Convergence Theorem for Multivalued Almost Type Contractions via
Generalized Simulation Functions
Abstract: -The purpose of this work is to introduce the concepts of generalized multivalued almost type Z-
contraction along with C-class functions and generalized Suzuki multivalued almost type Z-contraction along
with C-class functions for a pair of mappings, as well as to show that common fixed point theorems for such
mappings in complete metric spaces. The results of this study generalize and expand on some established fixed
point findings in the literature. We derive several corollaries from our core results and offer examples to support
our results.
Key-Words: Multivalued mapping, C-class functions, Z-contraction, Almost type, Suzuki type
Received: May 19, 2022. Revised: September 9, 2022. Accepted: October 12, 2022. Published: November 4, 2022.
1 Introduction
The origins of fixed point theory can be traced back
to the last quarter of the nineteenth century, when
repeated approximations were used to establish the
existence and uniqueness of solutions to differential
equations. It is worth noting that the Banach contrac-
tion principle, which was developed by Banach [1].
This solution has been expanded for single and mul-
tivalued cases on a metric space in a variety of ways.
Nadler [2] developed the concept of multivalued con-
traction mapping in 1969 and established that it had
a fixed point in the entire metric space. Several fixed
point theorems were then established by various writ-
ers as a generalization of Nadlers theory (see [3], [4],
[5], [6], [7], [8]).
Let , d)be a metric space and CB(Υ) denote the
collection of all nonempty closed and bounded subset
of Υ. For ωΥand A, B CB(Υ), we have
d(A, B) = inf{d(a, b) : ρAand ρB},
D(ω, A) = inf {d(ω, ρ) : ρA}
and
H(A, B) = max sup
ωA
D(ω, B),sup
ρB
D(ρ, A).
The function His a Hausdorff metric induced by the
metric d. It is a metric on CB(Υ).
Let , d)be a complete metric space and :
Υ CB(Υ) be a contraction mapping such that
H(Ωω, ρ)δd(ω, ρ)
for all ω, ρ Υand for some δ[0,1)]. It’s a typical
Banach contraction, [1].
Berinde [9] extended the Zamfirescu fixed point
theorem [10] to almost contractions, a class of con-
tractive type mappings, for δ[0,1) and L 0such
that
d(Ωω, ρ)δd(ω, ρ)+Ld(ω, ρ)for all ω, ρ Υ.
(1)
Khojasteh et al. [11] defined Z-contraction with
respect to ζ, which generalizes the Banach contrac-
tion principle and integrates various kinds of contrac-
tion. Olgun et al. [12] achieved fixed point solutions
for generalized Z-contractions.
Later, Chandok et al. [13] expanded the conclu-
sions of [11], [12] by combining the concept of sim-
ulation functions with C-class functions and proving
the existence and uniqueness of point of coincidence.
Motivated and inspired by almost contractions
in (1), Definition 2.3, Definition 2.4 and work of
[13], we introduce the notion of extended multi-
valued almost type Z-contraction with C-class func-
tions and extended multivalued Suzuki almost type
Z-contraction with C-class functions for metric space
mapping pair.
2 Preliminaries
Definition 2.1. [11] Let ζ: [0,)×[0,)Rbe
a mapping. Then ζis called a simulation function if
it satisfies the following conditions:
(ζ1): ζ(0,0) = 0;
(ζ2): ζ(v, u)< u vfor all u, v > 0;
(ζ2): if {vn},{un}are sequence in (0,)such
that lim
n→∞ vn=lim
n→∞ un>0,then
lim sup
n→∞
ζ(vn, un)<0.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.86
Chuanpit Mungkala, Pheerachate Bunpatcharacharoen
E-ISSN: 2224-2880
756
Volume 21, 2022
1CHUANPIT MUNGKALA, 2PHEERACHATE BUNPATCHARACHAROEN
Department of Mathematics, Faculty of Science and Technology
Rambhai Barni Rajabhat University, Chanthaburi 22000, THAILAND
1chuanpit.t@rbru.ac.th, 2pheerachate.b@rbru.ac.th
Argoubi et al. [14] applying innovative the sim-
ulation function definition by omitting the condition
(ζ1).
Definition 2.2. [14] A simulation function is a map-
ping ζ: [0,)×[0,)Rsatisfying the following
conditions:
(ζ2): ζ(v, u)< u v,u, v > 0;
(ζ
3): if {vn},{un}are sequence in (0,)such that
lim
n→∞ vn=lim
n→∞ un>0,and vn< unthen
lim supn→∞ ζ(vn, un)<0.
