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Abstract: Statistical topology inference is a branch of algebraic topology that analyzes the geometric structure's 

global topological properties underlying a point cloud dataset. There is an increasing need to analyze massive 

data sets and screen large databases to address real-world problems. A central challenge to modern applied 

mathematics is the need to generate tools to simplify the data in high dimensional order to extract the important 

features or the relationships while performing the analysis. A growing field of study at the intersection of 

algebraic topology, computational geometry, and statistics is topological data analysis (TDA) inference. This 

study applies TDA tools to test hypothesis between two high-dimensional data sets. Hypothesis testing is one of 

the most important topics of statistical topology inference. A proposed test was created, which was built on the 

nearest-neighbor function. 

Three tests such as (Hypothesis testing based on persistent homology, hypothesis testing based on persistent 

landscapes, and hypothesis testing based on density estimation) based on TDA, are discussed. Moreover, a 

modification of these tests was proposed. Monte Carlo simulation was conducted to compare the power of the 

previous tests. We displayed the use of TDA tools in hypothesis testing. It was proposed that this test might be 

established based on the nearest neighbor distance function. Furthermore, a suggested modification for the 

present tests based on TDA was introduced. Finally, the tests specified in the vignette were enabled by two 

empirical applications within the biology field. We demonstrated the efficacy of the above tests on the heart 

disease dataset from Statlog and the Wisconsin breast cancer dataset. 
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1 Introduction 
Topology, a mathematics field that arises in an 

attempt to describe global features of space using 

point cloud data, can provide new insights and tools 

for finding and quantifying interclass relationships. 

Computational topology is particularly useful for 

understanding non-practical data using standard 

statistical methods (e.g., canonical correlation, 

principal component analysis, and hierarchical 

clustering). 

Topology data analysis combines techniques and 

tools that allow academics to discover and analyze 

topological data for invariant structures, [1].  

Those processes often use point cloud data as an 

input, commonly represented as a huge finite dataset 

in an n-dimensional metric space taken from a 

geometrical object, perhaps with some noise. The 

result is a set of data analyses and diagrams required 

to evaluate the statistical properties of the data 

accurately. 

 

2 Simplicial Complexes 
Simplicial complexes are used as the prime data 

structure to represent topological spaces. Graphs are 

commonly employed in many data analysis 

applications since they store relationships between 

data points. Simplicial complexes generalize the 

notion of graphs by allowing for 2, 3, and higher 

dimensional building blocks, called simplices. 

 

2.1 Definition 
𝐸𝑛 is an 𝑛-dimensional Euclidean space. Point 

cloud data (PCD) is an unordered sequence of points 

𝑆 = {𝑥1, … , 𝑥4} embedded in 𝐸𝑛.  

A simplicial complex on PCD is defined by 

considering each point in the metric space as a 

vertex of an approximation. An edge connects two 

vertices based on their proximity. Higher-

dimensional simplices can then be defined on the 

approximations in different ways. One of the most 

commonly used complexes is the Vietoris-Rips 

complex. To convert data from PCD into a metric 
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space (𝑋, 𝑑), we use the point cloud (PC) as 

vertices of the approximation whose edges are 

determined by proximity using vertices within a 

specified 𝜀 > 0 through a distance metric 𝑑, which 

satisfies the following conditions, for all data 

points 𝑥, 𝑦, and 𝑧  we have:  

 

𝑑(𝑥, 𝑦) ≥ 0,    𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)  
and 

𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). 
 

A simplicial complex is a finite collection of 

simplices 𝐾 such that for any face 𝜎 ∈ 𝐾 and 𝜏 <
𝜎 implies 𝜏 ∈ 𝐾, and ∀𝜎𝑖 and 𝜎𝑗 ∈ 𝐾 implies 

𝜎𝑖⋂𝜎𝑗 is either empty or a face of both. For 

example, 0-simplex consists of a point, a 1-simplex 

consists of a line segment, a 2-simplex consists of a 

triangle, and a 3-simplex consists of a tetrahedron 

(Fig. 1). A lot more can be extracted about the 

simplex, but for our need for the simplicial complex, 

this will be satisfactory, [2]. 

