Abstract: -Inside this paper, we introduce two new partial b-metric contractions utilizing a rational expression
simulation function. The following conclusions extend, generalize, and integrate the earlier findings in two ways:
in contraction terms and in the abstract environment. We provide an example to establish the main theorem’s
validity.
Key-Words: Contraction, Fixed point, partial b-metric space, Simulation functions
Received: August 25, 2021. Revised: May 17, 2022. Accepted: June 7, 2022. Published: July 1, 2022.
1 Introduction
Banach published his foundational work on fixed
point theory approximately a century ago. Banach’s
basic yet deep theorem has been extended, enhanced,
and generalized by researchers since his first study
(see [1, 2, 3, 4, 5, 6, 7, 8, 9]). This was accomplished
by examining the terms of the contraction inequal-
ity and Banach’s theorem’s abstract structure. We’ll
combine these two tendencies by employing simula-
tion functions that include rational terms to create two
new type contractions in partial b-metric space.
2 Preliminaries
Definition 2.1. [10] Let Abe a non-empty set, a func-
tion p:A × A R+
0is a partial metric if the follow-
ing conditions:
(p1)α=δif and only if p(α, α) = p(α, δ) = p(δ, δ);
(p2)p(α, α)p(α, δ);
(p3)p(α, δ) = p(δ, α);
(p4)p(α, δ)p(α, υ) + p(υ, δ)p(υ, υ),
for all α, υ, δ A.
The pair (A, p)is called a partial-metric space.
Lemma 2.2. [11] If {αλ},{δλ}are two sequences in
a partial-metric space (A, p)such that
lim
λ→∞
p(αλ, µ) = lim
λ→∞
p(αλ, αλ) = p(µ, µ),
lim
λ→∞
p(δλ, κ) = lim
λ→∞
p(δλ, δλ) = p(κ, κ).
Then limλ→∞ p(αλ, δλ) = p(µ, κ).
Moreover,limλ→∞ p(αλ, σ) = p(µ, σ),for each
σ A.
Denote by L(αλ)the set of limit points (if there
exist any),
L(αλ) = {σ A :lim
λ→∞
p(αλ, σ) = p(σ, σ)}.
Lemma 2.3. [12] Let {αλ}be a Cauchy sequence on
a complete partial-metric space (A, p).If there exists
µ L({αλ})with p(µ, µ) = 0,then µ L({αλ(ι)}),
for every subsequence {αλ(ι)}of {αλ}.
Lemma 2.4. [12] On a complete partial-metric space
(A, p),let Fbe a continuous mapping and {αλ}be a
Cauchy sequence in A. If there exists µ L({αλ})
with p(µ, µ) = 0.Then Fµ L({Fαλ}).
Definition 2.5. [13] Let Abe a non-empty set and
s1.A function pb:A × A R+
0is a partial b-
metric with a coefficient sif the following conditions
hold for all α, δ, υ A
(pb1)α=δif and only if pb(α, α) = pb(α, δ) =
pb(δ, δ);
(pb2)pb(α, α)pb(α, δ);
(pb3)pb(α, δ) = pb(δ, α);
(pb4)pb(α, δ)s(pb(α, υ) + pb(υ, δ)) pb(υ, υ).
Improvements to the fixed point results by the use of a simulation
function employing rational terms
1SUNISA SAIUPARAD, 1KANIKAR MUANGCHOO, 1SUKJIT TANGCHAROEN,
1PHANNIKA MEE-ON, 1SAKULBUTH EKVITTAYANIPHON, 2DUANGKAMON KITKUAN
1Department of Mathematics and Statistics, Faculty of Science and Technology, Rajamangala
University of Technology Phra Nakhon (RMUTP), 1381 Pracharat 1 Road, Wongsawang, Bang Sue, Bangkok
10800, THAILAND
2Department of Mathematics, Faculty of Science and Technology, Rambhai Barni Rajabhat University,
Chanthaburi 22000, THAILAND
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.54
Sunisa Saiuparad, Kanikar Muangchoo,
Sukjit Tangcharoen, Phannika Mee-On,
Sakulbuth Ekvittayaniphon, Duangkamon Kitkuan
E-ISSN: 2224-2880
468
Volume 21, 2022
In this case, we say that (A, pb, s)is a partial b-metric
space.