Definition 2.3. [12] Let , d)be a metric space, :
ΥΥa mapping and ζZ. Then is called a
generalized Z-contraction with respect to ζif
ζ(d(Ωω, ρ),Θ(ω, ρ)) 0for all ω, ρ Υ,
where
Θ(ω, ρ) = max d(ω, ρ), d(ω, ω), d(ρ, ρ),
d(ω, ρ) + d(ρ, ω)
2.
Padcharoen et al. [15] on the other hand de-
fined generalized Suzuki type Z-contraction on met-
ric spaces as follows.
Definition 2.4. [15] Let , d)be a metric space, :
ΥΥa mapping and ζZ. Then is called a
generalized Suzuki type Z-contraction with respect to
ζif
1
2(d(ω, ω)< d(ω, ρ)ζ(d(Ωω, ρ),Θ(ω, ρ)) 0
for all distinct ω, ρ Υ, where
Θ(ω, ρ) = max d(ω, ρ), d(ω, ω), d(ρ, ρ),
d(ω, ρ) + d(ρ, ω)
2.
Definition 2.5. [16] A mapping G: [0,)2Rhas
the property CG, if there exists CG0such that
(G1): G(u, v)>CGimplies u > v;
(G2): G(u, v) CGfor all v[0,).
Definition 2.6. [17] ACGsimulation function is a
mapping G: [0,)×[0,)Rsatisfying the fol-
lowing conditions:
(i): ζ(v, u)<G(u, v)for all v, u > 0,where G:
[0,)[0,)×[0,)Ris a C-class function;
(ii): if {vn},{un}are sequence in (0,)such that
lim
n→∞ vn=lim
n→∞ un>0, and vn< un,then
lim sup
n→∞
ζ(vn, un)<CG.
Lemma 2.7. [18] Let , d)be a metric space and let
{ωn}be a sequence in Υsuch that
lim
n→∞ d(ω2n, ω2n+1) = 0.
If {xn}is not a Cauchy sequence in Υ, then there ex-
ists ϵ > 0and two sequence ωm(k)and ωn(k)of pos-
itive integers such that ωn(k)> ωm(k)> k and the
following sequence tend to ϵwhen k :
d(ωm(k), ωn(k)), d(ωm(k), ωn(k)+1), d(ωm(k)1, ωn(k)),
d(ωm(k)1, ωn(k)+1), d(ωm(k)+1, ωn(k)+1).
For a non-empty set Υ, let P(Υ) denotes the power
set of Υ. If , d)is a metric space, then let
N(Υ) = P(Υ) {∅},
CB(Υ) = {AN(Υ) : Ais closed and bounded},
K(Υ) = {AN(Υ) : Ais compact}.
Definition 2.8. [19] Let Υbe a non empty set, :
ΥN(Υ) and α: Υ ×Υ[0,)be two map-
pings. Then is said to be an α-admissible whenever
for each ωΥand ρω,
α(ω, ρ)1α(ρ, η)1for all ηρ.
Definition 2.9. [20] Let Υbe a nonempty set, :
ΥN(Υ) and α: Υ ×Υ[0,)be two map-
pings. Then is said to be triangular α-admissible if
is α-admissible and
α(ω, ρ)1and α(ρ, η)1
α(ω, η)1for all ηρ.
Lemma 2.10. [20] Let : Υ N(Υ) be a triangu-
lar α-admissible mapping. Assume that there exists
ω0Υand ω1ω0such that α(ω0, ω1)1.
Then for a sequence {ωn}such that ωn+1 ωn,we
have α(ωn, ωm)1for all m, n Nwith n < m.
Definition 2.11. [21] Let , d)be a metric space, α:
Υ×Υ[0,)and : Υ K(Υ) mappings. Then
is said to be an α-continuous multivalued mapping
on (K(Υ),H),if for all sequences {ωn}with ωn
ωΥas n ,and α(ωn, ωn+1)1for all
nN,we have ωnωas n ,that is,
lim
n→∞ d(ωn, ω) = 0 and α(ωn, ωn+1)1
for all nNlim
n→∞ H(Ωωn,ω) = 0.
Definition 2.12. [22] Let , d)be a metric space,
α: Υ ×Υ[0,).The metric space , d)is said
to be α-complete if and only if every Cauchy sequence
{ωn}with α(ωn, ωn+1)1for all nNconverges
in Υ.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.86
Chuanpit Mungkala, Pheerachate Bunpatcharacharoen
E-ISSN: 2224-2880
757
Volume 21, 2022
3 Main Result
Now we state our main results.