 
Fig. 1: Shapes of 𝐾-simplices for 𝑘 = 0,1,2,3, 

respectively. 

 

Indeed, different ways can be employed to filter the 

simplicial complex, such as C̃ech Lazy Witness. The 

typical difficulty associated with any filter method 

is choosing the suitable 𝜀 to give a decent 

approximation to the structure underlying the point 

cloud, as for 𝜀 sufficiently small, the complex is a 

discrete set; for 𝜀 sufficiently large, the complex is a 

single high-dimensional simplex. There are many 

notions of distance functions that one can 

reasonably use to obtain the Vietoris-Rips, [3], such 

as: 

𝑑𝑝(𝑥, 𝑦) = √∑|𝑥 − 𝑦|𝑝
𝑝

 . 

 

 

3 Homology and Betti Numbers 
Homology groups identify holes and loops 

indirectly by examining the space around them, but 

Betti numbers allow counting the number of 

different loops and holes. We begin building the 

homology groups by examining structured sums of 

simplices, creating an abelian group, [4]. 

 

3.1 Definition 
The boundary 𝜕𝑃𝜎 of a 𝑝-simplex 𝜎 =

[𝑢0, 𝑢1, . . , 𝑢𝑝] is defined as the formal sum of its 

(𝑝 − 1) dimensional faces: 

 

𝜕𝑝𝜎 = ∑ (−1)𝑗[𝑢0, . . , 𝑢𝑗̂, 𝑢𝑝]
𝑝
𝑗=0 ,                 (1)  

where 𝑢𝑗̂ represents a point that is not included in 

the simplex. That is for any vertices𝑥𝑗: 𝜕0[𝑥𝑗] = 0 

for any 1-simplex: 𝜕1[𝑥0, 𝑥1] = [𝑥1] − [𝑥0], for any 

2-simplex: : 𝜕2[𝑥0, 𝑥1, 𝑥2] = [𝑥1, 𝑥2] − [𝑥0, 𝑥2] +
[𝑥0, 𝑥1]. In general, 𝜕𝑝: ∆𝑝→ ∆𝑝−1. 

We may naturally extend the above definition to 𝑝-

chains by specifying 𝑝 -chain's boundary: 

 𝑐 = ∑ 𝑎𝑖𝜎𝑖𝑖∈𝐼  as 𝜕𝑐 = ∑ 𝑎𝑖𝜕𝜎𝑖𝑖∈𝐼 . We can establish 

a family of boundary homomorphisms. 𝜕𝑃 

connecting the various groups of -chains of a 

simplicial complex by mapping -simplices to their 

boundaries: 

⋯
𝜕𝑝+2
→  𝐶𝑝+1

𝜕𝑝+1
→  𝐶𝑝

𝜕𝑝
→ 𝐶𝑝−1

𝜕𝑝−1
→  ⋯

𝜕1
→ 𝐶0. 

By construction, we have the property, 

𝜕𝑃(𝐶 + 𝐶́) = 𝜕𝑃𝐶 + 𝜕𝑃𝐶́ 

 

Thus, 𝜕𝑃 is indeed a homomorphism. This type of 

chain sequence 𝐶𝑃 and homomorphisms 𝜕𝑃 is 

defined as a chain complex, denoted by 𝐶 =
(𝐶𝑃 , 𝜕𝑃).  

We define the boundary 𝜕𝑘𝜎 of a K-simplex as the 

sum of its (k-1)-dimensional faces, which can be 

expressed as 

𝜕𝑘𝜎 = ∑ (−1)𝑗[𝑥0, 𝑥1, … , 𝑥𝑗 , … 𝑥𝑘]
𝑘
𝑗=0 , 

where, 𝑥𝑗 represents a point that is not included in 

the simplex, which means that for any vertices   

𝑥𝑗: 𝜕0[𝑥𝑗] = 0, for any 1-simplex:𝜕1[𝑥0, 𝑥1] =
[𝑥1] − [𝑥0], for any 2-simplex: 𝜕1[𝑥0, 𝑥1, 𝑥2] =
[𝑥1, 𝑥2] − [𝑥0, 𝑥2] + [𝑥0, 𝑥2]. In general, 𝜕𝑘𝜎: ∆𝑘⟶
∆𝑘−1. 