Lemma 2.6. [14] Let (A, pb, s)be a partial b-metric
space. If pb(α, δ)=0then α=δand pb(α, δ)>0
for all α=δ.
Definition 2.7. [15] A sequence {αλ}on a par-
tial b-metric space (A, pb, s)is 0-pb-Cauchy if
limλ,ρ→∞ pb(αλ, αρ) = 0.Moreover, the space
(A, pb, s)is said to be 0-pb-complete if for each 0-
pb-Cauchy sequence in A,there is σ A,such that
lim
λ,ρ→∞
pb(αλ, αρ) = lim
λ→∞
pb(αλ, σ) = pb(σ, σ) = 0.
Lemma 2.8. [15] If the partial b-metric space
(A, pb, s)is pb-complete, then it is 0-pb-complete.
Lemma 2.9. [16] Let (A, pb, s 1) be a partial b-
metric space, F:A→Aa mapping and a number
γ[0,1).If {αλ}is a sequence in A,where αλ=
Fαλ1and
pb(αλ, αλ+1)γpb(αλ1, αλ),
for each λ1,then the sequence {αλ}is 0-pb-
Cauchy.
Let Υbe the set of all non-decreasing and con-
tinuous functions ψ: [0,)[0,)such that
ψ(0) = 0.
Definition 2.10. [17] A function η:R+
0×R+
0Ris
aψ-simulation function if there exists ψsuch that
the following conditions hold:
(η1)η(ζ, ξ)< ψ(ξ)ψ(ζ)for all ζ, ξ R+;
(η2)if {ζλ},{ξλ}are two sequences in [0,)such
that limλ→∞ ζλ=limλ→∞ ξλ>0,then
lim sup
λ→∞
η(ζλ, ξλ)<0.
Denote by Zψthe family of all ψ-simulation functions
(see [18, 19, 20, 21, 22]). It is clear, due to the axiom
(η1),that
η(ζ, ζ)<0for all ζ > 0.
3 Main Results
Definition 3.1. Let (A, pb, s 1) be a partial b-
metric space. A mapping F:A A is called η-
rational contraction of type A, if there exists a func-
tion η Zψsuch that
1
2smin {pb(α, Fα), pb(δ, Fδ)} pb(α, δ)implies
η(stpb(Fα, Fδ),DA(α, δ)0,
(1)
for every α, δ A,where DAis defined as
DA(α, δ)
=max pb(α, δ), pb(α, Fα), pb(δ, Fδ),
pb(δ, Fδ)(1 + pb(α, Fα))
1 + pb(α, δ),
pb(δ, Fδ)(1 + pb(α, Fα))
1 + pb(Fα, Fδ),
pb(α, Fδ) + pb(δ, Fα)
2s.
(2)
Theorem 3.2. Let (A, pb, s > 1) be a pb-complete
partial b-metric space and F:A A be a η-
rational contraction of type A. Then Fadmits exactly
one fixed point.
Proof. Let α0 A be an arbitrary but fixed point and
{αλ}be the sequence defined in Aas follows:
αλ=Fαλ1,λ1.(3)
Suppose that αλ1=αλfor every τ1.Indeed, if
we assume that there exists λ0Nsuch that αλ01=
αλ0.Taking (3) into consideration, we get αλ01=
Fαλ01., that is, αλ01is a fixed point of F. Hence,
substituting α=αλ1and δ=αλin (2), we obtain
DA(αλ1, αλ)
=max pb(αλ1, αλ), pb(αλ1,Fαλ1), pb(αλ,Fαλ),
pb(αλ,Fαλ)(1 + pb(αλ1,Fαλ1))
1 + pb(αλ1, αλ),
pb(αλ,Fαλ)(1 + pb(αλ1,Fαλ1))
1 + pb(Fαλ1,Fαλ),
pb((αλ1,Fαλ) + pb(αλ,Fαλ1)
2s
=max pb(αλ1, αλ), pb(αλ1, αλ), pb(αλ, αλ+1),
pb(αλ, αλ+1)(1 + pb(αλ1, αλ))
1 + pb(αλ1, αλ),
pb(αλ, αλ+1)(1 + pb(αλ1, αλ))
1 + pb(αλ, αλ+1),
pb(αλ1, αλ+1) + pb(αλ, αλ)
2s
max pb(αλ1, αλ), pb(αλ1, αλ), pb(αλ, αλ+1),
pb(αλ, αλ+1)(1 + pb(αλ1, αλ))
1 + pb(αλ1, αλ),
pb(αλ, αλ+1)(1 + pb(αλ1, αλ))
1 + pb(αλ, αλ+1),