Definition 3.1. Let , d)be a metric space and
,Λ : Υ K(Υ) and α: Υ ×Υ[0,1) be a
function. We say is Z(α,G)multivalued almost type
contraction with respect to ζsuch that
ζ(α(ω, ρ)H(Ωω, Λρ), β()) CG(2)
for all ω, ρ Υwith ω=ρand L 0,where
= Θ(ω, ρ) + LΨ(ω, ρ)
with
Θ(ω, ρ) = max d(ω, ρ), D(ω, ω), D(ρ, Λρ),
D(ω, Λρ) + D(ρ, ω)
2
and
Ψ(ω, ρ) = min D(ω, ω), D(ρ, Λρ),
D(ω, Λρ), D(ρ, ω).
Definition 3.2. Let , d)be a metric space and
,Λ : Υ K(Υ) and α: Υ ×Υ[0,1) be a
function. We say is Z(α,G)Suzuki multivalued al-
most type contraction with respect to ζif
1
2min{D(ω, ω), D(ρ, Λρ)}< d(ω, ρ)
ζ(, β()) CG
(3)
for all ω, ρ Υwith ω= Λρand L 0,where
=α(ω, ρ)H(Ωω, Λρ),
= Θ(ω, ρ) + LΨ(ω, ρ)
with
Θ(ω, ρ) = max d(ω, ρ), D(ω, ω), D(ρ, Λρ),
D(ω, Λρ) + D(ρ, ω)
2
and
Ψ(ω, ρ) = min D(ω, ω), D(ρ, Λρ),
D(ω, Λρ), D(ρ, ω).
Theorem 3.3. Let , d)be a metric space and ,Λ :
ΥK(Υ) be Z(α,G)Suzuki almost type multivalued
contraction satisfying:
(i) , d)is an α-complete metric space;
(ii) ,Λare triangular α-admissible;
(iii) ,Λare an α-continuous multivalued mapping.
Then and Λhave a common fixed point.
Proof. Let ω0Υ. Choose ω1ω0. Then by the
definition of Hausdorff metric there exists ω2Λω1
such that
0< d(ω1, ω2)
=D(ω1,Λω1)
α(ω0, ω1)H(Ωω0,Λω1).
(4)
Assume that D(ω0,ω0)>0and D(ω1,Λω1)>0
then
1
2min {D(ω0,ω0), D(ω1,Λω1)}< d(ω0, ω1).
Therefore from (3), we have
1
2min{D(ω0,ω0), D(ω1,Λω1)}< d(ω0, ω1)
ζ(0, β(0)0) CG,
where 0=α(ω0, ω1)H(Ωω0,Λω1)and 0=
Θ(ω0, ω1) + LΨ(ω0, ω1).
Consider
CGζ(0, β(0)0)
<G(β(0)0,0).(5)
Consequently, we get
d(ω1, ω2)0< β(0)0,(6)
where
Θ(ω0, ω1)
=max d(ω, ω1), D(ω0,ω0), D(ω1,Λω1),
D(ω0,Λω1) + D(ω1,ω0)
2
max d(ω0, ω1), d(ω0, ω1), d(ω1, ω2),
d(ω0, ω2) + d(ω1, ω1)
2
=max d(ω0, ω1), d(ω1, ω2),d(ω0, ω2)
2.
Because
d(ω0, ω2)
2d(ω0, ω1) + d(ω2, ω1)
2
max {d(ω0, ω1), d(ω1, ω2)}.
Thus,
Θ(ω0, ω1)max {d(ω0, ω1), d(ω1, ω2)}
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.86
Chuanpit Mungkala, Pheerachate Bunpatcharacharoen
E-ISSN: 2224-2880
758
Volume 21, 2022
and
Ψ(ω0, ω1)
=min{D(ω0,ω0), D(ω1,Λω1),
D(ω0,Λω1), D(ω1,ω0)}
=min{d(ω0, ω1), d(ω1, ω2), d(ω0, ω2),
d(ω1, ω1)}
= 0.
If max {d(ω0, ω1), d(ω1, ω2)}=d(ω1, ω2)and
Ψ(ω0, ω1) = 0,then (6) becomes
d(ω1, ω2)α(ω0, ω1)H(Ωω0,Λω1)
< β(d(ω1, ω2))d(ω1, ω2),(7)
obtain that
d(ω1, ω2)α(ω0, ω1)H(Ωω0,Λω1)< d(ω1, ω2),
which is a contradiction. Thus we conclude that
max {d(ω0, ω1), d(ω1, ω2)}=d(ω0, ω1).
By (6) we get
d(ω1, ω2)< d(ω0, ω1).
Similarly, for ω2Λω1and ω3ω2we have
d(ω2, ω3)α(ω1, ω2)Hω1,ω2)< d(ω1, ω2).
This implies
d(ω2, ω3)< d(ω1, ω2).