Hence, the k-th homology group ℋ𝑘 can be 

formulated as follows: 

ℋ𝑘 =
Ker𝜕𝑘

im𝜕𝑘+1
, 

where, 𝐾𝑒𝑟𝜕𝑘 and 𝑖𝑚𝜕𝑘+1 are donated to the kernel 

and the image of the boundary operator, 

respectively. One can easily prove that 𝜕𝑘𝜕𝑘+1 = 0, 

and im 𝜕𝑘+1 ⊂ Ker𝜕𝑘. Betti numbers are an 

important feather linked with the homology group 

because they convey relevant information about the 

complex. The 𝑘𝑡ℎ Betti number 𝛽𝑘represents the 

number of 𝑘𝑡ℎ dimensional independent holes 

in ℋ𝑘, so the number of connected components of 
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ℋ0 is denoted as 𝛽0, the number of loops is denoted 

as  𝛽1, the number of enclosed voids is denoted 

as 𝛽2, (Fig. 2). Generally, 𝛽𝑘 can be computed as 

follows: 

𝛽𝑘 = rank(ℋ𝑘) = rank(Ker𝜕𝑘) − rank(im𝜕𝑘+1), 
since im𝜕𝑘+1 ⊂ Ker𝜕𝑘, thus 𝛽𝑘 ≥ 0 ∀𝑘 > 0. 

 
Fig. 2: The circle has 𝛽0 = 1, 𝛽1 = 1, 

The sphere has𝛽0 = 1, 𝛽1 = 0, 𝛽2 = 1, 

The torus has β0 = 1, β1 = 2 , β2 = 1. 

 

 

4 Persistent Homology 
The concept of persistence homology was 

developed, [5]. The main idea of persistence 

indicates the topological characteristics, which 

persist over a considerable parameter range to be a 

signal feature. Short-lived characteristics, on the 

other hand, can be ignored as noise. Using the 

persistence homology, one can avoid choosing a 

single 𝜀. Alternatively, we have to define the 

interval of ε for which that feather occurs. In other 

words, persistence homology is the method for 

studying homology at multiple scales 

simultaneously. 

To realize how the persistence homology works, 

assume that we have a sequence for Vietoris-Rips 

complexes 𝑉𝑖(𝜀) 𝑖=1
𝑇  corresponding to the rising 

sequence of parameters 𝜀𝑖  𝑖=1
𝑇 . A chain of inclusion 

maps exists as follows: 

𝑉1(𝜀) ⊂ 𝑉2(𝜀) ⊂ ⋯ ⊂ 𝑉𝑇(𝜀) 
 

Instead of examining the homology of the individual 

terms 𝑉𝑖(𝜀), one examines the homology of the 

iterated inclusions 𝑉𝑖(𝜀) ↪ 𝑉𝑗(𝜀)  1 < 𝑖 < 𝑗 < 𝑇. 

These chains reveal which features have long 

persistence intervals. As the ℋ𝑘,𝑖 is born at a time 𝑖 
if ℋ𝑘,𝑗 isn’t in the inclusion image before the time 𝑖, 

whereas ℋ𝑘,𝑗 dies entering time 𝑗 if ℋ𝑘,𝑗 isn’t 

supported by the inclusion map 𝑉𝑗(𝜀) ↪ 𝑉𝑗+1(𝜀). 

The birth at i and death at 𝑗 of ℋ𝑘,𝑖↪𝑗 are recorded 

in the persistence diagram as ordered tuples points 

(𝑖, 𝑗). 
The 18 uniform randomly generated points are 

shown in (Fig. 3). We can observe from the figure 

that at 𝜀 = 5, ten points are only connected. 

However, at 𝜀 = 7, almost all the points are 

connected, giving birth to a circular hole. At 𝜀 = 9, 

the Vietoris-Rips complexes are finished.  

 
Fig. 3: Example of the persistent homology using a 

Vietoris-Rips complex at 𝜀 = 0, 𝜀 = 5,  𝜀 = 7, 𝜀 =
9, respectively. 