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.54
Sunisa Saiuparad, Kanikar Muangchoo,
Sukjit Tangcharoen, Phannika Mee-On,
Sakulbuth Ekvittayaniphon, Duangkamon Kitkuan
E-ISSN: 2224-2880
469
Volume 21, 2022
s(pb(αλ1, αλ) + pb(αλ, αλ+1))
2s
pb(αλ, αλ) + pb(αλ, αλ)
2s
=max {pb(αλ1, αλ), pb(αλ, αλ+1)}
(4)
Furthermore, by (1), we get
1
2smin {pb(αλ1,Fαλ1), pb(αλ,Fαλ)}
=1
2smin {pb(αλ1, αλ), pb(αλ, αλ+1)}
pb(αλ1, αλ)
(5)
implies
η(stpb(Fαλ1,Fαλ),DA(αλ1, αλ)) 0,(6)
Taking (η1)into account, the preceding inequality
provides
0< ψ(DA(αλ1, αλ)) ψ(stpb(Fαλ1,Fαλ)),
(7)
or, equivalently,
ψ(stpb(αλ, αλ+1))
< ψ(DA(αλ1, αλ))
=ψ(max {pb(αλ1, αλ), pb(αλ, αλ+1)}).
(8)
As a result of the monotony of the function ψ, we ob-
tain
stpb(αλ, αλ+1)<max {pb(αλ1, αλ), pb(αλ, αλ+1)}.
(9)
If there exists λ1Nsuch that
max{pb(αλ11, αλ1), pb(αλ1, αλ1+1)}=pb(αλ1, αλ1+1),
(9) becomes stpb(αλ1, αλ1+1)< pb(αλ1, αλ1+1),
which is a contradiction (because s > 1). Hence, for
any λNwe obtain
stpb(αλ, αλ+1)< pb(αλ1, αλ),
or
pb(αλ, αλ+1)<1
stpb(αλ1, αλ).(10)
Denoting 1
stby µ, we have
pb(αλ, αλ + 1) < µpb(αλ1, αλ),
with 0µ < 1.Using Lemma 2.9, we see that the
sequence {αρ}is a 0-pb-Cauchy sequence on the pb-
complete partial b-metric space. Since by Lemma 2.8,
the space is also 0-pb-complete, it follows that there
exists σ A such that
lim
λ,ρ→∞
pb(αλ, αρ) = lim
λ→∞
pb(αλ, σ) = pb(σ, σ) = 0.
(11)
We now assert that
1
2spb(αλ, αλ+1)pb(αλ, σ)or
1
2spb(αλ+1, αλ+2)pb(αλ+1, σ).
On the other hand, assuming the opposite, we can ob-
tain λ0Nsuch that
pb(αλ0, αλ0+1)
s(pb(αλ0, σ) + pb(σ, αλ0+1)) pb(σ, σ)
< s 1
2spb(αλ0, αλ0+1) + 1
2spb(αλ0+1, αλ0+2)
=1
2(pb(αλ0, αλ0+1) + pb(αλ0+1, αλ0+2))
< pb(αλ0, αλ0+1),
which is a contradiction. Hence, there exists a subse-
quence {αλ(ι)}of {αλ}such that
1
2smin pb(αλ(ι),Fαλ(ι)), pb(σ, Fσ)
=1
2spb(αλ(ι), αλ(ι)+1)
pb(αλ(ι), σ)
implies
η(stpb(Fαλ(ι),Fσ),DA(αλ(ι), σ)) 0,
where
pb(σ, Fσ)
DA(αλ(ι), σ)
=max pb(αλ(ι), σ), pb(αλ(ι),Fαλ(ι)), pb(σ, Fσ),
pb(σ, Fσ)(1 + pb(αλ(ι),Fαλ(ι)))
1 + pb(αλ(ι), σ),
pb(σ, Fσ)(1 + pb(αλ(ι),Fαλ(ι)))
1 + pb(Fαλ(ι),Fσ),
pb(αλ(ι),Fσ) + pb(σ, Fαλ(ι))
2s
=max pb(αλ(ι), σ), pb(αλ(ι), αλ(ι)+1), pb(σ, Fσ),
pb(σ, Fσ)(1 + pb(αλ(ι), αλ(ι)+1))
1 + pb(αλ(ι), σ),
pb(σ, Fσ)(1 + pb(αλ(ι), αλ(ι)+1))
1 + pb(αλ(ι)+1,Fσ),
pb(αλ(ι),Fσ) + pb(σ, αλ(ι)+1)
2s.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.54
Sunisa Saiuparad, Kanikar Muangchoo,
Sukjit Tangcharoen, Phannika Mee-On,
Sakulbuth Ekvittayaniphon, Duangkamon Kitkuan
E-ISSN: 2224-2880
470
Volume 21, 2022
Taking ι and using (11) in mind, we arrive at
lim
ι→∞ DA(αλ(ι), σ) = pb(σ, Fσ).(12)
On the one hand, we assume that αλ=σfor an infi-
nite number of λNwithout sacrificing generality.