By continuing in this manner, we construct a sequence
{ωn}in Υsuch that ω2n+1 ω2nand ω2n+2
Λω2n+1, n = 0,1,2, ... such that
0< d(ω2+1, ω2n+2)
=D(ω2n+1,Λω2n+1)
α(ω2n, ω2n+1)H(Ωω2n,Λω2n+1)
and
1
2min {D(ω2n,ω2n), D(ω2n+1,Λω2n+1)}
< d(ω2n, ω2n+1).
Hence from (3), we have
1
2min {D(ω2n,ω2n), D(ω2n+1,Λω2n+1)}
< d(ω2n, ω2n+1)ζ(2n, β(2n)2n) CG,
where 2n=α(ω2n, ω2n+1)H(Ωω2n,Λω2n+1)and
2n= Θ(ω2n, ω2n+1) + LΨ(ω2n, ω2n+1).
Consider
CGζ(2n, β(2n)2n)
<G(β(2n)2n,2n).(8)
Consequently, we get
d(ω2n+1, ω2n+2)2n< β(2n)2n,(9)
where
Θ(ω2n, ω2n+1)
=max d(ω2n, ω2n+1), D(ω2n,ω2n),
D(ω2n+1,Λω2n+1),
D(ω2n,Λω2n+1) + D(ω2n+1,ω2n)
2
max d(ω2n, ω2n+1), d(ω2n, ω2n+1),
d(ω2n+1, ω2n+2),
d(ω2n, ω2n+2) + d(ω2n+1, ω2n+1)
2
=max d(ω2n, ω2n+1), d(ω2n+1, ω2n+2),
d(ω2n, ω2n+2)
2.
Because
d(ω2n, ω2n+2)
2
d(ω2n, ω2n+1) + d(ω2n+2, ω2n+1)
2
max {d(ω2n, ω2n+1), d(ω2n+1, ω2n+2)}.
Thus,
Θ(ω2n, ω2n+1)
max {d(ω2n, ω2n+1), d(ω2n+1, ω2n+2)}
and
Ψ(ω2n, ω2n+1)
=min D(ω2n,ω2n), D(ω2n+1,Λω2n+1),
D(ω2n,Λω2n+1), D(ω2n+1,ω2n)
=min d(ω2n, ω2n+1), d(ω2n+1, ω2n+2),
d(ω2n, ω2n+2), d(ω2n+1, ω2n+1)
= 0.
If max {d(ω2n, ω2n+1), d(ω2n+1, ω2n+2)}=
d(ω2n+1, ω2n+2)and Ψ(ω2n, ω2n+1)=0,then
(9) becomes
d(ω2n+1, ω2n+2)
α(ω2n, ω2n+1)H(Ωω2n,Λω2n+1)
< β(d(ω2n+1, ω2n+2))d(ω2n+1, ω2n+2),
(10)
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.86
Chuanpit Mungkala, Pheerachate Bunpatcharacharoen
E-ISSN: 2224-2880
759
Volume 21, 2022
obtain that
d(ω2n+1, ω2n+2)α(ω2n, ω2n+1)H(Ωω2n,Λω2n+1)
< d(ω2n+1, ω2n+2),
which is a contradiction. Thus we conclude that
max {d(ω2n, ω2n+1), d(ω2n+1, ω2n+2)}
=d(ω2n, ω2n+1).
By (10) we get
d(ω2n+1, ω2n+2)< d(ω2n, ω2n+1).
Then from (10) we have
d(ω2n+2, ω2n+3)
α(ω2n+1, ω2n+2)H(Ωω2n+1,Λω2n+2)
< d(ω2n+1, ω2n+2).
This implies
d(ω2n+2, ω2n+3)< d(ω2n+1, ω2n+2).(11)
Thus d(ωn+1, ωn+2)< d(ωn, ωn+1)for all n. Hence
{d(ωn, ωn+1)}is a strictly decreasing sequence of
non-negative real numbers. Thus there exists Z0
such that lim
n→∞ d(ωn, ωn+1) = Z.
Assume that Z > 0.So by inequality (8) we obtain,
lim
n→∞ 2n=Z(12)
and
lim
n→∞ β(2n)2n=Z. (13)
Using (2) and (G2) of Definition 2.5, get
CGlim sup
n→∞
ζ(2n, β(2n)2n)
=lim sup
n→∞
ζ(2n, β(d(ω2n, ω2n+1))d(ω2n, ω2n+1))
<CG,
which is a contradiction and nence z= 0, i.e.,
lim
n→∞ d(ωn, ωn+1) = 0.(14)
We now show that {ωn}is a Cauchy sequence. As-
sume, however, that it is not a Cauchy sequence. We
suppose that ϵ > 0exists, as well as two sequences of
positive integers, {n(k)}and {m(k)}such that
n(k)> m(k)> k, d(ωn(k), ωm(k))ϵ,
d(ωn(k)1, ωm(k))< ϵ. (15)
We obtain using the triangular inequality
ϵd(ωn(k), ωm(k))
d(ωn(k), ωm(k)1) + d(ωn(k)1, ωm(k))
< d(ωn(k), ωn(k)1) + ϵ.