 

 

5 Persistent Landscapes 
Persistent Landscapes, produced by Bubenik, [6], 

can be considered as a diagram summarizing the 

data contained differently on the persistence 

diagram. The basic usage of the persistent 

landscapes enables us to summarize and compute 

data and use traditional statistics indicators, such as 

averages, median, and variance, instead of a barcode 

plot or a persistence diagram. Persistent landscapes 

may be considered a rotational version of a barcode 

diagram. To formulate the persistent landscapes 

diagram, begin by building a triangle whose base 

relates to a generalized persistence interval (𝑖, 𝑗) and 

with a top vertex at the intersection of the vertical 

line going through the midpoint (
𝑖+𝑗

2
, 0) and the 

circle passing through the endpoints, centered at the 

midpoint. Consequently, an isosceles right triangle 

is formed with the catheter intersecting at (
𝑖+𝑗

2
,
𝑗−𝑖

2
). 

Furthermore, Bubenik proposed that the persistent 

landscapes descriptor 𝜆𝑠(𝜀) is dependable during the 

statistical analysis and comparisons study. To obtain 

 𝜆𝑠(𝜀), it is required first to compute 𝛬𝑠(𝜀), 
according to the following formula: 

 

𝛬𝑠(𝜀) = {

𝜀 − 𝑖                𝜀 ∈ [𝑖,
𝑖+𝑗

2
]  

𝑗 − 𝜀              𝜀 ∈ (
𝑖+𝑗

2
, 𝑗]

0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

 

where 𝑠 from 1: 𝑛, and n is represented as a number 

of the points for the persistent shape. It is important 

to emphasize that 𝛬𝑠(𝜀)  is produced individually 

for each k-dimension. Then, 𝜆𝑠(𝜀) is the 𝑠𝑡ℎ biggest 

value of 𝛬𝑠(𝜀) when the homology dimension is 

considered. At s = 1, then, 𝜆𝑠(𝜀) may be understood 

as the greatest possible distance of an interval 

centered about 𝜀. We may assume that persistence 

landscapes represent an effective data analysis tool 
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in statistical topology with the above definition, [7]. 

Fig. 4 reveals the persistent landscapes for certain 

points. 

 

 
Fig. 4: The persistent landscapes diagram for 

random data. 

 

 

6 Hypothesis Testing based on TDA 
TDA inference is an emerging area of research at 

the intersection of statistics, computational 

geometry, and algebraic topology. The persistent 

homology framework has been used to construct 

statistical foundations for inference in the latest 

work, e.g., [8], [9], and [10]. There are many 

references about TDA, such as [11], [12], and [13]. 

Yet, this study focuses on the usage of TDA tools in 

testing hypothesis between two high-dimensional 

data sets. 

 

a) Hypothesis Testing Based On Persistent 

Homology 

The authors in [14] designed a test that is reliable 

for comparing two sets of persistent homology 

diagrams; each of them has a finite number of 

persistent homology diagrams. We can call this 

situation a multivariate persistent homology test. 

Since this topic is beyond our scope, we confine 

ourselves to converting that test into the un-

invariant case.  

The test statistic that may be used to compare two 

persistent homology diagrams based on [15] may be 

expressed as: 

 

𝑇𝑅 = 𝑊(𝑃̂1, 𝑃̂2)                              (2) 

 

where 𝑊(𝑃̂1, 𝑃̂2) is the Wasserstein distance 

between 𝑃̂1 and 𝑃̂2. By calculating the Wasserstein 

distance using the Hungarian algorithm. Let 

𝑝̂1,1, 𝑝̂2,1… 𝑝̂𝑛1,1 and 𝑝̂1,2, 𝑝̂2,2… 𝑝̂𝑛2,2 . These are 

points matching to 𝑃̂1  and  𝑃̂2 . 

The Hungarian algorithm included two samples, 

equal in size, which is accomplished by giving 𝑛1 

points to the second sample and 𝑛2 points to the first 

sample, producing 𝑛1 + 𝑛2 points for both samples. 

