Michaelis-Menten type harvesting, Advances in
Difference Equations, Vol. 2019, No.1, 2019, Ar-
ticle ID 43.
[10] Liu Y., Xie X., Lin Q., Permanence, par-
tial survival, extinction, and global attractivity
of a nonautonomous harvesting Lotka-Volterra
commensalism model incorporating partial clo-
sure for the populations, Advances in Difference
Equations, 2018, Article ID 211.
[11] Deng H., Huang X., The influence of partial clo-
sure for the populations to a harvesting Lotka-
Volterra commensalism model, Commun. Math.
Biol. Neurosci., Vol.2018, No.1, 2018: Article ID
10.
[12] Xue Y., Xie X., Lin Q., Almost periodic solu-
tions of a commensalism system with Michaelis-
Menten type harvesting on time scales, Open
Mathematics, Vol.17, No. 1, 2019, 1503-1514.
[13] Lei C., Dynamic behaviors of a stage-structured
commensalism system, Adv. Differ. Equ., Vol.
2018, 2018, Article ID 301.
[14] Lin Q., Allee effect increasing the final den-
sity of the species subject to the Allee effect in
a Lotka-Volterra commensal symbiosis model,
Adv. Differ. Equ., Vol. 2018, 2018, Article ID 196.
[15] Chen B., Dynamic behaviors of a commensal
symbiosis model involving Allee effect and one
party can not survive independently, Adv. Differ.
Equ. Vol.2018, 2018, Article ID 212.
[16] Wu R., Li L., Lin Q., A Holling type commen-
sal symbiosis model involving Allee effect, Com-
mun. Math. Biol. Neurosci., Vol.2018, 2018, Ar-
ticle ID 6.
[17] Lei C., Dynamic behaviors of a Holling type
commensal symbiosis model with the first species
subject to Allee effect, Commun. Math. Biol.
Neurosci., Vol.23, No. 1, 2019, Article ID 3.
[18] Vargas-De-León C. , Gómez-Alcaraz G., Global
stability in some ecological models of commen-
salism between two species, Biomatemática,
Vol.23, No.1, 2013, pp. 139-146.
[19] Chen F., Xue Y., Lin Q., et al, Dynamic be-
haviors of a Lotka-Volterra commensal symbio-
sis model with density dependent birth rate, Adv.
Differ. Equ. Vol.2018, 2018, Article ID 296.
[20] Han R., Chen F., Global stability of a commensal
symbiosis model with feedback controls, Com-
mun. Math. Biol. Neurosci., Vol.2015, 2015, Ar-
ticle ID 15.
[21] Chen F., Pu L., Yang L., Positive periodic solu-
tion of a discrete obligate Lotka-Volterra model,
Commun. Math. Biol. Neurosci., Vol.2015, 2015:
Article ID 14.
[22] Guan X., Chen F., Dynamical analysis of a
two species amensalism model with Beddington-
DeAngelis functional response and Allee effect
on the second species, Nonlinear Analysis: Real
World Applications, Vol. 48, No.1, 2019, pp.71-
93.
[23] Li T., Lin Q., Chen J., Positive periodic solution
of a discrete commensal symbiosis model with
Holling II functional response, Commun. Math.
Biol. Neurosci., Vol.2016, No.1, 2016, Article ID
22.
[24] Ji W., Liu M., Optimal harvesting of a stochas-
tic commensalism model with time delay, Phys-
ica A: Statistical Mechanics and its Applications,
Vol.527, No.1, 2019, Article ID: 121284.
[25] Puspitasari N., Kusumawinahyu W. M.,
Trisilowati T., Dynamic analysis of the symbiotic
model of commensalism and parasitism with
harvesting in commensal populations, JTAM
(Jurnal Teori dan Aplikasi Matematika), Vol. 5,
No. 1, 2021, pp. 193-204.
[26] Jawad S., Study the dynamics of commensalism
interaction with Michaels-Menten type prey har-
vesting, Al-Nahrain Journal of Science, Vol.25,
No. 1, 2022, pp. 45-50.
[27] Kumar G. B., Srinivas M.N., Influence of spa-
tiotemporal and noise on dynamics of a two
species commensalism model with optimal har-
vesting, Research Journal of Pharmacy and
Technology, Vol. 9, No. 10, 2016, pp. 1717-1726.
[28] Li T., Wang Q., Stability and Hopf bifurcation
analysis for a two-species commensalism system
with delay, Qualitative Theory of Dynamical Sys-
tems, Vol. 20, No.3, 2021, pp. 1-20.
[29] Chen L., Liu T., et al, Stability and bifurcation
in a two-patch model with additive Allee effect,
AIMS Mathematics, Vol. 7, No. 1, 2022, pp. 536-
551.
[30] Zhu Z. , Chen Y., et al. Stability and bifurca-
tion in a Leslie-Gower predator-prey model with
Allee effect, International Journal of Bifurca-
tion and Chaos, Vol. 32, No. 03, 2022, Artical ID:
2250040.
[31] Chen F., Chong Y., Lin S., Global stability
of a commensal symbiosis model with Holling
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.93
Fengde Chen, Zhong Li, Lijuan Chen