Taking the limit as k and applying (14), we get
that lim
k→∞ d(ωn(k), ωm(k)) = ϵ. (16)
Using the triangle inequlity, we have
ϵd(ωn(k), ωm(k))
d(ωn(k), ωm(k)+1) + d(ωn(k)+1, ωm(k))
and
d(ωn(k), ωm(k)+1)
d(ωn(k), ωm(k)) + d(ωm(k), ωm(k)+1).
Again, by taking the limit as k and using (11),
(12) and (13), we get
lim
k→∞ d(ωn(k), ωm(k)+1) = ϵ. (17)
Similarly, we obtain
lim
k→∞ d(ωn(k)+1, ωm(k)) = ϵ. (18)
Also, we observe that
d(ωn(k)+1, ωm(k)+1)
d(ωn(k)+1, ωm(k)) + d(ωm(k), ωm(k)+1)
and
d(ωn(k)+1, ωm(k)+1)
d(ωn(k)+1, ωm(k)+1) + d(ωm(k), ωm(k)).
By taking the limit k and using (12), (13), (14)
and (16), we get
lim
n→∞ d(ωn(k)+1, ωm(k)+1) = ϵ. (19)
From (14) and (15) we can choose a positive integer
n01such that
1
2D(ωn(k),ωn(k)), D(ωm(k),Λωm(k))<ϵ
2
< d(ωn(k), ωm(k))
and consequently,
lim
k→∞ Θ(ωm(k), ωn(k)) = ϵ. (20)
Since α(ω0,ω0)1and ,Λare α-admissile, we
get
α(ω0, ω1) = α(ω0,ω0)1.
By triangular α-admissile, we get
α(Ωω0,Λω1) = α(ω1, ω2)1
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.86
Chuanpit Mungkala, Pheerachate Bunpatcharacharoen
E-ISSN: 2224-2880
760
Volume 21, 2022
and
α(ΛΩω0,ΩΛω1) = α(ω2, ω3)1.
By proceeding the above process, we conclude that
α(ωn, ωn+1)1for all nNow, we prove that
α(ωn, ωn+1)1, for all m, n Nwith n<m.
Since α(ωn, ωn+1)1,
α(ωn+1, ωn+2)1,
then, we have
α(ωn, ωn+2)1.
Again, since
α(ωn, ωn+2)1,
α(ωn+2, ωn+3)1,
we deduce that
α(ωn, ωn+3)1.
By proceeding this process, we have
α(ωn, ωm)1
for all m, n Nwith m > n. Let ω=ωm(k), ρ =
ωn(k). from above we obtain α(ωn, ωm)1. Then
by 2.1,
CGζ(m(k), β(m(k))m(k))
<G(β(m(k))m(k),m(k)),
where m(k)=α(ωm(k), ωn(k))H(Ωωm(k),Λωn(k))
and m(k)= Θ(ωm(k), ωn(k)) + LΨ(ωm(k), ωn(k)).
Here Θ(ωm(k), ωn(k)) = d(ωm(k), ωn(k)), by (G1),
we get
d(ωm(k), ωn(k))
m(k)
< β(m(k))m(k)
<m(k)
=d(ωm(k), ωn(k)) + LΨ(ωm(k), ωn(k)).
(21)
Using (16), (15) and limn→∞ Ψ(ωm(k), ωn(k)) = 0 in
(21), we get
lim
k→∞ α(ωm(k), ωn(k))H(Ωωm(k),Λωn(k)) = ϵ,
and lim
k→∞ β(m(k))m(k)=ϵ,
where m(k)= Θ(ωm(k), ωn(k)) +
LΨ(ωm(k), ωn(k)). Therefore using (3.1)
and (ζ2) of Definition 2.2, putting m(k)=
α(ωm(k), ωn(k))H(Ωωm(k),Λωn(k))and m(k)=
Θ(ωm(k), ωn(k)) + LΨ(ωm(k), ωn(k)), we get
CGζ(m(k), β(m(k))m(k))<CG,
which is a contradiction. As a result, {ωn}is a
Cauchy sequence. Because Υis complete, we can
guarantee that {ωn}convergence to some ωΥ,
i.e.,
lim
n→∞ d(ωn, ω) = 0
and so
lim
n→∞ d(ωn, ω) = lim
n→∞ d(ω2n, ω)
=lim
n→∞ d(ω2n+1, ω) = 0.(22)
We now assert that
1
2min {D(ωn,ωn), D(ω,Λω)}< d(ωn, ω)
or
1
2min {D(ω,ω), D(ωn+1,Λωn+1)}
< d(ω, ωn+1)
(23)
for all nN. Suppose that it is not the case. Then
there exist mNsuch that
1
2min {D(ωm,ωm), D(ω,Λω)} d(ωm, ω)
(24)
and
1
2min {D(ω,ω), D(ωm+1,Λωm+1)}
d(ω, ωm+1).