The additional points are perpendicular distances 

that are a duplicate of a diagonal. The cost matrix is 

then constructed, whose entries are the square of 

Euclidean distances. Then, the optimum column 

(with the least distance in that column) gets for each 

row. Lastly, the Wasserstein distance (determined 

independently for points of dimensions zero, one, 

two, and so on) is the total of the optimal distances, 

implying that the Hungarian method provides the 

lowest cost value.  

Because the sample distribution to 𝑇𝑅 is undefined, 

various nonparametric methods, such as jackknifing, 

a permutation test, or bootstrapping, can be taken to 

obtain an empirical distribution for the statistical 

test. For applying this technique, the samples taken 

should reflect their populations. Hence, Robinson 

and Turner, [16], preferred to use the null 

hypothesis significance test or the permutation 

technique to determine the relevance of 𝑇𝑅. The 

nonparametric tool as the permutation approach 

entails permuting the data in the sample by shuffling 

their labels and computing 𝑇𝑅 to every permutation. 

The null distribution is constructed by collecting 𝑇𝑅 

from permuted data. If we compare the two groups 

as statistically identical, random permutations 

applied to the observational data have no effect. In 

this situation, the observed test statistic falls within 

the range of permutations. The following steps are 

for getting a 𝑃-value using a permutation test: 

 

Data: 𝑃̂1 and 𝑃̂2 with two sample sizes 𝑚1 and 𝑚2, 

respectively. The number of permutation samples is 

denoted as 𝑁. 

Results: 𝑃-value for 𝑇𝑅 

Calculate 𝑇𝑅 from the original sample data. 

𝐟𝐨𝐫 𝐼 = 1:𝑁 

Split the labels for the group at random into distinct 

groups of size 𝑛1 and 𝑛2; 

Calculate 𝑇𝑅 each permutation, take a sample, and 

record the results in 𝐸𝑖; 

End. 

𝑃-value is the # of times that 𝐸𝑖 is bigger than 

dividing 𝑇𝑅 by 𝑁. 

 

The main drawback of the 𝑇𝑅 test is that it depends 

on the whole points in the persistence diagrams 

without eliminating the noisy observations, [2]. 

Thus, our first proposed test is operating TR on the 

signal points of the persistence diagram only.  
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b) Hypothesis Testing Based On Persistent 

Landscapes 

The average of λs(ε) was used to create two new 

statistical tests that may be functioned to evaluate 

the difference between two provided samples in the 

case of high dimensional, [7]. To construct the first 

test, define the average persistent landscape over all 

persistent points taken the dimension of the points 

into account: 

 

𝜂𝑠 =
∑ 𝜆𝑠(𝜀)
𝑇
𝜀=1

𝑇
  ,           𝑠 = 1…𝑛 , 

 

which yields to 𝜂 = [𝜂1, 𝜂2, … 𝜂𝑛]. Hence, we may 

represent the test statistics as follows: 

 

𝑇𝑠𝐵 =
|𝜂𝑠1−𝜂𝑠2|

√𝑉𝑎𝑟(𝜂𝑠1)+𝑉𝑎𝑟(𝜂𝑠2)
               (3), 

 

where 𝜂𝑠𝑡  is the average of the 𝜆𝑠(𝜀) corresponding 

to the sample 𝑡. Although the test statistics TsB has 

unknown sample distribution as we do not have 

such knowledge about 𝑇𝑠𝐵, Bubenik, [6], proved 

that for large 𝑇, it is possible to consider the 

standard normal distribution as an asymptotic 

distribution for 𝑇𝑠𝐵 using the central limit theorem 

and the law of large numbers. 

