Autoregressive Panel Model: An Improving
Efficiency Approach‘, Communications in
Statistics - Simulation and Computation,
Vol.46, No. 4, (2017), pp. 3112-3128.
[6] Anselin, L., Le Gallo, J., and Jayet, H., Spatial
Panel Econometrics. In The Econometrics of
Panel Data (pp. 625-660). Springer, Berlin,
Heidelberg, (2008).
[7] Guliyev, H. Determining the Spatial Effects of
COVID-19 Using the Spatial Panel Data
Model. Spatial Statistics, 100443, (2020).
[8] Wang, X., and Li, M. The Spatial Spillover
Effects of Environmental Regulation on
China’s Industrial Green Growth
Performance. Energies, Vol.12, No. 2, (2019).
[9] Dubé, J., and Legros, D., Spatial Econometrics
Using Micro-Data. John Wiley and Sons,
(2014).
[10] Elhorst, J. P., Spatial Panel Data Models. Eds.
by Fischer, M. M, and Getis, A., in Handbook
of Applied Spatial Analysis. Springer Science
& Business Media, (2009).
[11] Kapoor, M., Kelejian, H. H., and Prucha, I. R.,
Panel Data Models with Spatially Correlated
Error Components. Journal of
Econometrics, Vol.140, No.1, (2007), pp. 97-
130.
[12] Amba, M., and Mbratana, T. (2018).
Simultaneous Generalized Method of
Moments Estimator for Panel Data Models
with Spatially Correlated Error
Components. Available at SSRN 3103564.
[13] Elhorst, J. P. Spatial Panel Data Models.
In Handbook of Regional Science. Heidelberg:
Springer, Berlin, (2014).
[14] Kelejian, H. H., and Prucha, I. R., A
Generalized Spatial Two-Stage Least Squares
Procedure for Estimating a Spatial
Autoregressive Model with Autoregressive
Disturbances. The Journal of Real Estate
Finance and Economics, Vol.17, No.1, (1998),
pp. 99-121.
[15] Lee, L. F., Asymptotic Distributions of Quasi-
Maximum Likelihood Estimators for Spatial
Autoregressive Models. Econometrica, Vol.72,
No.6, (2004), pp. 1899 - 1925.
[16] Lee, L. F., and Yu, J., Estimation of Spatial
Autoregressive Panel Data Models with Fixed
Effects. Journal of Econometrics, Vol.154,
No.2, (2010), pp. 165-185.
[17] Youssef, A. H., Abonazel, M. R., and Shalaby,
O. A., Determinants of Per Capita Personal
Income in US States: Spatial Fixed Effects
Panel Data Modeling. Journal of Advanced
Research in Applied Mathematics and
Statistics, Vol.1, No.5, (2020), pp. 1-13.
[18] Getis, A., and Aldstadt, J., Constructing the
Spatial Weights Matrix Using a Local
Statistic. Geographical Analysis, Vol.36, No.2,
(2004), pp. 90-104.
[19] Anselin, L. Spatial Econometrics: Methods
and models. Dorddrecht: Kluwer Academic
Publishers, (1988).
[20] Elhorst, J. P., Specification and Estimation of
Spatial Panel Data Models. International
Regional Science Review, Vol.26, No.3,
(2003), pp. 244-268.
[21] Millo, G. and Piras, G. splm: Spatial Panel Data
Models in R. Journal of Statistical Software,
Vol.47, No.1, (2012), pp. 1-38.
[22] Elhorst, J. P., Spatial Econometrics: From
Cross-Sectional Data to Spatial Panels.
Heidelberg: Springer, Berlin, (2014).
[23] Kelejian, H. H., and Prucha, I. R., A
Generalized Moments Estimator for the
Autoregressive Parameter in a Spatial Model.
International Economic Review, Vol.40, No.2,
(1999), pp. 509-533.
[24] Stakhovych, S., and Bijmolt, T. H.,
Specification of Spatial Models: A Simulation
Study on Weights Matrices. Papers in
Regional Science, Vol.88, No.2, (2009), pp.
389-408.
[25] Mooney, C. Z., Monte Carlo Simulation. Sage
University Paper Series on Quantitative
Applications in the Social Sciences, Series No.
07-116. Thousand Oaks, CA: Sage, (1997).
[26] Abonazel, M. R., A Practical Guide for
Creating Monte Carlo Simulation Studies using
R. International Journal of Mathematics and
Computational Science, Vol.4, No.1, (2018),
pp. 18-33.
[27] Lottmann, F., Explaining Regional
Unemployment Differences in Germany: A
Spatial Panel Data Analysis, No. 2012-026.
SFB 649 Discussion Paper, (2012).
[28] Paul, R. K., Multicollinearity: Causes, Effects
and Remedies, IASRI, New Delhi, Vol.1, No.1,
(2006), pp. 58-65.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.56
Ahmed H. Youssef,
Mohamed R. Abonazel, Ohood A. Shalaby