
References:
[1] Ben Taleb, E.M., Chillali, A., El Fadil,
L., Twisted Hessian curves over the Ring
Fq[e],e2=e, Bol. Soc. Paran, (3s.) v.(40),
doi:10.52699/bspm.15867, (2022).
[2] Boulbot, A., Chillali, A., Mouhib, A., ”Elliptic
Curves Over the Ring R”, Bol. Soc. Paran.,
Vol.38, No.3, 2020, 193-201.
[3] ElGamal, T., A Public Key Cryptosystem and
a Signature Scheme Based on Discrete Log-
arithms, In Proceedings of CRYPTO 84 on
Advances in cryptology. Springer-Verlag New
York, Inc, 1985, pp. 10-18.
[4] Grini, A., Chillali, A., Mouanis, H., The Bi-
nary Operations Calculus in H2
a,d. Bol. Soc.
Paran, Vol.40, 2020, 1-6.
[5] Grini, A., Chillali, A., Mouanis, H., Cryptog-
raphy over twisted Hessian curves of the ring
Fq[
ε
],
ε
2=0. Adv. Math.: Sci. J., vol.10 , no.1,
2021, 235-243.
[6] Grini, A., Chillali, A. &Mouanis, H. A new
cryptosystem based on a twisted Hessian curve
H4
a,d. J. Appl. Math. Comput., 2021.
[7] Grini A., Chillali A., Mouanis H. Cryptogra-
phy Over the Twisted Hessian Curve H3
a,d. In:
Ben Ahmed M., Teodorescu HN.L., Mazri T.,
Subashini P., Boudhir A.A. (eds) Networking,
Intelligent Systems and Security. Smart Inno-
vation, Systems and Technologies, vol. 237.
Springer, Singapore, 2022.
[8] Hendrik, W., Lenstra Jr., Factoring integers
with elliptic curves. Annals of mathe-matics,
1987, pp. 649-673.
[9] Lenstra, H. W., Eliptic Curves and Number-
Theoretic Algorithms. Processing Int.
Congress Math., USA, 1986.
[10] Peter L., Montgomery, Speeding the Pollard
and Elliptic Curve Methods of Facorization,
Mathematics of Computation., vol. 48, 1987,
243-264.
Creative Commons Attribution
License 4.0 (Attribution 4.0
International , CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/li-
censes/by/4.0/deed.en_US
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.13
Moha Ben Taleb Elhamam, Abdelali Grini,
Abdelhakim Chillali, Lhoussain El Fadil