(25)
Therefore
2d(ωm, ω)
min {D(ωm,ωm), D(ω,Λω)}
min {d(ωm, ω) + D(ω,ωm), D(ω,Λω)}
d(ωm, ω) + D(ω,ωm)
d(ωm, ω) + d(ω, ωm+1),
which implies that
d(ωm, ω)d(ω, m+1).(26)
From (23) and (24)
d(ωm, ω)
d(ωm+1, ω)
1
2min {D(ω,ω), D(ωm+1,Λωm+1)}.
(27)
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.86
Chuanpit Mungkala, Pheerachate Bunpatcharacharoen
E-ISSN: 2224-2880
761
Volume 21, 2022
Since 1
2min {D(ωm,ωm), D(ω,Λω)}<
d(ωm, ωm+1), from (2) we have
CGζ(m, β(m)m)
<G(β(m)m,m),
where m=α(ωm, ωm+1)H(Ωωm,Λωm+1)and
m= Θ(ωm, ωm+1) + LΨ(ωm, ωm+1).
Consequently, we get
d(ωm+1, ωm+2)m< β(m)m<m,(28)
where
Θ(ωm, ωm+1)
=max d(ωm, ωm+1)D(ωm,ωm),
D(ωm+1,Λωm+1),
D(ωm,Λωm+1) + D(ωm+1,ωm)
2
max d(ωm, ωm+1), d(ωm, ωm+1),
d(ωm+1, ωm+2),
d(ωm, ωm+2) + d(ωm+1, ωm+1)
2
=max d(ωm, ωm+1), d(ωm+1, ωm+2),
d(ωm, ωm+2)
2.
Since
d(ωm, ωm+2)
2d(ωm, ωm+1) + d(ωm+1, ωm+2)
2
max {d(ωm, ωm+1), d(ωm+1, ωm+2)}.
Thus,
Θ(ωm, ωm+1)max {d(ωm, ωm+1), d(ωm+1, ωm+2)}.
Also,
Ψ(ωm, ωm+1) = 0.
Suppose that max {d(ωm, ωm+1), d(ωm+1, ωm+2)}=
d(ωm+1, ωm+2),then from (28) we have
d(ωm+1, ωm+2)< d(ωm+1, ωm+2),
which is a contradiction. Thus we conclude that
max {d(ωm, ωm+1), d(ωm+1, ωm+2)}=d(ωm, ωm+1).
From (26) we get that
d(ωm+1, ωm+2)< d(ωm, ωm+1).(29)
From (27), (28) and (29), we get
d(ωm+1, ωm+2)
< d(ωm, ωm+1)
d(ωm, ω) + d(ω, ωm+1)
1
2min {D(ω,ω), D(ωm+1,Λωm+1)}
+1
2min {D(ω,ω), D(ωm+1,Λωm+1)}
=min {D(ω,ω), D(ωm+1,Λωm+1)}
d(ωm+1, ωm+2),
which is a contradiction. Hence (25) holds, i.e., for
every n2
1
2min {D(ωn,ωn), D(ω,Λω)< d(ωn, ω)}
holds. Hence from (3)
CGζ(n, β(n)n)
<G(β(n)n,n),(30)
where n=α(ωn, ω)H(Ωωn,Λω)and n=
Θ(ωn, ω) + LΨ(ωn, ω).
Consequently, we get
D(ωn+1,Λω)n<n,(31)
where
Θ(ωn, ω)
=max d(ωm, ω)D(ωn,ωn), D(ω,Λω),
D(ωn,Λω) + D(ω,ωn)
2
max d(ωn, ω), d(ωn, ωn+1), D(ω,Λω),
D(ωn,Λω) + d(ω, ωn+1)
2
and
Ψ(ωn, ω)
=min{D(ωn,ωn), D(ω,Λω),
D(ωn,Λω), D(ω,ωn)}
=min{d(ωn, ωn+1), D(ω,Λω),
D(ωn,Λω), D(ω,ωn)}.
