (32), we have

lim
n→∞

d(λnT nvn ⊕ (1− λn)vn, u
∗) = l. (33)

Using (16), (25), (33) and Lemma 2.7, we have

lim
n→∞

d(vn, T nvn) = 0. (34)
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In addition, using (23), we have

d(yn, un)

= d(T n(τnT nun ⊕ (1− τn)un), un)

≤ d(T n(τnT nun ⊕ (1− τn)un), T nun)

+ (1 + κn)d(T nun, un)

≤ (1 + κn)[d(τnT nun ⊕ (1− τn)un, un)]

+ (1 + κn)d(T nun, un)

≤ (1 + κn)[τnd(T nun, un) + (1− τn)d(un, un)]

+ (1 + κn)d(T nun, un)

= (1− κn)(1− τn)d(T nun, un)

→ 0 as n → ∞. (35)

Also,

d(yn, T nun) (36)
= d(T n(τnT nun ⊕ (1− τn)un), T nun)

≤ (1 + κn)d(τnT nun ⊕ (1− τn)un, un)

≤ (1 + κn)[τnd(T nun, un) + (1− τn)d(un, un)]

≤ (1 + κn)τnd(T nun, un)

→ 0 as n → ∞. (37)

Using (23), (36) and (30), we have

d(un, T nyn)

≤ d(un, T nun) + d(T nun, yn) + d(yn, T nyn)

→ 0 as n → ∞. (38)

Using (38) and (35), we have

d(vn, T nun)

= d(T n(ρnT nyn ⊕ (1− ρn)yn), T nun)

≤ (1 + κn)d(ρnT nyn ⊕ (1− ρn)yn, un)

≤ (1 + κn)[ρnd(T nyn, un) + (1− ρn)d(yn, un)]

→ 0 as n → ∞. (39)

Using (23), (39) and (34), we have

d(un, T nvn)

≤ d(un, T nun) + d(T nun, vn) + d(vn, T nvn)

→ 0 as n → ∞. (40)

Using (38), (35) and (36), we have

d(vn, un)

= d(T n(ρnT nyn ⊕ (1− ρn)yn), un)

≤ d(T n(ρnT nyn ⊕ (1− ρn)yn), T nun)

+ (1 + κn)d(T nun, yn)

≤ (1 + κn)d(ρnT nyn ⊕ (1− ρn)yn), un)

+ (1 + κn)d(T nun, yn)

≤ (1 + κn)[ρnd(T nyn, un) + (1− ρn)d(yn, un)]

+ (1 + κn)d(T nun, yn)

→ 0 as n → ∞. (41)

Using (40), (41) and (39), we have

d(un+1, un)

= d(T n(λnT nvn ⊕ (1− λn)vn), un)

≤ d(T n(λnT nvn ⊕ (1− λn)vn), T nun)

+ (1 + κn)d(T nun, vn)

≤ (1 + κn)d(λnT nvn ⊕ (1− λn)vn, un)

+ (1 + κn)d(T nun, vn)

≤ 1 + κn)[λnd(T nvn, un) + (1− λn)d(vn, un)]

+ (1 + κn)d(T nun, vn)

→ 0 as n → ∞. (42)

Using (42) and (23), we have

d(un+1, T nun+1)

≤ d(un+1, un) + d(un, T nun) + d(T nun, T nun+1)

≤ d(un+1, un) + (1 + κn)d(un+1, un) + d(un, T nun)

≤ (2 + κn)d(un+1, un) + d(un, T nun). (43)

Using (23) and (43), we have

d(un+1, T un+1)

≤ d(un+1, T n+1un+1) + d(T n+1un+1, T un+1)

≤ d(un+1, T n+1un+1) + (1 + κ1)d(T nun+1, un+1)

→ 0 as n → ∞, (44)

which implies limn→∞ d(xn, Txn) = 0.

Theorem 3.3. Let K be a closed bounded and con-
vex subset of a Hadamard space X and a self map T
defined onK be an asymptotically nonexpansive map-
ping with {ζn}. Assume that the following conditions
hold:

(i) {ζn} ≥ 1 and
∑∞

n=1(ζn − 1) < ∞,

(ii) there exist constants c1, c2 with 0 < c1 ≤ τn ≤
c2 < 1 for each n ∈ N,

(iii) there exist constants b1, b2 with 0 < b1 ≤ ρn ≤
b2 < 1 for each n ∈ N,

(iv) there exist constants a1, a2 with 0 < a1 ≤ λn ≤
a2 < 1 for each n ∈ N.

For the sequence {un} given by (4). Then {un} ∆-
converges to a fixed point of T .

Proof. Let u ∈ ω∆(un) =
∪

A({wn}). So, there ex-
ists subsequence {wn} of {un} such thatA({wn}) =
{u}. By Lemmas 2.2 (i), (ii) and Theorem 2.8 there
exists a subsequence {sn} of {wn} such that ∆-
limn→∞ sn = s ∈ K. From Lemma 2.4, we have
s ∈ F(T ). Because {d(wn, s)} converges and us-
ing Lemma 2.3, we have u = s. This implies that
ω∆(un) ⊆ F(T ).
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Next, we show that ω∆(un) consists of exactly
one point. Let {wn} be a subsequence of {un} with
A({wn}) = {u} and A({un}) = {p}. We have that
u = s and s ∈ F(T ). Finally, because {d(un, s)}
converges and using Lemma 2.3, we have p = s ∈
F(T ). This shows that ω∆(un) = p.