So,
η(stpb(Fαλ,Fσ),DA(αλ, σ)) 0.
Thus, as a result of η1, leads us to
ψ(stpb(Fαλ,Fσ)) < ψ(DA(αλ, σ)).
Taking into account the fact that has a non-decreasing
property of ψ,
stpb(Fαλ,Fσ)<DA(αλ, σ).
On the alternative,
pb(σ, Fσ)
s(pb(σ, Fαλ) + pb(Fαλ,Fσ)) pb(Fαλ,Fαλ)
spb(σ, Fαλ) + stpb(Fαλ,Fσ)pb(αλ+1, αλ+1)
< spb(σ, Fαλ) + DA(αλ, σ).
Taking λ in the above inequality and using (11)
and (12), we get
pb(σ, Fσ)stlim
λ→∞
pb(Fαλ,Fσ)
<lim
λ→∞
DA(αλ, σ)
=pb(σ, Fσ).
Hence, stlimλ→∞ pb(Fαλ,Fσ) = pb(σ, Fσ).
Therefore, putting ζλ=pb(Fαλ,Fσ)
and ξλ=DA(αλ, σ),using η2it follows
lim supλ→∞ η(stζλ, ξλ)<0,which is a contra-
diction. Then pb(σ, Fσ)=0=pb(σ, σ),that is, σis
a fixed point of F.
Finally, we establish uniqueness of the fixed point.
Indeed, if we can find another point, υ A, υ =σ
such that υ=Fυ,
0 = 1
2smin{pb(υ, Fυ), pb(σ, Fσ)} pb(υ, σ),
implies
0η(stpb(Fυ, Fσ),DA(υ, σ))
< ψ(DA(υ, σ)) ψ(stpb(Fυ, Fσ))
=ψ(pb(υ, σ)) ψ(stpb(υ, σ)),
which is a contradiction. Hence, σ=υ.
Corollary 3.3. Let F:A A be a mapping on
apb-complete partial b-metric space (A, pb, s > 1).
Suppose that ψΥand ϕ: [0,)[0,)is a
function such that lim infξξ0ϕ(ξ)>0,for ξ0>0
and ϕ(ξ) = 0 ξ= 0.If for every ζ, ξ A
1
2smin {pb(α, Fα), pb(δ, Fδ)} pb(α, δ)implies
ψ(stpb(Fα, Fδ)) ψ(DA(α, δ)) ϕ(DA(α, δ)).
Then Fadmits a unique fixed point.
Proof. Taking η(ζ, ξ) = ψ(ξ)ϕ(ξ)ψ(ζ)in The-
orem 3.2.
Corollary 3.4. Let F:A A be a mapping on
apb-complete partial b-metric space (A, pb, s > 1).
Suppose that ψΥand φ: [0,)[0,1) is a
function such that lim supξξ0φ(ξ)<1,for ξ0>0
and φ(ξ) = 0 ξ= 0.If for every ζ, ξ A
1
2smin {pb(α, Fα), pb(δ, Fδ)} pb(α, δ)implies
ψ(stpb(Fα, Fδ)) φ(DA(α, δ))ψ(DA(α, δ)).
