
pantograph equations with linear functional
argument, J. Comput. Appl. Math. 200 (2007)
217-225.
[13] Sezer M, Yalcinbas S, Gulsu M. A Taylor
polynomial approach for solving generalized
pantograph equations with nonhomogenous
term. Int J Comput Math 2008;85:1055–1063.
[14] Wang WS, Qin T, Li SF. Stability of one-leg
-methods for nonlinear neutral differential
equations with proportional delay. Appl Math
Comput,2009;213:177–83.
[15] Ishtiaq A, Brunner H, Tang T. Spectral
methods for pantograph-type differential and
integral equations with multiple delays. Front
Math China 2009;4:49–61.
[16] Nemat Abazari, Reza Abazari, Solution of
nonlinear second-order pantograph equations
via differential transformation method, World
Academy of Science, Engineering and
Technology 58 2009.
[17] Brunner H, Huang Q, Xies H. Discontinuius
Galerkin methods for delay differential
equations of pantograph type. SIAM J Numer
Anal,48 (2010) 67-1944.
[18] Ş. Yüzbaşı, N. Şahin, M. Sezer, A Bessel
collocation method for numerical solution of
generalized pantograph equations, Numer.
Methods Partial Differential Equations (2011),
(doi:10.1002/num.20660) (in press).
[19] Şuayip Yüzbaşi, An efficient algorithm for
solving multi-pantograph equation systems,
Computers and Mathematics with
Applications, in press.
[20] S. Sedaghat, Y. Ordokhani, Mehdi Dehghan,
Numerical solution of the delay differential
equations of pantograph type via Chebyshev
polynomials, Commun Nonlinear Sci Numer
Simulat, 17 (2012) 4815–4830.
[21] Sabir Widatalla, and Mohammed Abdulai
Koroma, Approximation Algorithm for a
System of Pantograph Equations, Journal of
Applied Mathematics, Volume 2012, Article
ID 714681, 9 pages, doi:10.1155/2012/714681.
[22] Moa’ath NO, El-Ajou A, Al-Zhour Z, Eriqat T,
Al-Smadi M. A New Approach to Solving
Fuzzy Quadratic Riccati Differential
Equations. International Journal of Fuzzy
Logic and Intelligent Systems. 2022 Mar
25;22(1):23-47.
[23] Abu-Arqub, Omar, et al. "Analytical solutions
of fuzzy initial value problems by
HAM." Applied Mathematics & Information
Sciences 7.5 (2013): 1903M. Arnold, B.
Simeon, Pantograph and catenary dynamics: A
benchmark problem and its numerical solution,
Appl. Numer. Math, 34 (2000) 345-362.
[24] Hasan S, El-Ajou A, Hadid S, Al-Smadi M,
Momani S. Atangana-Baleanu fractional
framework of reproducing kernel technique in
solving fractional population dynamics system.
Chaos, Solitons & Fractals. 2020 Apr
1;133:109624.
[25] Burqan, A.a, et al. "A new efficient
technique using Laplace transforms and
smooth expansions to construct a series
solution to the time-fractional Navier-Stokes
equations." Alexandria Engineering
Journal 61.2 (2022): 1069-1077.
[26] Burqan, A., Saadeh, R., Qazza, A., &
Momani, S. (2023). ARA-residual power series
method for solving partial fractional
differential equations. Alexandria Engineering
Journal, 62, 47-62.
[27] Saadeh, R., Qazza, A., & Amawi, K. (2022).
A New Approach Using Integral Transform to
Solve Cancer Models. Fractal and
Fractional, 6(9), 490.
[28] El-Ajou, A., Moa'ath, N. O., Al-Zhour, Z., &
Momani, S. (2019). Analytical numerical
solutions of the fractional multi-pantograph
system: Two attractive methods and
comparisons. Results in Physics, 14,
102500Liu MZ, Li DS. Properties of analytic
solution and numerical solution of multi-
pantograph equation. Appl Math Comput
2004;155:853–871.
[29] Sarhan A, Burqan A, Saadeh R, Al-Zhour Z.
Analytical Solutions of the Nonlinear Time-
Fractional Coupled Boussinesq-Burger
Equations Using Laplace Residual Power
Series Technique. Fractal and Fractional. 2022
Oct 29;6(11):631.
[30] H. Brunner and Q.-Y. Hu, Optimal super
convergence results for delay integro-
differential equations of pantograph type,
SIAM J. Numer. Anal., 45 (2007), 986-1004.
[31] Salah E, Qazza A, Saadeh R, El-Ajou A. A
hybrid analytical technique for solving multi-
dimensional time-fractional Navier-Stokes
system. AIMS Mathematics. 2023;8(1):1713-
36.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.91