4 Numerical example
Let X = R with usual metric and K = [1, 11]. Let a
self map T on K as follows:

T u =
4
√

u3 + 8, ∀u ∈ K.

It is undeniable that F(T ) = {2}. Next, We demon-
strate that T is asymptotically nonexpansive mapping
on [1, 11].

We can see that the function f(u) = 4
√
u3 + 8 −

u, ∀u ∈ [1, 11] has the derivative

f ′(u) =
3u2

4(u3 + 8)3/4
− 1, ∀u ∈ [1, 11].

Because 1 ≤ u, we have f ′(u) = f ′(u) =
3u2

4(u3+8)3/4 ≤ 1 and so

f ′(u) ≤ 0, ∀u ∈ [1, 11],

which shows that the above function is decreasing on
[1, 5]. Let u, v ∈ [1, 5] with u ≤ v shows that

f(v) ≤ f(u),

we obtain that
4
√

v3 + 8− v ≤ 4
√

u3 + 8− u

and change it as
4
√

v3 + 8− 4
√

u3 + 8 ≤ v − u∣∣∣ 4
√

v3 + 8− 4
√

u3 + 8
∣∣∣ ≤ |v − u|∣∣∣ 4

√
u3 + 8− 4

√
v3 + 8

∣∣∣ ≤ |u− v| .

Therefore, we obtain that
∥T u− T v∥ ≤ ∥u− v∥ .

Thus, T satisfies asymptotically nonexpansive
mapping because it is a nonexpansive mapping.
Using the initial value u1 = 9 and the specified stop-
ping criteria ∥un − 2∥ ≤ 10−15. For two choices,
calculate the values of iterative scheme (3) and itera-
tive scheme (4).
Choice 1: τn = 9n√

100n2+4
, ρn = 4n

5n+4 and λn =
n

2n+4 .
Choice 2: τn = 1 − n

5n+4 , ρn = 3n
4n+4 and λn =

7n
10n+4 .
The results of choice 1 are shown in Table 1 and Fig-
ure 1, as are the results of choice 2 in Table 2 and
Figure 2,.

Table 1: Sequences of comparison for Choice 1.
Number of
Iterations

Iterative scheme (3) Iterative scheme (4)
CPU Time (0.08 Sec.) CPU Time (0.03 Sec.)

1 9.000000000000000 9.000000000000000
2 3.932991495161055 2.211043635365002
3 2.436259801588707 2.002827615845894
4 2.077070700749241 2.000032201213855
5 2.012069935390678 2.000000343639970
6 2.001794224194666 2.000000003507589
7 2.000258150269182 2.000000000034648
8 2.000036209681632 2.000000000000334
9 2.000004972343876 2.000000000000003
10 2.000000670525931 2.000000000000000
11 2.000000089009141 2.000000000000000
12 2.000000011653699 2.000000000000000
13 2.000000001507295 2.000000000000000
14 2.000000000192849 2.000000000000000
15 2.000000000024434 2.000000000000000
16 2.000000000003069 2.000000000000000
17 2.000000000000382 2.000000000000000
18 2.000000000000047 2.000000000000000
19 2.000000000000006 2.000000000000000
20 2.000000000000000 2.000000000000000

Figure 1: Sequences of comparison for Choice 1.

5 Conclusions
We introduced a novel iterative scheme (4) for asymp-
totically nonexpansive mapping in Hadamard spaces
under certain conditions. The demonstrated that our
new type of iteration is more efficient than iterative
scheme (3). In addition, We have presented a numer-
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Table 2: Sequences of comparison for Choice 2.
Number of
Iterations

Iterative scheme (3) Iterative scheme (4)
CPU Time (0.10 Sec.) CPU Time (0.04 Sec.)

1 9.000000000000000 9.000000000000000
2 3.389076649070681 2.170966511771209
3 2.225543383619792 2.001921267657179
4 2.029729550343821 2.000019117614857
5 2.003699439414234 2.000000181840148
6 2.000453631686722 2.000000001678215
7 2.000055244686556 .000000000015154
8 2.000006696261599 2.000000000000135
9 2.000000808714998 2.000000000000000
10 2.000000097384327 2.000000000000000
11 2.000000011698706 2.000000000000000
12 2.000000001402528 2.000000000000000
13 2.000000000167858 2.000000000000000
14 2.000000000020060 2.000000000000000
15 2.000000000002394 2.000000000000000
16 2.000000000000285 2.000000000000000
17 2.000000000000034 2.000000000000000
18 2.000000000000004 2.000000000000000
19 2.000000000000000 2.000000000000000

Figure 2: Sequences of comparison for Choice 2.

ical experiment to the reader to support our claim.
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