In addition, he suggested that one could 

conduct 𝑇𝑠𝐵 at all s simultaneously using 

multivariate 𝑇-test or Hotelling's 𝑇-square test. The 

second test statistics proposed by Bubenik in, [6], 

can be expressed as follows:  

 

𝑇𝐵 = |𝜂
1 − 𝜂2|𝑡(

𝑆1

𝑛1
+
𝑆2

𝑛2
)−1|𝜂1 − 𝜂2|         (4), 

 

where 𝜂𝑡 = [𝜂1𝑡 , 𝜂2𝑡, … 𝜂𝑛𝑡 ] and 𝑆𝑡 is the variance-

covariance matrix of order 𝑛 × 𝑛 corresponding to 

the sample 𝑡 of size 𝑛t. The main drawback that 

may be thrown at 𝑇𝐵 and 𝑇𝑠𝐵 tests is that it relies on 

the whole points in the persistence diagram, which 

leads to all the landscape values being used. Thus, 

our second and third proposed tests are operating 𝑇𝐵 

and 𝑇𝑠𝐵  only on the significant points of the 

persistence landscapes.  

 

c) Hypothesis Testing Based On Density 

Estimation 

A density estimate approach is a nonparametric 

approach used to estimate the underlying continuous 

distribution over a finite point set applied and 

studied in various contexts. Versatile methods can 

be adopted to estimate the density of the studied 

data, [4]; however, ℎ-Nearest Neighbors (ℎ𝑁𝑁) or 

𝑘-NN are adopted to estimate the density points for 

our point cloud data. Although a broad range of 

authors uses ℎ𝑁𝑁 in classification and clustering, 

we decided to utilize ℎ𝑁𝑁 in testing that the given 

two groups of point cloud data are similar or not 

based on the following ℎ𝑁𝑁 density estimator: 

 

𝑓(𝑥𝑖) =
ℎ

𝑁 𝑣𝑑𝑟ℎ
𝑑(𝑥𝑖)

                     (5) 

 

where 𝑁 is the total number of points in the 

dataset, ℎ is the number of points we want in our 

neighborhood, often equals 10% of 𝑁, 𝑥𝑖 is a vector 

of our given point, 𝑟ℎ
𝑑(𝑥𝑖) is the Euclidean distance 

to the ℎ𝑡ℎ nearest point, and 𝑣𝑑 is the volume of the 

unit sphere in the dimension 𝑑 of the data taking the 

following expression: 

 

𝑣𝑑 =
2𝜋
𝑑
2⁄

𝑑 𝛤(𝑑 2⁄ )
.                          (6) 

 

Herein, we can summarize our main idea concerning 

our fourth test as first compute the 𝑓(𝑥𝑖) for the two 

groups of the data, then calculate the following test 

statistic: 

 

𝑇ℎ =
|𝑓̂̅1−𝑓̂

̅
2|

√𝑉𝑎𝑟(𝑓̂̅1)+𝑉𝑎𝑟(𝑓̂
̅
2)

 ,            (7) 

 

where 𝑓̅1 and 𝑓̅2 are the average of the density 

estimates for each group separately. Since the 

sample distribution for 𝑇ℎ is unknown, the critical 

values can be obtained via operating the 

permutation test, [4]. 

 

 

7 Simulation Study 
The practical performance of the tests above is 

studied in this section. We compare the suggested 

tests, i.e., 𝑇𝑀𝑅,𝑇𝑀𝑠𝐵,𝑇𝑀𝐵, and 𝑇ℎ, to these current 

tests 𝑇𝑅,𝑇𝑠𝐵, and 𝑇𝐵. The first three proposed tests 

are computed based on the Bottleneck distance, not 

on the Hausdorff distance, as the latter has no 

noteworthy effect on the tests. To implement the 

comparison, we performed the tests above on 

standard geometric objects, which may be produced 

using the Geozoo Package, then documented the p-

values for every test by applying the TDA 

technique, [4], [15]. When the two groups are 

formed from identical geometric objects, the p-value 

is indicated as the size of the test. Otherwise, the 

power of the test is determined by the 𝑝-value. 

Because it may be difficult to make theoretical 

comparisons concerning the performance of past 
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experiments, one may turn to Monte Carlo 

simulation, which is currently a widely employed 

scientific technique for solving mathematically 

insoluble problems and high-cost experiments. Even 

still, simulation has downsides: It may consume a 

large amount of computational power and cannot 

provide perfect results, and the model and inputs are 

employed to determine the quality of the output.  

The comparison between statistical tests should be 

conducted in several contexts, which may be stated 

as follows: 

1. Various sample sizes: For our simulation, we 

run two distinct sample sizes, i.e., 50 and 100.  