Letting n and by using (14) and (22), we obtain
lim
n→∞ Θ(ωn, ω) = D(ω,Λω),
lim
n→∞ Ψ(ωn, ω) = 0.(32)
Now we show that ωΛω. Suppose, on the other
hand, that D(ω,Λω)>0.By allowing n in
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.86
Chuanpit Mungkala, Pheerachate Bunpatcharacharoen
E-ISSN: 2224-2880
762
Volume 21, 2022
(31), we obtain
D(ω,Λω)
=lim
n→∞ D(ωn+1,Λω)
lim
n→∞ α(ωn, ω)H(Ωωn,Λω)
<lim
n→∞ Θ(ωn, ω) + Llim
n→∞ Ψ(ωn, ω)
=D(ω,Λω),
which is a contradiction. Therefore ωΛω.
Similarly, we can show that ωω. Thus and
Λhave a common fixed point.
Corollary 3.4. Let , d)be a complete metric space
and Ω:Υ CB(Υ) be a generalized multivalued
Suzuki type Z-contraction with respect to ζ, i.e.,
1
2min{D(ω, ω), D(ρ, Λρ)}< d(ω, ρ)
ζ(H(Ωω, Λρ),Θ(ω, ρ)) 0for all ω, ρ Υ,
where
Θ(ω, ρ) = max d(ω, ρ), D(ω, ω), D(ρ, Λρ),
D(ω, Λρ) + D(ρ, ω)
2.
Then and Λhave a common fixed point.
Proof. The proof follows from Theorem 3.3 by taking
α(ω, ρ) = 1, β(v) = vand Ψ(ω, ρ) = 0.
Example 3.5. Let Υ = {0,3,5}be endowed with the
usual metric. Let ,Λ : Υ CB(Υ) be defined by
ω=ω
7if ω {0,5}
0,1
7if ω = 3,
and Λω=ω
5for all ωΥ.
We now define ζ: [0,)×[0,)Rby ζ(v, u) =
6
7uvfor all u, v [0,)]. We can now confirm the
inequality (2) for all ω, ρ Υwith ω= Λρ. Note
that for all ω, ρ Υwith ω= Λρthe inequality
1
2min {D(ω, ω), D(ω, Λω)}< d(ω, ρ)gives
(ω, ρ) {(0,3),(3,0),(0,5),(5,0),(3,5),(5,3)}.
Then from (2), we have
ζ(H(Ωω, Λρ),Θ(ω, ρ)) = 6
7Θ(ω, ρ) H(Ωω, Λρ)0.
That implies that
H(Ωω, Λρ)6
7Θ(ω, ρ).
Case (i) for ω= 0, ρ = 3;
H(Ω0,Λ3) = H({0},3
5) = 3
56
7Θ(0,3).
Case (ii) for ω= 3, ρ = 0;
H(Ω3,Λ0) = H(0,1
7,{0}) = 1
76
7Θ(3,0).
Case (iii) for ω= 0, ρ = 5;
H(Ω0,Λ5) = H({0},{1}) = 1 6
7Θ(0,5).
Case (iv) for ω= 5, ρ = 0;
H(Ω5,Λ0) = H(5
7,{0}) = 5
76
7Θ(5,0).
Case (v) for ω= 3, ρ = 5;
H(Ω3,Λ5) = H(0,1
7,{1}) = 1 6
7Θ(3,5).
Case (v) for ω= 5, ρ = 3;
H(Ω5,Λ3) = H(5
7,3
5) = 5
76
7Θ(5,3).
That all of the hypotheses in Corollary 3.4 are met. As
a result, 0is a common fixed point owned by and
Λ.
Corollary 3.6. Let , d)be a complete metric space
and Ω:Υ CB(Υ) be a generalized multivalued
Suzuki type Z-contraction with respect to ζ, i.e.,
1
2D(ω, ω)< d(ω, ρ)
ζ(H(Ωω, ρ),Θ(ω, ρ)) 0,
(33)
for all ω, ρ Υwith ω=ρ, where
Θ(ω, ρ) = max d(ω, ρ), D(ω, ω), D(ρ, ρ),
D(ω, ρ) + D(ρ, ω)
2.
Then has a fixed point ωΥand for ωΥthe
sequence {nω}convergences to ω.
Proof. The proof follows from Theorem 3.3 by taking
= Λ.
4 Conclusion
Despite its novel applications, the search for fixed
point theorems involving contraction type conditions
has received much interest in recent decades. In this
context, we analyzed convergence point results for
such mappings and illustrative for support theorem
based on the new idea of Suzuki type Z-contraction
mappings obeying an admissibility type condition
in generalized metric spaces via the concept of C-
functions.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.86
Chuanpit Mungkala, Pheerachate Bunpatcharacharoen
E-ISSN: 2224-2880
763
Volume 21, 2022
Acknowledgment
This project was supported by the Research and De-
velopment Institute, Rambhai Barni Rajabhat Univer-
sity (Grant no.2214/2565).
