problems, Journal of the Egyptian
Mathematical Society, Vol. 28, 2020, pp. 1-
11.
[5] U. M. Ascher, L. R. Petzoid, Computer
Methods for Ordinary Differential
Equations and Differential-Algebraic
Equations, SIAM, USA, 1998.
[6] I. G. Birta, O. Abou-Rabia, Parallel Block
Predictor-Corrector Methods for ODEs,
IEEE Transactions on Computers , Vol. 36,
No. 3, 1987, pp. 299-311.
[7] M. Bond, Convolutions the Weierstrass
approximation theorem, 2009.
[8] J. R. Dormand, Numerical methods for
differential equations, CRC Press, New
York, 1996.
[9] J. D. Faires, R. L. Burden, Numerical
Analysis, Initial-value problems for ODEs,
Brooks Cole, Dublin City University, 2012.
[10] S. O. Fatunla, Numerical methods for
initial value problems in ordinary
differential equations, Academic Press,
Inc., New York, 1988.
[11] H. M. Ijam, Z. B. Ibrahim, Z. A. Majid, N.
Senu, Stability analysis of a diagonally
implicit scheme of block backward
differentiation formula for stiff
pharmacokinetics models, Advances in
Difference Equations, Vol. 2020, 2020, pp.
1-22.
[12] Z. B. Ibrahim, K. I. Othman, S.
Mohammed, Implicit -point block
backward differentiation formula for
solving first-order stiff ODEs, Applied
Mathematics and Computation, Vol. 186,
No 1, 2007, pp. 558-565.
[13] S. N. Jator, On a class of hybrid methods
for , International Journal of
Pure and Applied Mathematics, Vol. 59,
No. 4, 2010, pp. 381-395.
[14] S. N. Jator, L. Lee, Implementing a
seventh-order linear multistep
method in a predictor-corrector mode
or block mode: which is more
efficient for the general second order
initial value problem, Springer Plus,
Vol. 3, 2014, p. 1-8.
[15] J. D. Lambert, Computational methods in
ordinary differential equations, John Wiley
& Sons, Inc., New York, 1973.
[16] J. D. Lambert, Numerical methods for
ordinary differential systems, John Wiley
& Sons, Inc., New York, 1991.
[17] P. M. Shankar, Differential equations: A
problem solving approach based on
MATLAB®, CRC Press, New York, 2018.
[18] H. Musa, M. B. Suleiman, F. Ismail, N.
Senu, Z. B. Ibrahim. An accurate block
solver for stiff initial value problems,
Applied Mathematics, Vol. 2013, 2013, pp.
1-11.
[19] H. Musa., M. B. Suleiman, F. Ismail, N.
Senu, Z. A. Majid, Z. B. Ibrahim, A new
fifth order implicit block method for
solving first order stiff ordinary differential
equations, Malaysian Journal of
Mathematical Sciences, Vol. 8, No S, 2014,
pp. 45-49.
[20] A. A. M. N. Nor, Z. B. Ibrahim, K. I.
Othman, M. Suleiman, Numerical solution
of first order stiff ordinary differential
equations using fifth order block backward
differential formulas, Sains Malaysiana,
Vol. 41, No. 4, 2012, pp. 489-492.
[21] A. A. Nasarudin, Z. B. Ibrahim, H. Rosali,
On the integration of stiff ODEs using
block backward differentiation formulas of
order six, Symmetry, Vol. 12, 2020, pp. 1-
13.
[22] J. G. Oghonyon, S. A. Okunuga, N. A
Omoregbe, O. O. Agboola, A
computational approach in estimating the
amount of pond and determining the long
time behavioural representation of pond
pollution, Global Journal of Pure and
Applied Mathematics, Vol. 11, No. 5, 2015,
pp. 2773-2786.
[23] J. G. Oghonyon, J. Ehigie, S. K. Eke,
Investigating the convergence of some
selected properties on block predictor-
corrector methods and it’s applications,
Journal of Engineering and Applied
Sciences, Vol. 11, No. 11, 2017, pp. 2402-
2408.
[24] J. G. Oghonyon, O. A. Adesanya, H.
Akewe, H. I. Okagbue, Softcode of multi-
processing Milne’s device for estimating
first-order ordinary differential equations,
Asian Journal of Scientific Research, Vol.
11, No. 4, 2018, pp. 553-559.
[25] J. G. Oghonyon, O. F. Imaga, P. O.
Ogunniyi, The reversed estimation of
variable step size implementation for
solving nonstiff ordinary differential
equations, International Journal of Civil
Engineering and Technology, Vol. 9, No.
8, 2018, pp. 332-340.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.70
Olasunmbo Olaoluwa Agboola,
Jimevwo Godwin Oghonyon, Temitope Abodunrin