2. Data from various dimensional point clouds: In 

this study, we decide to perform the simulation 

at different dimensions of the generated data, 

such as: 

a. At the  ℝ2: The comparison is between a circle 

with a radius equal to one and a normalized 

square. 

b. At the ℝ3: The comparison is between a sphere 

with a radius equal to two, and a torus with a 

radius from the center equal to two. 

c. At the  ℝ4: The comparison is between a flat 

torus with a radius equal to one, and a Klein 

bottle with an inner radius equal to one. 

3. Different dimension holes: At 𝛽0, 𝛽1  and 𝛽2 the 

power and size for every test, unless 𝑇ℎ , are 

determined, allowing us to illustrate which 

dimensions the tests can completely represent 

the object's topological properties. 

4. Different levels of the peak: Concerning 𝑇𝑠𝐵 and 

𝑇𝑀𝑠𝐵, the power and size for every test are 

computed at peak equal to one, two, and three. 

Thus, the tests 𝑇𝐵 and 𝑇𝑀𝐵 are operated 

simultaneously for 𝜂1𝑡, 𝜂2𝑡 and 𝜂3𝑡. 
Under the aforesaid parameters, the outputs from the 

Monte Carlo simulation are applied using 100 

replicates (increasing the replicates will not change 

the finals results) and 100 permutations at 99 

percent confidence intervals, equivalent to the 

Vietoris-Rips complex, and they are compatible 

with previous works, [8], [17]. Table 1 summarizes 

and organizes the results. The total results lead to a 

number of conclusions, which are discussed in 

detail: 

1) The study shows that increasing the sample 

size has a significant impact on the simulated 

power. The size of these tests yields an increase in 

the power of the test and reduces the size of the 

tests. Consequently, using these tests with high 

sample numbers is suggested. 

2) The Betti dimension is a factor or impact on 

the performance of overall tests. In general, with 

high levels of Betti dimension, the final decision is 

most likely to be correct. Conversely, the 

dimensional point cloud data have no sequential 

impact on these presented results. 

3) The tests based on the persistent landscapes 

may have some difficulties that might arise in real 

life, especially at low 𝑑, that in some situations, one 

cannot compute the tests 𝑇𝑠𝐵 and 𝑇𝑀𝑠𝐵 at high levels 

of 𝑠, which leads not to compute the tests 𝑇𝐵 and 

𝑇𝑀𝐵.  

4) Another problematic issue associated with the 

tests based on the persistent landscapes is that at 

different levels of 𝑠 yields a wide range of 𝑝 values, 

which may cause some confusion for the researchers 

during decision-making. The results reveal that the 

second and the third level of s can be recommended 

at the Betti dimension equal to zero, whereas 𝑠 = 1 

otherwise. 

5) We observed the superiority of the power of 

Th to the remaining tests in almost all the simulated 

cases. In contrast, its size is relatively far from the 

ideal nominal level of 1%. 

6) It is observed that the size of the tests based 

on persistent homology is close to the nominal level 

of 1% compared to the tests based on persistent 

landscapes and density estimation. In contrast, the 

latter's power is superior to the first one. 

This phenomenon refers to the fact that the tests 

based on persistent homology accept the null 

hypothesis. In contrast, the tests based on either 

persistent landscapes or density estimation reject the 

null hypothesis. Consequently, one can surely 

depend on the tests based on persistent homology in 

the case of rejection and the tests based on persistent 

landscapes or density estimation in the case of 

acceptance. 

7) Inherently, removing the points with short 

lifetimes from the simulated persistent homology 

improves, in most cases, the performance of the 

tests. Therefore, one needs to implement the other 

methods, [2], to study the effect of applying the 

remaining methods on the performance of the tests. 
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Table 1. A simulation of the study's size and power of test statistics. 