References:
[1] S. Banach, Sur les opérations dans les ensem-
bles abstraits et leur application aux equations
intégrales, Fund. Math. 3:133-181, 1922.
[2] S.B. Nadler, Jr., Multi-valued contraction map-
pings, Pacific J. Math., 30:475-488, 1969.
[3] A. Padcharoen, J.K. Kim, Berinde type results
via simulation functions in metric spaces. Non-
linear Functional Analysis and Applications,
25(3): 511-523, 2020.
[4] D. Jain, A. Padcharoen, P. Kumam, D. Gopal,
A new approach to study fixed point of multi-
valued mappings in modular metric spaces and
applications. Mathematics, 4(3):51, 2016.
[5] H. Aydi, M. Abbas, C. Vetro, Partial Haus-
dorff metric and Nadler’s fixed point theo-
rem on partial metric spaces, Topology Appl.,
159(14):3234-3242, 2012.
[6] M. Berinde, V. Berinde, On a general class of
multi-valued weakly Picard mappings. J. Math.
Anal. Appl., 326(2):772-782, 2007.
[7] W. Cholamjiak, P. Cholamjiak, S. Suantai, Con-
vergence of iterative schemes for solving fixed
point of multi valued nonself mappings and
equilibrium problems. J. Nonlinear Sci. Appl.,
8:1245-1256, 2015.
[8] D. Kitkuan, P. Bunpatcharacharoen, Coinci-
dence point theorems for multi-valued mapping
b-metric spaces via digraphs. Advances in Math-
ematics: Scientific Journal, 10(6):2785-2797,
2021.
[9] V. Berinde, Approximating fixed points of weak
contractions using the Picard iteration, Nonlin-
ear. Anal. Forum., 9(1):43-53, 2004.
[10] T. Zamfirescu, Fix point theorems in metric
spaces, Arch. Math., (Basel) 23:292-298, 1972.
[11] F. Khojasteh, S. Shukla, S. Radenović, A new
approach to the study of fixed point theory for
simulation functions, Filomat, 29(6):1189-1194,
2015.
[12] M. Olgun, Ö. Biçer, T. Alyıldız, A new aspect
to Picard operators with simulation functions,
Turkish J. Math. 40(6):832-837, 2016.
[13] S. Chandok, A. Chanda, L.K. Dey, M. Pavlović,
S. Radenović, Simulation Functions and Ger-
aghty Type Results, Bol. Soc. Paran. Mat.
39(1):35-50, 2021.
[14] H. Argoubi, B. Samet, C. Vetro, Nonlinear con-
tractions involving simulation functions in a
metric space with a partial order, J. Nonlinear
Sci. Appl., 8(6): 1082-1094, 2015.
[15] A. Padcharoen, P. Kumam, P. Saipara,
P. Chaipunya, Generalized Suzuki type
Z-contraction in complete metric spaces,
Kragujevac J. Math. 42(3):419-430, 2018.
[16] A.H. Ansari, H. Isik, S. Radenović, Coupled
fixed point theorems for contractive mappings
involving new function classes and applications.
Filomat, 31:1893-1907, 2017.
[17] X. Liu, A.H. Ansari, S. Chandok, S. Radenović,
On some results in metric spaces using auxiliary
simulation functions via new functions, J. Com-
put. Anal. Appl., 24:1103-1114, 2018.
[18] S. Radenović, S. Chandok. Simulation type
functions and coincidence points. Filomat,
32(1):141-147, 2018.
[19] B. Mohammadi, S. Rezapour, N. Shahzad,
Some results on fixed points of α-ψ-Ciric gen-
eralized multifunctions, Fixed Point Theo. Appl.
24,2013.
[20] D.K. Patel, Fixed points of multivalued contrac-
tions via generalized class of simulation func-
tions, Bol. Soc. Paran. Mat., 38:161-179, 2020.
[21] M.A. Kutbi, W. Sintunavarat, On new fixed
point results for (α, ψ, ζ)-contractive multival-
ued mappings on α-complete metric spaces and
their consequences, Fixed Point Theo. and Appl.
2015.
[22] N. Hussain, M.A. Kutbi, P. Salimi, Fixed point
Theory in α-complete metric spaces with ap-
plications, Abstract and Applied Analysis 2014,
Article ID. 280817.
Creative Commons Attribution
License 4.0 (Attribution 4.0
International , CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.86
Chuanpit Mungkala, Pheerachate Bunpatcharacharoen
E-ISSN: 2224-2880
764
Volume 21, 2022