Toeplitz-like systems from the stability point of view.
From a theoretical error analysis, it turns out that in-
stability and computational complexity balance, since
in general larger errors tend to be produced by faster
algorithms. For the near future we are planning to
continue our study of this interesting field, by detect-
ing the parameters which rule the stability behavior
of iterative superfast algorithms and focusing on the
conditioning properties connected with the magnitude
of the generators of the matrices involved.
References:
[1] T. Kailath, A. Viera and M. Morf, “Inverses of
Toeplitz operators, innovations and orthogonal
polynomials”, SIAM Rev., 20, pp. 106-119, 1978.
[2] T. Kailath, S. Y. Kung and M. Morf, “Displace-
ment ranks of matrices and linear equations”, J.
Math. Anal. Appl., 68, pp. 395-407, 1979.
[3] G. Heinig and K. Rost, Algebraic methods for
Toeplitz-like matrices and operators, Akademie-
Verlag, Berlin, 1984.
[4] T. Kailath and A. H. Sayed, “Displacement struc-
ture: theory and applications”, SIAM Rev., 37, pp.
297-386, 1995.
[5] D. A. Bini, “Matrix structures and applica-
tions”, Centre international de rencontres mathe-
matiques, U.M.S. 822 C.N.R.S./S.M.F., 4, pp. 1-
45, 2014.
[6] A. Aricó and G. Rodriguez, “ A fast solver for lin-
ear systems with displacement structure”, Numer.
Algorithms, 55, pp. 529-556, 2010.
[7] P. Favati, G. Lotti and O. Menchi, “A Divide
and Conquer Algorithm for the Superfast solution
of Toeplitz-like Systems”, SIAM. J. Matrix Anal.
Appl., 33, pp. 1039-1056, 2012.
[8] Y. Xi, J. Xia, S.Cauley andV.Balakrishnan, “Su-
perfast and stable structured solvers for Toeplitz
least squares via randomized sampling”, SIAM. J.
Matrix Anal. Appl., 35, pp. 44-72, 2014.
[9] R. Ke, M. K. Ng and H. W. Sun, “A fast direct
method for block triangular Toeplitz-like with tri-
diagonal block systems from time-fractional par-
tial differential equations”, Journal of Computa-
tional Physics, 303, pp. 203-211, 2015.
[10] X. Lin, M. K. Ng and H. W. Sun, “A Split-
ting Preconditioner for Toeplitz-Like Linear Sys-
tems Arising from Fractional Diffusion Equa-
tions”, SIAM. J. Matrix Anal. Appl., 38, pp. 1580-
1614, 2017.
[11] N. Akhoundi, “Toeplitz-like preconditioner for
linear systems from spatial fractional diffusion
equations”, Iranian Journal of Numerical Anal-
ysis and Optimization, 11, pp. 95-106, 2021.
[12] D. Bini and B. Meini, “On Cyclic Reduction Ap-
plied to a Class of Toeplitz-Like Matrices Arising
in Queueing Problems”, in: W. J. Stewart (eds)
Computations with Markov Chains. Springer,
Boston, MA , 1995.
[13] A. Böttcher, C. Garoni and S. Serra-Capizzano,
“Exploration of Toeplitz-like matrices with un-
bounded symbols is not a purely academic jour-
ney”, Sb. Math., 208, pp.1602-1627, 2017.
[14] A. Bostan, C. P. Jeannerod, C. Mouilleron
and E. Schost, “On matrices with displacement
structure: generalized operators and faster algo-
rithms”, SIAM. J. Matrix Anal. Appl., 38, pp. 733-
775, 2017.
[15] G. J. Groenewald, S. ter Horst, J. Jaftha and A.
C. M. Ran, “A Toeplitz-Like Operator with Ra-
tional Matrix Symbol Having Poles on the Unit
Circle: Fredholm Properties”, Complex Analysis
and Operator Theory 15, pp. 1-29, 2021.
[16] J. W. Cooley and O. W. Tukey, “An Algorithm
for the Machine Calculation of Complex Fourier
Series”, Math. Comput., 19, pp. 297-301, 1965.
[17] M. Arioli, H. Munthe-Kaas and L. Valdettaro,
“Componentwise error analysis for FFT’s with
applications to fast Helmholtz solvers”, Numer.
Algorithms, 12, pp. 65-88, 1996.
[18] N. J. Higham, Accuracy and Stability of Numer-
ical Algorithms, SIAM, Philadelphia, PA, 1996.
[19] P. J. Davis, Circulant Matrices, Wiley, New
York, 1979.
[20] G. H. Golub and C. F. Van Loan, “Circulant
Systems”, par. 4.7.7 in Matrix Computations (3rd
ed.), Johns Hopkins, 1996.
[21] R. M. Gray, “Toeplitz and Circulant Matrices: A
Review”, Foundations and Trends in Communi-
cations and Information Theory, 2, pp. 155-239,
2006.
[22] V. Y. Pan, Y. Rami and X. Wang, “Structured ma-
trices and Newton’s iteration: unified approach”,
Linear Algebra and its Applications, 343-344, pp.
233-265, 2002.
[23] P. Favati, G. Lotti and O. Menchi, “Stability
of the Levinson algorithm for Toeplitz-like sys-
tems”, SIAM Journal on Matrix Analysis and Ap-
plications, 31, pp. 2531-2552, 2010.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.12
Paola Favati, Ornella Menchi