Math. Biol. Neurosci., Vol. 2015, 2015, 19 pages.
[2] Chen F., Zhou Q., Lin S., Global stability of
symbiotic medel of commensalism and para-
sitism with harvesting in commensal populations.
WSEAS Trans. Math. Vol.21, 2022, pp. 424-432.
[3] Chen F., Chong Y., Lin S., Global stability of
a commensal symbiosis model with Holling II
functional response and feedback controls. Wseas
Trans. Syst. Contr. Vol.17, No. 1, 2022, pp. 279--
286.
[4] Han R., Xie X., et al, Permanence and glob-
al attractivity of a discrete pollination mutualism
in plant-pollinator system with feedback control-
s, Advances in Difference Equations, Vol.2016,
2016, Article number: 199.
[5] Yang L., Xie X., Chen F., et al, Permanence of
the periodic predator-prey-mutualist system, Ad-
vances in Difference Equations, Vol. 2015, 2015,
Article number: 331.
[6] Yang K., Miao Z., Chen F., et al, Influence
of single feedback control variable on an au-
tonomous Holling-II type cooperative system,
Journal of Mathematical Analysis and Applica-
tions, Vol.435, No.1, 2016, pp. 874-888.
[7] Xie X., Chen F., Xue Y., Note on the stability
property of a cooperative system incorporating
harvesting, Discrete Dyn. Nat. Soc., Vol. 2014,
2014, 5 pages.
[8] Han R., Chen F., Xie X., et al, Global stability of
May cooperative system with feedback control-
s, Advances in Difference Equations, Vol. 2015,
2015, pp. 1-10.
[9] Xue Y., Xie X., Chen F., et al. Almost period-
ic solution of a discrete commensalism system,
Discrete Dynamics in Nature and Society, Vol-
ume 2015, Article ID 295483, 11 pages.
[10] Miao Z., Xie X., Pu L., Dynamic behaviors of
a periodic Lotka-Volterra commensal symbiosis
model with impulsive, Commun. Math. Biol. Neu-
rosci., Vol. 2015, 2015, 15 pages.
[11] Wu R., Lin L., Zhou X., A commensal symbiosis
model with Holling type functional response, J.
Math. Computer Sci., Vol. 16, 2016, pp. 364-371.
[12] Xie X., Miao Z., Xue Y., Positive periodic solu-
tion of a discrete Lotka-Volterra commensal sym-
biosis model, Commun. Math. Biol. Neurosci.,
Vol. 2015, 2015, 10 pages.
[13] Xu, L., Xue Y., Xie X., Lin Q., Dynamic behav-
iors of an obligate commensal symbiosis mod-
el with Crowley-Martin functional responses. Ax-
ioms, Vol.11, No.6, 298.
[14] Liu Y., Xie X., Lin Q., Permanence, partial
survival, extinction, and global attractivity of a
nonautonomous harvesting Lotka-Volterra com-
mensalism model incorporating partial closure
for the populations, Advances in Difference E-
quations, Vol. 2018, 2018, Article ID 211.
[15] Deng H., Huang X., The influence of partial clo-
sure for the populations to a harvesting Lotka-
Volterra commensalism model, Commun. Math.
Biol. Neurosci., Vol. 2018, 2018, Article ID 10.
[16] Xue Y., Xie X., Lin Q., Almost periodic solu-
tions of a commensalism system with Michaelis-
Menten type harvesting on time scales, Open
Mathematics, Vol.17, No. 1, 2019, pp. 1503-
1514.
[17] Lei C., Dynamic behaviors of a stage-structured
commensalism system, Advances in Difference
Equations, Vol. 2018, 2018, Article ID 301.
[18] Lin Q., Allee effect increasing the final densi-
ty of the species subject to the Allee effect in a
Lotka-Volterra commensal symbiosis model, Ad-
vances in Difference Equations, Vol. 2018,2018,
Article ID 196.
[19] Chen B., Dynamic behaviors of a commensal
symbiosis model involving Allee effect and one
party can not survive independently, Advances
in Difference Equations, Vol. 2018, 2018, Article
ID 212.
[20] Wu R., Li L., Lin Q., A Holling type commen-
sal symbiosis model involving Allee effect, Com-
mun. Math. Biol. Neurosci., Vol. 2018, 2018, Ar-
ticle ID 6.
[21] Chen F., Xue Y., Lin Q., et al, Dynamic be-
haviors of a Lotka-Volterra commensal symbio-
sis model with density dependent birth rate, Ad-
vances in Difference Equations, Vol. 2018,2018,
Article ID 296.
[22] Han R., Chen F., Global stability of a com-
mensal symbiosis model with feedback controls,
Commun. Math. Biol. Neurosci., Vol. 2015, 2015,
Article ID 15.
[23] Chen F., Pu L. , Yang L., Positive periodic solu-
tion of a discrete obligate Lotka-Volterra model,
Commun. Math. Biol. Neurosci., Vol. 2015, 2015,
Article ID 14.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.64
Yanbo Chong, Shangming Chen, Fengde Chen