Table 2.
Values for Various Populations.
N
Normal Logistic Uniform Expon.
(κ = 3.0) (κ = 4.2) (κ = 1.8) (κ = 9.0)
2 1.3333 1.4815 1.2121 2.6667
3 1.1429 1.2121 1.0811 1.6000
4 1.0909 1.1474 1.0480 1.3714
5 1.0667 1.1019 1.0336 1.2698
6 1.0526 1.0811 1.0256 1.2121
7 1.0435 1.0673 1.0207 1.1748
8 1.0370 1.0576 1.0173 1.1487
9 1.0323 1.0503 1.0148 1.1129
10 1.0286 1.0447 1.0129 1.1146
11 1.0256 1.0402 1.0115 1.1028
12 1.0233 1.0365 1.0103 1.0932
13 1.0213 1.0335 1.0094 1.0842
14 1.0196 1.0309 1.0086 1.0785
15 1.0182 1.0287 1.0079 1.0728
16 1.0169 1.0267 1.0073 1.0679
17 1.0159 1.0251 1.0068 1.0635
18 1.0149 1.0236 1.0064 1.0597
19 1.0141 1.0223 1.0060 1.0564
20 1.0133 1.0211 1.0057 1.0534
21 1.0127 1.0200 1.0054 1.0507
22 1.0120 1.0191 1.0051 1.0482
23 1.0115 1.0182 1.0049 1.0460
24 1.0110 1.0174 1.0046 1.0440
25 1.0105 1.0167 1.0044 1.0421
26 1.0101 1.0160 1.0042 1.0404
27 1.0097 1.0154 1.0041 1.0388
28 1.0093 1.0148 1.0039 1.0374
29 1.0090 1.0143 1.0038 1.0360
30 1.0087 1.0138 1.0036 1.0348
Note:
.
“Expon.” denotes “Exponential”. GT(5)(6) and GT(7)
refer to values imputed from equations (5) and (6), and
equation (7), respectively in Gurland and Tripathi [5].
References:
[1] Bolch, B.W., More on Unbiased Estimation
of the Standard Deviation, The American
Statistician, 22 (3), 1968, 27.
[2] Brugger, R.M., A Note on Unbiased
Estimation of the Standard Deviation,
The American Statistician, 23 (4), 1969, 32.
[3] Cureton, E.E., Unbiased Estimation of the
Standard Deviation, The American
Statistician, 22 (1), 1968, 22.
[4] D’Agostino, R.B., Linear Estimation of the
Normal Distribution Standard Deviation,
The American Statistician, 24 (3), 1970,
14–15.
[5] Gurland, J. and Tripathi, R.C., A Simple
Approximation for Unbiased Estimation of
the Standard Deviation, The American
Statistician, 25 (4), 1971, 30-32.
[6] Markowitz, E., Minimum Mean-Square-
Error Estimation of the Standard Deviation
of the Normal Distribution, The American
Statistician, 22 (3), 1968, 26.
[7] Stuart, A., Reduced Mean-Square-Error
Estimation of in Normal Samples, The
American Statistician, 23 (4), 1969, 27.
[8] Angelova, J.A., On Moments of Sample
Mean and Variance, International
Journal of Pure and Applied Mathematics,
79 (1), 2012, 67-85.
[9] Jarrett, R.F., A Minor Exercise in History,”
The American Statistician, 22 (3), 1968,
25.
[10] Holtzman, W.H., The Unbiased Estimate of
the Population Variance and Standard
Deviation,” American Journal of
Psychology, 63 (4), 1950, 615-617.
[11] Johnson, M.E. and Lowe Jr., V.W.,
“Bounds on the Sample Skewness and
Kurtosis,” Technometrics, 21 (3), 1979, 377-
378.
Creative Commons Attribution License 4.0
(Attribution 4.0 International , CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.e
n_US
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.18