Then gand Mhave a unique coincidence point.
Proof. Let ϑ(t) = ∫t
0
χ(τ)dτ and ψ(t) =
∫t
0
φ(τ)dτ. Then, ϑ, ψ ∈Ψ. Thus, by Theorem 3.1,
gand Mhave a unique coincide fixed point.
Theorem 4.3. Let (Φ, µ)be a Hausdorff rectangular
metric space and let g, M: Φ →Φbe two self maps
such that M(Φ) ⊆g(Φ) and (gΦ, µ)is a complete
rectangular metric space and that the following con-
dition holds:
∫µ(Mv,Mλ)
0
χ(t)dt ≤κ∫∆(v,λ)
0
χ(t)dt (20)
for all v, λ ∈Φ, χ ∈Υand 0≤κ < 1such that g
and Msatisfy inequality (1), where
∆(v, λ)
=max {µ(gv, gλ),µ(gv, Mv) + µ(gλ, Mλ)
2,
µ(gv, Mv) + µ(gλ, Mv)
2,
µ(gλ, Mλ)(1 + µ(gv, Mv))
1 + µ(gv, gλ),
µ(gv, Mv)(1 + µ(gλ, Mλ))
1 + µ(Mv, Mλ)}.
Then gand Mhave a unique coincidence point.
Proof. Let f(t) = χ(t)−κχ(t)Thus, by Theorem
3.1, gand Mhave a unique coincide fixed point.
5 Acknowledgments
References:
[1] S. Banach, Sur les opérations dans les ensem-
bles abstraits et leur application aux équations in-
tégrales, Fundamenta Mathematicae, vol. 3, pp.
133-181, 1922.
[2] A. Branciari, A fixed point theorem of Banach-
Caccioppoli type on a class of generalized metric
spaces, Publ. Math., 57(1-2):31-37, 2000.
[3] M. Arshad, J. Ahmad, E Karapinar, Some com-
mon fixed point results in rectangular metric
spaces, International Journal of Analysis Volume
2013, Article ID 307234, 7 pages.
[4] N. Souayah, H. Aydi, T. Abdeljawad, and N.
Mlaiki, “Best proximity point theorems on rect-
angular metric spaces endowed with a graph, Ax-
ioms, vol. 8, no. 1, p. 17, 2019.
[5] H. Aydi, N. Taş, N. Y. Özgür, and N. Mlaiki,
“Fixed-discs in rectangular metric spaces,” Sym-
metry, vol. 11, no. 2, p. 294, 2019.
[6] B. Samet, C. Vetro, P. Vetro, Fixed point the-
orems for α-ψ-contractive type mappings, Non-
linear Anal., Theory Methods Appl., 75(4):2154-
2165, 2012.
[7] A.H. Ansari, Note on ϕ-ψ-contractive type map-
pings and related fixed point, in The 2nd regional
conference on mathematics and applications,
Tonekabon, Iran, September, 2014, Payame Noor
Univ., 2014, pp. 377-380.
[8] P. Salimi, A. Latif, N. Hussain, Modified α-
ψ-contractive mappings with applications, Fixed
Point Theory Appl., 2013(1):151, 2013.
[9] E. Karapınar, Discussion on contractions on gen-
eralized metric spaces, in Abstr. Appl. Anal., Vol-
ume 2014, 2014.
[10] M.S. Khan, M. Swaleh, S. Sessa, Fixed point
theorems by altering distances between the
points, Bull. Aust. Math. Soc., 30(1):1-9, 1984.
[11] L. Budhia, H. Aydi, A.H. Ansari, D. Gopal,
Some new fixed point results in rectangular met-
ric spaces with an application to fractional-order
functional differential equations, Nonlinear Anal-
ysis: Modelling and Control, Vol. 25, No. 4, 580-
597.
Creative Commons Attribution
License 4.0 (Attribution 4.0
International , CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.60
Chuanpit Mungkala, Anantachai Padcharoen, Pakeeta Sukprasert
Firstly, Chuanpit Mungkala (chuanpit.t@rbru.ac.th)
and Anantachai Padcharoen
(anantachai.p@rbru.ac.th) were financially
supported by the Research and Development
Institute of Rambhaibarni Rajabhat University.
Finally, Pakeeta Sukprasert
(pakeeta\_s@rmutt.ac.th) was financially supported
by Rajamangala University of Technology
Thanyaburi (RMUTT).