[11] J.D. Barrow and P. Parsons, In sationary
models with logarithmic potentials, Physiol
Rev. D 52(10) (1995) 5576-5587.
[12] K. Enqvist and J. McDonald, Q-balls and
baryogenesis in the MSSM, Phys. Lett.
425(3-4) (1998) 309-321.
[13] F. Gazzola and M. Squassina, Global solu-
tions and nite time blow up for damped
semilinear wave equations, Ann. Inst. Henri
Poincaré, Anal. Non Linéaire. 23 (2006) 185
207.
[14] K. Li and Z.J. Yang, Exponential attrac-
tors for the strongly damped wave equation,
Appl. Math. Comput. 220 (2013) 155165.
[15] H.A. Levine and S.R. Park and J. Serrin,
Global existence and global nonexistence of
solutions of the Cauchy problem for a nonlin-
early damped wave equation, J. Math. Anal.
Appl. 228 (1) (1998) 181205.
[16] G.I. Barenblatt and I.P. Zheltov and I.N.
Kochina, Basic concepts in the theory of
seepage of homoeous liquids in ssured rocks,
J. Appl. Math. Mech. 24(5) (1960) 1286
1303.
[17] P.J. Chen and M.E. Gurtin, On a theory of
heat conduction involving two temperatures,
Z. Angew. Math. Phys. 19(4) (1968) 614627.
[18] T.B. Benjamin and J.L. Bona, Model equa-
tions for long waves in nonlinear dispersive
systems, Philos. Trans. R. Soc. Lond. Ser.
A272(1220) (1972) 4778.
[19] G,I. Barenblatt and V.M. Entov and V.M,
Ryzhik, Theory of Fluid Flows Through Nat-
ural Rocks, Kluwer Academic Publishers,
Dordrecht, 1989.
[20] S.M. Hassanizadeh and W.G. Gray, Thermo-
dynamic basis of capillary pressure in porous
media, Water Resour. Res. 29(10) (1993)
33893405.
[21] A. Mikeli¢, A global existence result for
the equations describing unsaturated ow in
porous media with dynamic capillary pres-
sure, J. Dierential Equations. 248(6) (2010)
15611577.
[22] V. Padrón, Eect of aggregation on pop-
ulation recovery modeled by a forward
backward pseudoparabolic equation, Trans.
Amer. Math. Soc. 356(7) (2004) 27392756.
[23] SL. Sobolev, On a new problem of mathe-
matical physics, Izv. Akad. Nauk SSSR Ser.
Mat. 18 (1954) 350.
[24] A.B. Al'shin and M.O. Korpusov and A.G.
Sveshnikov, Blow-up in Nonlinear Sobolev
Type Equations, Walter de Gruyter, Berlin,
2011.
[25] Y. Liu, Lower bounds for the blow-up time in
a non-local reaction diusion problem under
nonlinear boundary conditions, Math. Com-
put. Modelling. 57 (34) (2013) 926931.
[26] J.C. Song, Lower bounds for the blow-up
time in a non-local reactiondiusion problem,
Appl. Math. Lett. 24 (5) (2011) 793796.
[27] A. Stanislav and S. Sergey, Evolution PDEs
with nonstandard growth conditions: exis-
tence, uniqueness, localization, blow-up, At-
lantis Stud Dierential Equations. 4 (2015)1
417.
[28] L. Diening and P. Hästo and P. Harjule-
hto and M. Ruzicka, Lebesgue and sobolev
spaces with variable exponents, Springer-
Verlag: Berlin, 2017.
[29] L. Diening and M. Ruzicka, Calderon Zyg-
mund operators on generalized Lebesgue
spaces
Lp(x)(Ω)
and problems related to
uid dynamics, Preprint Mathematis-
che Fakultät, Albert-Ludwigs-Universität
Freiburg, 120(2002) 197220.
[30] E. Acerbi and G. Mingione, Regularity re-
sults for electrorheological uids, the station-
ary case, C. R. Acad. Sci. Paris. 334 (2002)
817822.
[31] TC. Halsey, Electrorheological uids, Sci-
ence. 258 (1992) 761766.
[32] M. Ruzicka, Electrorheological uids: mod-
eling and mathematical theory, Springer-
Verlag, Berlin, 2002.
[33] L. Diening and P. Harjulehto and P. Hästö
and M. Ruzicka, Lebesgue and Sobolev
Spaces with Variable Exponents, in: Springer
Lecture Notes, vol. 2017, Springer-Verlag,
Berlin. 2011.
[34] A.M. Kbiri and T. Nabil and M. Altanji, On
some new nonlinear diusion model for the
image ltering, Appl. Anal. 2013.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.94