Then Fadmits a unique fixed point.
Proof. Taking η(ζ, ξ) = φ(ξ)ψ(ξ)ψ(ζ)in Theo-
rem 3.2.
Definition 3.5. Let (A, pb, s > 1) be a partial b-
metric space. A mapping F:A A is called η-
rational contraction of type B, if there exists a func-
tion η Zψsuch that
1
2smin {pb(α, Fα), pb(δ, Fδ)} pb(α, δ)implies
η(stpb(Fα, Fδ),DB(α, δ)0,
(13)
for every α, δ A,where DBis defined as
DB(α, δ)
=max pb(α, δ), pb(α, Fα), pb(δ, Fδ),
pb(δ, Fδ)pb(α, Fα)
1 + pb(α, δ),pb(δ, Fδ)pb(α, Fα)
1 + pb(Fα, Fδ),
pb(α, Fα) + pb(δ, Fδ)
2s.
(14)
Theorem 3.6. Let (A, pb, s > 1) be a pb-complete
partial b-metric space and F:A A be a η-
rational contraction of type B. Then Fadmits exactly
one fixed point.
Proof. Let the sequence {αλ}be defined by (3). Be-
cause αλ1=αλ,for each λN, using logic similar
to that used to prove Theorem 3.2, we have
1
2smin {pb(αλ,Fαλ), pb(αλ+1,Fαλ+1)}
=1
2smin {pb(αλ, αλ+1), pb(αλ+1, αλ+2)}
pb(αλ, αλ+1)
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.54
Sunisa Saiuparad, Kanikar Muangchoo,
Sukjit Tangcharoen, Phannika Mee-On,
Sakulbuth Ekvittayaniphon, Duangkamon Kitkuan
E-ISSN: 2224-2880
471
Volume 21, 2022
implies
0η(stpb(Fαλ,Fαλ+1),DB(αλ, αλ+1))
< ψ(DB(αλ, αλ+1)) ψ(stpb(Fαλ,Fαλ+1)),
(15)
where
DB(αλ, αλ+1)
=max pb(αλ, αλ+1), pb(αλ,Fαλ), pb(αλ+1,Fαλ+1),
pb(αλ+1,Fαλ+1)pb(αλ,Fαλ)
1 + pb(αλ, αλ+1),
pb(αλ+1,Fαλ+1)pb(αλ,Fαλ)
1 + pb(Fαλ,Fαλ+1),
pb(αλ,Fαλ) + pb(αλ+1,Fαλ+1)
2s
=max pb(αλ, αλ+1), pb(αλ, αλ+1), pb(αλ+1, αλ+2),
pb(αλ+1, αλ+2)pb(αλ, αλ+1)
1 + pb(αλ, αλ+1),
pb(αλ+1, αλ+2)pb(αλ, αλ+1)
1 + pb(αλ+1, αλ+2),
pb(αλ, αλ+1) + pb(αλ+1, αλ+2)
2s
=max{pb(αλ, αλ+1), pb(αλ+1, αλ+2)}.
Hence,
ψ(stpb(αλ+1, αλ+2))
< ψ(DB(αλ, αλ+1))
ψ(max{pb(αλ, αλ+1), pb(αλ+1, αλ+2)}.
Taking into account the fact that has a non-decreasing
property of ψ,
stpb(αλ+1, αλ+2)
<max{pb(αλ, αλ+1), pb(αλ+1, αλ+2)}.
If max{pb(αλ, αλ+1), pb(αλ+1, αλ+2)}=
pb(αλ+1, αλ+2), we get a contradiction, and then it
follows that
pb(αλ+1, αλ+2)<1
stpb(αλ, αλ+1).
Using Lemma 2.9, we conclude that {αλ}is a 0-pb-
Cauchy on a pb-complete b-partialmetric space, and
there exists σ A such that limλ→∞ αλ=σ.
Taking into account the continuity of the mapping F,
we have
σ=lim
λ→∞
αλ+1 =lim
λ→∞
Flim
λ→∞
αλ=Fσ,
that is, σis a fixed point of the mapping F.