 
 

8 Real-Life Applications 
TDA can be employed in a broad range of fields 

since it is an extremely useful tool for evaluating 

and analyzing massive amounts of data. TDA has 

been widely used in the biology field over recent 

decades. This work analyzes two empirical world 

datasets on the Wisconsin breast cancer dataset from 

the UCI repository (683 patterns) and the heart 

disease dataset from Statlog (270 patterns). These 

data were extensively cited and studied by other 
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researchers for different purposes. Therefore, it may 

be desirable to implement the above tests to 

examine whether the tests can successfully 

distinguish between patients with benign or 

malignant breast cancer, those who suffer from heart 

disease, and those who are not suffering from heart 

disease. 

The Wisconsin breast cancer dataset consists of one 

predicted variable (benign-malignant), and nine 

continuous attributes ranging from 1 to 10, which 

can depend on our analysis. Furthermore, it is noted 

that the points concerning benign patients take too 

much time during the analysis; therefore, we select a 

random sample equal to 240, running the sequential 

maximum landmark method used by JPLEX. 

However, the heart disease dataset includes one 

predicted variable (absence -presence) of heart 

disease, six continuous attributes, and seven 

dichotomous variables. Thus, the seven 

dichotomous variables will be omitted from the 

analysis, and the six continuous attributes are only 

utilized.  

Fig. 5 reveals the persistent homology, the barcode 

plots, and the probability distribution of the ℎ𝑁𝑁 

density for the two datasets according to each 

predicted variable. 

However, Fig. 6 presents the persistent landscape 

diagrams in different dimensions and different λ. 
Based on these figures, one can visually compare 

the patients with benign breast cancer and those 

without. We explored the type of breast cancer of 

the patient (benign-malignant) that substantially 

affects the topological features' shapes. 

Concurrently, figures illustrate that the patients with 

heart disease or without had a weak effect on the 

topological features' shapes. AT zero dimensions, all 

topological characteristics are identical, and the two 

sampling distributions of the ℎ𝑁𝑁 density are 

slightly different.  

Conversely, (Tables 2 and Tables 3) display the p-

values associated with the whole tests under study. 

Characteristically, all the tests stated a statistical 

difference among patients with benign breast cancer 

and those without at a nominal level of 1%. In 

contradiction concerning the heart disease dataset, 

all the tests failed to reject the null hypothesis at 

zero and almost two dimensions. Still, in one 

dimension, all the tests successfully rejected the null 

hypothesis that there is a significant difference 

among patients with heart disease and those without 

at a nominal level of 1%. One can notice 

surprisingly that despite the similarity of the two 

sampling distributions of the ℎ𝑁𝑁 density in the 

case of the heart disease dataset,  𝑇ℎ perfectly 

distinguished between the two groups. 

Consequently, in our view, 𝑇ℎ can be recommended 

in practical life. 
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Table 2. The empirical 𝑝-values for the statistics tests corresponding to breast cancer. 

 
Table 3. The empirical p-values for the statistics tests corresponding to heart disease databases. 
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Fig. 5: The topological features for the breast cancer, and heart disease databases, respectively. 
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Fig. 6: The persistent landscape for the breast cancer, and heart disease databases, respectively. 
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9 Conclusion 
In this paper, we displayed TDA techniques in 

hypothesis testing. It is proposed that this test is 

based on the nearest neighbour distance function. In 

addition, a suggested modification for presented 

tests depending on TDA is proposed. At different 

patterns, a comparison depending on persistent 

homology is performed among tests. These tests are 

based on a distance function, and other tests depend 

on a persistent landscape with two requirements: the 

test's size and power. According to our observations, 

tests that depend on persistent homology are much 

more appropriate. However, tests based on 

persistent landscape or distance function have 

higher power than the remaining. Generally, all 

TDA-based tests have fulfilled properties at 

dimension one; if the sample size for the point cloud 

data increases, it will positively impact the overall 

number of tests. We demonstrated the efficacy of 

the above tests on Statlog's heart disease dataset and 

Wisconsin breast cancer dataset. There is still much 

work to be conducted in future studies. For instance, 

in generalizing the preceding tests to more than two 

groups, comparing the various methods, [2], in-

depth clustering analysis depends on TDA and 

evaluating it to another statistically existing method. 

As TDA techniques improve, we expect many 

researchers to apply topological analysis in their 

studies. 
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