Acknowledgment
This project was supported by the Research and De-
velopment Institute, Rambhai Barni Rajabhat Univer-
sity (Grant no.2214/2565).
References:
[1] S. Banach, Sur les opérations dans les ensem-
bles abstraits et leur application aux equations
intégrales, Fund. Math. 3:133-181, 1922.
[2] S.B. Nadler, Jr., Multi-valued contraction map-
pings, Pacific J. Math., 30:475-488, 1969.
[3] A. Padcharoen, J.K. Kim, Berinde type results
via simulation functions in metric spaces. Non-
linear Functional Analysis and Applications,
25(3): 511-523, 2020.
[4] D. Jain, A. Padcharoen, P. Kumam, D. Gopal,
A new approach to study fixed point of multi-
valued mappings in modular metric spaces and
applications. Mathematics, 4(3):51, 2016.
[5] H. Aydi, M. Abbas, C. Vetro, Partial Haus-
dorff metric and Nadler’s fixed point theo-
rem on partial metric spaces, Topology Appl.,
159(14):3234-3242, 2012.
[6] M. Berinde, V. Berinde, On a general class of
multi-valued weakly Picard mappings. J. Math.
Anal. Appl., 326(2):772-782, 2007.
[7] W. Cholamjiak, P. Cholamjiak, S. Suantai, Con-
vergence of iterative schemes for solving fixed
point of multi valued nonself mappings and
equilibrium problems. J. Nonlinear Sci. Appl.,
8:1245-1256, 2015.
[8] D. Kitkuan, P. Bunpatcharacharoen, Coinci-
dence point theorems for multi-valued mapping
b-metric spaces via digraphs. Advances in Math-
ematics: Scientific Journal, 10(6):2785-2797,
2021.
[9] V. Berinde, Approximating fixed points of weak
contractions using the Picard iteration, Nonlin-
ear. Anal. Forum., 9(1):43-53, 2004.
[10] T. Zamfirescu, Fix point theorems in metric
spaces, Arch. Math., (Basel) 23:292-298, 1972.
[11] F. Khojasteh, S. Shukla, S. Radenović, A new
approach to the study of fixed point theory for
simulation functions, Filomat, 29(6):1189-1194,
2015.
[12] M. Olgun, Ö. Biçer, T. Alyıldız, A new aspect
to Picard operators with simulation functions,
Turkish J. Math. 40(6):832-837, 2016.
[13] S. Chandok, A. Chanda, L.K. Dey, M. Pavlović,
S. Radenović, Simulation Functions and Ger-
aghty Type Results, Bol. Soc. Paran. Mat.
39(1):35-50, 2021.
[14] H. Argoubi, B. Samet, C. Vetro, Nonlinear con-
tractions involving simulation functions in a
metric space with a partial order, J. Nonlinear
Sci. Appl., 8(6): 1082-1094, 2015.
[15] A. Padcharoen, P. Kumam, P. Saipara,
P. Chaipunya, Generalized Suzuki type
Z-contraction in complete metric spaces,
Kragujevac J. Math. 42(3):419-430, 2018.
[16] A.H. Ansari, H. Isik, S. Radenović, Coupled
fixed point theorems for contractive mappings
involving new function classes and applications.
Filomat, 31:1893-1907, 2017.
[17] X. Liu, A.H. Ansari, S. Chandok, S. Radenović,
On some results in metric spaces using auxiliary
simulation functions via new functions, J. Com-
put. Anal. Appl., 24:1103-1114, 2018.
[18] S. Radenović, S. Chandok. Simulation type
functions and coincidence points. Filomat,
32(1):141-147, 2018.
[19] B. Mohammadi, S. Rezapour, N. Shahzad,
Some results on fixed points of α-ψ-Ciric gen-
eralized multifunctions, Fixed Point Theo. Appl.
24,2013.
[20] D.K. Patel, Fixed points of multivalued contrac-
tions via generalized class of simulation func-
tions, Bol. Soc. Paran. Mat., 38:161-179, 2020.
[21] M.A. Kutbi, W. Sintunavarat, On new fixed
point results for (α, ψ, ζ)-contractive multival-
ued mappings on α-complete metric spaces and
their consequences, Fixed Point Theo. and Appl.
2015.
[22] N. Hussain, M.A. Kutbi, P. Salimi, Fixed point
Theory in α-complete metric spaces with ap-
plications, Abstract and Applied Analysis 2014,
Article ID. 280817.
Creative Commons Attribution
License 4.0 (Attribution 4.0
International , CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.86
Chuanpit Mungkala, Pheerachate Bunpatcharacharoen