Finally, we establish uniqueness of the fixed point. In-
deed, if we can find another point, υ A, υ =σsuch
that υ=Fυ,
0 = 1
2smin{pb(υ, Fυ), pb(σ, Fσ)} pb(υ, σ),
implies
0η(stpb(Fυ, Fσ),DB(υ, σ))
< ψ(DB(υ, σ)) ψ(stpb(Fυ, Fσ))
=ψ(pb(υ, σ)) ψ(stpb(υ, σ)),
which is a contradiction. Hence, pb(σ, υ)=0,that is
σ=υ.
Corollary 3.7. Let F:A A be a continu-
ous mapping on a pb-complete partial b-metric space
(A, pb, s > 1).Suppose that ψΥand ϕ: [0,)
[0,)is a function such that lim infξξ0ϕ(ξ)>0,
for ξ0>0and ϕ(ξ) = 0 ξ= 0.If for every
ζ, ξ A
1
2smin {pb(α, Fα), pb(δ, Fδ)} pb(α, δ)implies
ψ(stpb(Fα, Fδ)) ψ(DB(α, δ)) ϕ(DB(α, δ)).
Then Fadmits a unique fixed point.
Proof. Taking η(ζ, ξ) = ψ(ξ)ϕ(ξ)ψ(ζ)in The-
orem 3.6.
Corollary 3.8. Let F:A A be a continu-
ous mapping on a pb-complete partial b-metric space
(A, pb, s > 1).Suppose that ψΥand φ: [0,)
[0,1) is a function such that lim supξξ0φ(ξ)<1,
for ξ0>0and φ(ξ)=0ξ= 0.If for every
ζ, ξ A
1
2smin {pb(α, Fα), pb(δ, Fδ)} pb(α, δ)implies
ψ(stpb(Fα, Fδ)) φ(DB(α, δ))ψ(DB(α, δ)).
Then Fadmits a unique fixed point.
Proof. Taking η(ζ, ξ) = φ(ξ)ψ(ξ)ψ(ζ)in Theo-
rem 3.6.
4 Illustrative example
Example 4.1. Let the set A={7,8,9,10}and ρb be
the partial b-metric on A(s= 2),where
pb(α, δ) = 0.000002,for α=δ= 10
|αδ|2,otherwise.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.54
Sunisa Saiuparad, Kanikar Muangchoo,
Sukjit Tangcharoen, Phannika Mee-On,
Sakulbuth Ekvittayaniphon, Duangkamon Kitkuan
E-ISSN: 2224-2880
472
Volume 21, 2022
Define the mapping F:A A,
Fα=7,for α {7,8,9},
8,for α= 10.
We choose ϕΥ, ϕ(ξ) = ξ
2and η(ζ, ξ) =
7
8ξζ
2.
It is easy to see that η Zψ. We have
αFα pb(α, Fα)
7 7 0
8 7 1
9 7 4
10 8 4
and will take into account the following scenarios:
1. For α, δ {7,8,9},we have pb(Fα, Fδ) = 0,
and then
1
4min {pb(α, Fα), pb(δ, Fδ)} 1pb(α, δ)
implies
2pb(Fα, Fδ) = 0 12
13DA(α, δ)0,
2. For α= 7, δ = 10 we have
pb(α, δ) = 9, pb(7,F7) = 0,
pb(10,F10) = pb(10,8) = 4,
pb(F7,F10) = pb(7,8) = 1
and then
1
4min {pb(7,F7), pb(10,F10)}= 0 9 = pb(α, δ)
implies
2pb(F7,F10) = 2 63
8=7
8pb(7,10).
3. For α= 8, δ = 10 we have
pb(α, δ) = 4,
pb(8,F8) = 1,
pb(10,F10) = pb(10,8) = 4,
pb(F8,F10) = pb(7,8) = 1
and then
1
4min {pb(8,F8), pb(10,F10)}=1
4<4 = pb(α, δ)
implies
2pb(F8,F10) = 2 7
2=7
8pb(8,10).
4. For α= 9, δ = 10 we have
pb(α, δ) = 1,
pb(9,F9) = 4,
pb(10,F10) = pb(10,8) = 4,
pb(F9,F10) = pb(7,8) = 1
and then
1
4min {pb(9,F9), pb(10,F10)}= 1 = pb(α, δ)
implies
2pb(F9,F10) = 2
70
8
=7
8
pb(9,F9)(1 + pb(10,F10)
1 + pb(F9,F10)
7
8DA(9,10).
