tonomous Holling-II type cooperative system,
Journal of Mathematical Analysis and Applica-
tions, Vol.435, No.1, 2016, pp. 874-888.
[3] Xie X. D., Chen F. D. and Xue Y. L., Note on
the stability property of a cooperative system in-
corporating harvesting, Discrete Dyn. Nat. Soc.,
Vol. 2014, 2014, 5 pages.
[4] Xue Y. L., Chen F. D. and Xie X. D. , et al. Dy-
namic behaviors of a discrete commensalism sys-
tem, Annals of Applied Mathematics, Vol.31, No.
4, 2015, pp. 452-461.
[5] Xue Y. L. , Xie X. D. and Chen F. D., et al. Almost
periodic solution of a discrete commensalism sys-
tem, Discrete Dynamics in Nature and Society,
Volume 2015, Article ID 295483, 11 pages.
[6] Miao Z. S., Xie X. D. and Pu L. Q., Dynamic
behaviors of a periodic Lotka-Volterra commen-
sal symbiosis model with impulsive, Commun.
Math. Biol. Neurosci., Vol. 2015, 2015, 15 pages.
[7] Wu R. X., Lin L. and Zhou X. Y., A commen-
sal symbiosis model with Holling type functional
response, J. Math. Computer Sci., Vol. 16, No.1,
2016, pp. 364-371.
[8] Xie X. D., Miao Z. S. and Xue Y. L., Positive pe-
riodic solution of a discrete Lotka-Volterra com-
mensal symbiosis model, Commun. Math. Biol.
Neurosci., Vol. 2015 , 2015, 10 pages.
[9] Chen B., The influence of commensalism on a
Lotka-Volterra commensal symbiosis model with
Michaelis-Menten type harvesting, Advances in
Difference Equations, Vol. 2019, 2019, Article ID
43.
[10] Liu Y., Xie X. and Lin Q., Permanence, par-
tial survival, extinction, and global attractivity
of a nonautonomous harvesting Lotka-Volterra
commensalism model incorporating partial clo-
sure for the populations, Advances in Difference
Equations, 2018, Article ID 211.
[11] Deng H. and Huang X., The influence of partial
closure for the populations to a harvesting Lotka-
Volterra commensalism model, Commun. Math.
Biol. Neurosci., Vol. 2018, 2018, Article ID 10.
[12] Xue Y. , Xie X. and Lin Q. , Almost peri-
odic solutions of a commensalism system with
Michaelis-Menten type harvesting on time scales,
Open Mathematics, Vol. 17, No. 1, 2019, pp.
1503-1514.
[13] Lei C., Dynamic behaviors of a stage-structured
commensalism system, Advances in Difference
Equations, Vol. 2018, 2018, Article ID 301.
[14] Lin Q., Allee effect increasing the final densi-
ty of the species subject to the Allee effect in a
Lotka-Volterra commensal symbiosis model, Ad-
vances in Difference Equations, Vol. 2018, 2018,
Article ID 196.
[15] Chen B., Dynamic behaviors of a commensal
symbiosis model involving Allee effect and one
party can not survive independently, Advances
in Difference Equations, Vol. 2018, 2018, Article
ID 212.
[16] Wu R., Li L. and Lin Q., A Holling type com-
mensal symbiosis model involving Allee effect,
Commun. Math. Biol. Neurosci., Vol. 2018, 2018,
Article ID 6.
[17] Lei C. , Dynamic behaviors of a Holling type
commensal symbiosis model with the first species
subject to Allee effect, Commun. Math. Biol.
Neurosci., Vol. 2019, 2019, Article ID 3.
[18] Vargas-De-Leon C. and Gomez-Alcaraz G.,
Global stability in some ecological models of
commensalism between two species, Biomatem-
atica, Vol.23, No.1, 2013, pp. 139-146.
[19] Chen F., Xue Y. , Lin Q., et al, Dynamic be-
haviors of a Lotka-Volterra commensal symbio-
sis model with density dependent birth rate, Ad-
vances in Difference Equations, Vol.2018, 2018,
Article ID 296.
[20] Han R. and Chen F., Global stability of a com-
mensal symbiosis model with feedback controls,
Commun. Math. Biol. Neurosci., Vol. 2015, 2015,
Article ID 15.
[21] Chen F., Pu L. and Yang L., Positive periodic so-
lution of a discrete obligate Lotka-Volterra model,
Commun. Math. Biol. Neurosci., Vol. 2015, 2015,
Article ID 14.
[22] Guan X. and Chen F., Dynamical analysis of a
two species amensalism model with Beddington-
DeAngelis functional response and Allee effect
on the second species, Nonlinear Analysis: Re-
al World Applications, Vol. 48, No.1, 2019, pp.
71-93.
[23] Li T., Lin Q. and Chen J., Positive periodic so-
lution of a discrete commensal symbiosis mod-
el with Holling II functional response, Commun.
Math. Biol. Neurosci., Vol. 2016, 2016, Article ID
22.
[24] Ji W. and Liu M., Optimal harvesting of a s-
tochastic commensalism model with time delay,
Physica A: Statistical Mechanics and its Applica-
tions, Vol. 527, 2019, 121284.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.50
Fengde Chen, Qimei Zhou, Sijia Lin