[3] J.F. Lawless, P. Wang, A simulation study of
ridge and other regression estimators.
Commun Stat Theory Methods, 5:307–323
(1976).
[4] B.M.G. Kibria, Performance of some new
ridge regression estimators. Commun Stat
Theory Methods, 32:419–435 (2003).
[5] G. Muniz, B.M.G. Kibria, On some ridge
regression estimators: an empirical
comparisons. Commun Stat Simul Comput,
38:621–630 (2009).
[6] A.F. Lukman, K. Ayinde, Review and
classifications of the ridge parameter
estimation techniques. Hacet J Math Stat,
46(5):953–967 (2017).
[7] A.F. Lukman, K. Ayinde, S.A. Ajiboye,
Monte-Carlo study of some classification-
based ridge parameter estimators. J Mod Appl
Stat Methods, 16(1):428–451 (2017).
[8] A.F. Lukman, O.T. Arowolo, Newly proposed
biased ridge estimator: an application to the
Nigerian economy. Pak J Stat, 34(2):91–98
(2018).
[9] R.L. Schaeffer, L.D. Roi, R.A. Wolfe, A ridge
logistic estimator. Commun Stat Theory
Methods, 13:99–113 (1984).
[10] B.M.G. Kibria, K. Mansson, G. Shukur,
Performance of some logistic ridge regression
estimators. Comput Economics, 40(4):401–
414 (2012).
[11] D. Inan, B.E. Erdogan, Liu-type logistic
estimator. Commun Stat Simul Comput,
42(7):1578–1586 (2013).
[12] V. Nagarajah, P. Wijekoon, Stochastic
restricted maximum likelihood estimator in
logistic regression model. Open J Stat, 5:837–
851 (2015).
[13] Y. Asar, M. Arashi, J. Wu, Restricted ridge
estimator in the logistic regression model.
Commun Stat Simul Comput. 46(8): 6538-
6544 (2017).
[14] Y. Asar, A. Genc, Two-parameter ridge
estimator in the binary logistic regression.
Commun Stat Simul Comput. 46:9, 7088-7099
(2017).
[15] N., Varathan, P. Wijekoon, Optimal
generalized logistic estimator. Commun Stat
Theory Methods, 47(2):463–474 (2018).
[16] A.F. Lukman, E. Adewuyi, A.C. Onate, K.
Ayinde, A Modified Ridge-Type Logistic
Estimator. Iran J Sci Technol Trans Sci.,
44(3): 437-443 (2020).
[17] M.R. Abonazel, R.A. Farghali, Liu-type
multinomial logistic estimator. Sankhya B
81(2): 203-225 (2019).
[18] R.A. Farghali, M. Qasim, B.M. Kibria, M.R.
Abonazel, (2021). Generalized two-parameter
estimators in the multinomial logit regression
model: methods, simulation and application,
Commun Stat Simul Comput. 1-16.
https://doi.org/10.1080/03610918.2021.19340
23
[19] H. Yang, X. Chang, A new two-parameter
estimator in linear regression. Commun Stat
Theory Methods, 39(6): 923–934 (2010).
[20] K. Liu, A new class of biased estimate in
linear regression. Communication in
Statistics- Theory and Methods, 22: 393–402
(1993).
[21] K. Mansson, B.M.G. Kibria, G. Shukur, On
Liu estimators for the logit regression model.
Econ. Model, 29(4):1483-1488 (2012).
[22] J. Huang, A simulation research on a biased
estimator in logistic regression model. In Z.
Li, X. Li, Y. Liu, & Z. Cai (Eds.),
Computational Intelligence and Intelligent
Systems, 389-395 (2012). Berlin, Germany:
Springer.
[23] B.M.G. Kibria, A.F. Lukman, A New Ridge-
Type Estimator for the Linear Regression
Model: Simulations and Applications.
Scientifica Article ID 9758378, 1-16 (2020).
[24] M.N. Akram, B.G. Kibria, M.R. Abonazel, N.
Afzal, On the performance of some biased
estimators in the gamma regression model:
simulation and applications. Journal of
Statistical Computation and Simulation, 1-23
(2022). DOI:
10.1080/00949655.2022.2032059
[25] M.R. Abonazel, I. Dawoud, F.A. Awwad,
A.F. Lukman, Dawoud–Kibria Estimator for
Beta Regression Model: Simulation and
Application. Front. Appl. Math. Stat. 7:
775068 (2022). doi: 10.3389/fams.2022.
[26] R.W. Farebrother, Further results on the mean
square error of ridge regression. J R Stat Soc,
B38:248–250 (1976).
[27] G. Trenkler, H. Toutenburg, Mean squared
error matrix comparisons between biased
estimators an overview of recent results. Stat
Pap 31:165–179 (1990).
[28] D.G. Gibbons, A simulation study of some
ridge estimators. J. Amer. Statist. Assoc.
76:131–139 (1981).
[29] A.F. Lukman, K. Ayinde, S. Binuomote, O.A.
Clement, Modified ridge‐type estimator to
combat multicollinearity: Application to
chemical data. Journal of Chemometrics,
e3125 (2019).
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.48
Fuad A. Awwad, Kehinde A. Odeniyi,
Issam Dawoud, Zakariya Yahya Algamal,
Mohamed R. Abonazel, B. M. Golam Kibria, Elsayed Tag Eldin