Hence, the hypothesis of Theorem 3.2 are satisfied
and α= 10 is the fixed point of the mapping F.
Example 4.2. Let the set A= [0,1],and pb:A ×
A [0,), pb(α, δ) = (max{α, δ})2be a partial b-
metric on A.Let the continuous mapping F:A A
be defined by
Fα=
α2,for α0,2
5,
4
25 ,for α2
5,1,
and the functions ψΥ, η Zψ,where ψ(ξ) = ξ
2
and η(ζ, ξ) =
8
25 ξζ
2.
We verify that Fis a η-rational contraction of type
B.
1. For α, δ [0,2
5],if α > δ, (the case αδis
similar), we have
pb(α, δ) = (max{α, δ})2=α2,
pb(α, Fα) = (max{α, α2)2=α2,
pb(δ, Fδ) = δ2,
pb(Fα, Fδ) = (max{α2, δ2})2=α4,
and then
1
4min {pb(α, Fα), pb(δ, Fδ)} 1
4α2pb(α, δ)
implies
2pb(Fα, Fδ) = 2α48
25α28
25DB(α, δ).
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.54
Sunisa Saiuparad, Kanikar Muangchoo,
Sukjit Tangcharoen, Phannika Mee-On,
Sakulbuth Ekvittayaniphon, Duangkamon Kitkuan
E-ISSN: 2224-2880
473
Volume 21, 2022
2. For α, δ (2/5,1],if α > δ, (the case αδis
similar), we have
pb(α, δ) = (max{α, δ})2=α2,
pb(α, Fα) = (max{α, 4
25)2=α2,
pb(δ, Fδ) = δ2,
pb(Fα, Fδ) = 16
625,
and then
1
4min {pb(α, Fα), pb(δ, Fδ)} 1
4α2α2pb(α, δ)
implies
2pb(Fα, Fδ) = 32
625 8
25α28
25DB(α, δ).
3. For α[0,2/5], δ (2/5,1],we have
pb(α, δ) = (max{α, δ})2=δ2,
pb(α, Fα) = α2,
pb(δ, Fδ) = δ2,
pb(Fα, Fδ) = 16
625,
and then
1
4min {pb(α, Fα), pb(δ, Fδ)} 1
4δ2δ2pb(α, δ)
implies
2pb(Fα, Fδ) = 32
625
8
25δ2
=8
25pb(δ, Fδ)
8
25DB(α, δ).
Hence, all the hypotheses of Theorem (3.6) are satis-
fied and α= 0 is the unique fixed point of F.
5 Conclusion
The search for fixed point theorems involving con-
tractive type conditions has received much interest in
recent decades. In this context, we analyzed conver-
gence point results for such mappings and illustrative
for support theorem based on the new idea of fixed
point results by the use of a simulation function em-
ploying rational terms in partial b-metric space metric
spaces. The fresh ideas inspire more research and ap-
plications. It will be fascinating to apply these princi-
ples, for example, in metric spaces that do not involve
the entire form of triangle inequality, such as partial
order b-metric spaces.
6 Acknowledgments
The authors were financially supported by Raja-
mangala University of Technology Phra Nakhon
(RMUTP) Research Scholarship.
References:
[1] B.K. Dass, S. Gupta, An extension of Banach
contraction principle through rational expres-
sions. Indian J. Pure Appl. Math., Vol. 6, 1975,
pp. 1455-1458.
[2] D.S. Jaggi, Some unique fixed point theorems. In-
dian J. Pure Appl. Math., Vol. 8, 1977, pp. 223-
230.
[3] E. Karapınar, A. Dehici, N Redjel, On some fixed
points of (α-ψ)-contractive mappings with ratio-
nal expressions. J. Nonlinear Sci. Appl. Vol. 10,
2017, pp. 1569-1581.
[4] A. Padcharoen, D. Gopal, P. Chaipunya, P. Ku-
mam, Fixed point and periodic point results for
α-type F-contractions in modular metric spaces.
Fixed Point Theory and Applications, 2016, pp.
1-12.
[5] A. Padcharoen, P. Kumam, P. Saipara, P.
