
[5] W. Zhang and J. S. L. Lam, “Maritime cluster
evolution based on symbiosis theory and
Lotka–Volterra model,” Maritime Policy &
Management, vol. 40, no. 2, pp. 161–176,
2013.
[6] W. Windarto and E. Eridani, “On
modification and application of Lotka-
Volterra competition model,” in Aip
conference proceedings, 2020, vol. 2268, p.
050007.
[7] S.-Y. Wang, W.-M. Chen, and X.-L. Wu,
“Competition analysis on industry populations
based on a three-dimensional lotka–volterra
model,” Discrete Dynamics in Nature and
Society, vol. 2021, 2021.
[8] M. A. Khan, M. Azizah, S. Ullah, and others,
“A fractional model for the dynamics of
competition between commercial and rural
banks in Indonesia,” Chaos, Solitons &
Fractals, vol. 122, pp. 32–46, 2019.
[9] P. A. Montagna, A. L. Sadovski, S. A. King,
K. K. Nelson, T. A. Palmer, and K. H.
Dunton, “Modeling the effect of water level
on the Nueces Delta marsh community,”
Wetlands Ecol Manage, vol. 25, no. 6, pp.
731–742, Dec. 2017, doi: 10.1007/s11273-
017-9547-x.
[10] Q. Chen, R. Han, F. Ye, and W. Li, “Spatio-
temporal ecological models,” Ecological
Informatics, vol. 6, no. 1, pp. 37–43, Jan.
2011, doi: 10.1016/j.ecoinf.2010.07.006.
[11] Y. R. Zelnik, J.-F. Arnoldi, and M. Loreau,
“The Impact of Spatial and Temporal
Dimensions of Disturbances on Ecosystem
Stability,” Frontiers in Ecology and
Evolution, vol. 6, 2018, Accessed: Jul. 30,
2022. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/f
evo.2018.00224
[12] A. Alhasanat and C. Ou, “Minimal-speed
selection of traveling waves to the Lotka–
Volterra competition model,” Journal of
Differential Equations, vol. 266, no. 11, pp.
7357–7378, May 2019, doi:
10.1016/j.jde.2018.12.003.
[13] M. K. A. Gavina et al., “Multi-species
coexistence in Lotka-Volterra competitive
systems with crowding effects,” Sci Rep, vol.
8, no. 1, p. 1198, Dec. 2018, doi:
10.1038/s41598-017-19044-9.
[14] P. Zhou, “On a Lotka-Volterra competition
system: diffusion vs advection,” Calc. Var.,
vol. 55, no. 6, p. 137, Oct. 2016, doi:
10.1007/s00526-016-1082-8.
[15] X.-Q. Zhao and P. Zhou, “On a Lotka–
Volterra competition model: the effects of
advection and spatial variation,” Calc. Var.,
vol. 55, no. 4, p. 73, Jun. 2016, doi:
10.1007/s00526-016-1021-8.
[16] V. Dakos, “Identifying best-indicator species
for abrupt transitions in multispecies
communities,” Ecological Indicators, vol. 94,
pp. 494–502, Nov. 2018, doi:
10.1016/j.ecolind.2017.10.024.
[17] T. Tahara et al., “Asymptotic stability of a
modified Lotka-Volterra model with small
immigrations,” Sci Rep, vol. 8, no. 1, Art. no.
1, May 2018, doi: 10.1038/s41598-018-
25436-2.
[18] M. Benaïm and C. Lobry, “Lotka–Volterra
with randomly fluctuating environments or
‘how switching between beneficial
environments can make survival harder,’” The
Annals of Applied Probability, vol. 26, no. 6,
pp. 3754–3785, Dec. 2016, doi: 10.1214/16-
AAP1192.
[19] M. Liu and M. Fan, “Permanence of
Stochastic Lotka–Volterra Systems,” J
Nonlinear Sci, vol. 27, no. 2, pp. 425–452,
Apr. 2017, doi: 10.1007/s00332-016-9337-2.
[20] S. Kumar, R. Kumar, R. P. Agarwal, and B.
Samet, “A study of fractional Lotka-Volterra
population model using Haar wavelet and
Adams-Bashforth-Moulton methods,”
Mathematical Methods in the Applied
Sciences, vol. 43, no. 8, pp. 5564–5578, 2020,
doi: 10.1002/mma.6297.
[21] K. Devarajan, T. L. Morelli, and S. Tenan,
“Multi‐species occupancy models: review,
roadmap, and recommendations,” Ecography,
vol. 43, no. 11, pp. 1612–1624, Nov. 2020,
doi: 10.1111/ecog.04957.
[22] F. Boschetti et al., “Setting priorities for
conservation at the interface between ocean
circulation, connectivity, and population
dynamics,” Ecol Appl, vol. 30, no. 1, Jan.
2020, doi: 10.1002/eap.2011.
[23] S.-S. Baek, Y. S. Kwon, J. Pyo, J. Choi, Y. O.
Kim, and K. H. Cho, “Identification of
influencing factors of A. catenella bloom
using machine learning and numerical
simulation,” Harmful Algae, vol. 103, p.
102007, Mar. 2021, doi:
10.1016/j.hal.2021.102007.
[24] B. C. T. Cabella, A. S. Martinez, and F.
Ribeiro, “Full analytical solution and
complete phase diagram analysis of the
Verhulst-like two-species population
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.85
Maria Vasilyeva, Youwen Wang,
Sergei Stepanov, Alexey Sadovski