Chaipunya, Generalized Suzuki type Z-
contraction in complete metric spaces. Kragu-
jevac Journal of Mathematics, Vol. 42, No. 3,
2018, pp. 419-430.
[6] A. Padcharoen, P. Sukprasert, On admissi-
ble mapping via simulation function. Australian
Journal of Mathematical Analysis and Applica-
tions, Vol. 18, No. 1, 2021, pp. 1-10.
[7] J. Janwised, D. Kitkuan, P. Bunpatcharacharoen,
On F-α-Geraghty Contractions. Communications
in Mathematics and Applications, Vol. 9, No. 4,
pp. 627-636.
[8] P. Saipara, P. Kumam, P. Bunpatcharacharoen,
Some Results for Generalized Suzuki Type Z-
Contraction in pbMetric Spaces. Thai Journal of
Mathematics, 2018, 203-219.
[9] P. Bunpatcharacharoen, S. Saelee, P. Saipara,
Modified Almost Type Z-contraction. Thai Jour-
nal of Mathematics, Vol. 18, No. 1, 252-260.
[10] S.G. Matthews, Partial metric topology. In:
Proc. 8th Summer Conference on General Topol-
ogy and Application. Ann. New York Acad. Sci.,
Vol. 728, 1994, pp. 183-197.
[11] T. Abdeljawad, E. Karapınar, K. Tas, Existence
and uniqueness of a common fixed point on par-
tial metric spaces. Appl. Math. Lett., Vol. 24, No.
11, 2011, pp. 1894-1899.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.54
Sunisa Saiuparad, Kanikar Muangchoo,
Sukjit Tangcharoen, Phannika Mee-On,
Sakulbuth Ekvittayaniphon, Duangkamon Kitkuan
E-ISSN: 2224-2880
474
Volume 21, 2022
[12] E. Karapınar, On Jaggi type contraction map-
pings. U.P.B. Sci. Bull., Ser. A, Vol. 80, No. 4,
2018
[13] S. Shukla, Partial b metric spaces and fixed point
theorems. Mediterr. J. Math., Vol. 11, 2014, pp.
703-711.
[14] E. Karapınar, Fixed point theory for cyclic weak
Φ-contraction. Appl. Math. Lett. Vol. 24, 2011,
pp. 822-825.
[15] N.V. Dung, V.T.L. Hang, Remarks on partial
b-metric spaces and fixed point theorems. Mat.
Vesn., Vol. 69, No. 4, 2017, 231-240.
[16] J. Vujaković, H. Aydi, S., Radenović, A.
Mukheimer, Some remarks and new results in or-
dered partial b-metric spaces. Mathematics, Vol.
7, 2019, pp. 334.
[17] G.H. Joonaghany, A. Farajzadeh, M. Azhini,
F. Khojasteh, New common fixed point theo-
rem for Suzuki type contractions via generalized
ψ-simulation functions. Sahand Commun. Math.
Anal. Vol. 16, 2019, pp. 129-148.
[18] S. Radenovic, S. Chandok, Simulation type
functions and coincidence point results. Filomat,
Vol. 32, No. 1, 2018, pp. 141-147.
[19] R. Alsubaie, B. Alqahtani, E. Karapınar,
A.F.R.L. Hierro, Extended simulation function
via rational expressions. Mathematics, Vol. 8,
2020, pp. 710.
[20] A. Padcharoen, J.K. Kim, Berinde type results
via simulation functions in metric spaces. Non-
linear Functional Analysis and Applications, Vol.
25, No. 3, pp. 511-523.
[21] H. Monfared, M. Asadi, A. Farajzadeh, New
generalization of Darbo’s fixed point theorem via
α-admissible simulation functions with applica-
tion. Sahand Commun. Math. Anal., Vol. 17, No.
2, 2020, 161-171.
[22] P. Wongsasinchai, Almost type of simulation
functions results, Prog. Appl. Sci. Tech., Vol. 11,
No. 1, 2021, pp. 1-6.
Creative Commons Attribution
License 4.0 (Attribution 4.0
International , CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.54
Sunisa Saiuparad, Kanikar Muangchoo,
Sukjit Tangcharoen, Phannika Mee-On,
Sakulbuth Ekvittayaniphon, Duangkamon Kitkuan
E-ISSN: 2224-2880
475
Volume 21, 2022