
Theorem 3.5 let
0( ), , ( ) ( ( ), )H C D C DH
and
are FSSG of the FSG
if;
(i)
is a subgroup of
where
0: ( ) 0 ;{}C q Q C q
(ii)
0
( ), (y) ( ) , , .()
xy
J C q C C qd y q y C
Proof. We prove the result for
and
the rest would be done in the same way.
Let
and let be
an
FSSG of the FSG
Then (i) holds by
Again by Theorem 3.2 we have:
( , ) (0, ), (0,
(0, )
)
qy q y qy q y
qD y
qF y
JJ
That is, (0, ), (0, ) (0, ), (0, )
.
qy q y qy q
qDy
y
u
JJ
Conversely, assume that conditions (i) and (ii) hold,
then:
(0, ),(0, ) (0, ),(0, )
(0, 0), (0, ), ( ,
.
0)
qy q y qy q y
qy q
qD y
y q y
JJ
JJ
Similarly, we can prove that
0, , 0,( ) ( )
qy q y qD y
J
which proves by
Theorem 3.2 that
is fuzzy subgroups
of
4 Conclusion
In this paper, we have applied the fuzzy group study
started by Dib (1994) to the context of FSG.
References:
[1] Zadeh, L.A, Fuzzy Sets, Inform. Control Vol.8,
1965, pp. 338-353.
[2] Rosenfeld, A, Fuzzy Groups. Journal of
Mathematical Analysis and Applications Vol.
35, 1971, pp. 512-517.
[3] Dib, K. A. On Fuzzy Spaces and Fuzzy Group
Theory. Information Sciences, Vol. 80, 1994,
pp. 253-282.
[4] Molodtsov, D, Soft Set Theory First Result. An
International Journal of Computers and
Mathematics with Applications, Vol. 37, 1999,
pp. 19-31.
[5] Maji, P. K., Biswas, R, & Roy, A.R. Fuzzy
Soft Set Theory. The Journal of Fuzzy
Mathematics Vol. 9(3), 2001, pp. 589-602.
[6] Dib, K.A. & Hassan, A.A.M. The fuzzy
Normal Subgroup. Fuzzy Sets and Systems.
Vol. 98, 1998, pp.393-402.
[7] Akta. H. Gagman N. Soft Sets and Soft group,
Information Science Vol. 177, 2007, pp.2726-
2735.
[8] Selvachandran, G. Fuzzy Soft Rings Based on
Fuzzy Spaces. International Journal of
Mathematical Analysis, 8(56), 2014, pp. 2781-
2787.
[9] Jaradat, A., & Al-Husban, A The Multi-Fuzzy
Group Spaces on Multi-Fuzzy Space. J. Math.
Comput. Sci, Vol. 11(6), 2021, pp.7535-7552.
[10] Rosenfeld A, Fuzzy Groups, Math .Anal .Appl.
Vol. 35, 1971, pp. 512-517.
[11] Anthony, J. M. & Sherwood, H. A
Characterization of Fuzzy Subgroups. Fuzzy
Sets and Systems Vol. 7, 1982, pp. 297-305.
[12] Pazar. B.V & Aygunoglu. A & Ygun. H. On
Fuzzy Soft Rings. Journal of Hyper structures
Vol. 1(2), 2012, pp.1-15.
[13] Das, P. S. Fuzzy Groups and Level Subgroups.
Journal of Mathematical Analysis and
Applications. Vol. 84, 1981, pp.264-269.
[14] Dib, K. A. & Youssef, N. L. Fuzzy Cartesian
Product, Fuzzy Relations and Fuzzy Functions.
Fuzzy Sets and Systems. Vol. 41, 1991, pp.
299-315.
[15] Abdallah Al-Husban & Abdul Razak Salleh.
Complex Fuzzy Group based on Complex
fuzzy space. Global Journal of Pure and
Applied Mathematics. Vol. 12(2), 2016, pp.
1433-1450.
[16] Abdallah Al-Husban, Abdul Razak Salleh, &
Nasruddin Hassan, Complex Fuzzy Normal
Subgroup." THE ukm fst postgraduate
colloquium: Proceedings of the Universiti
Kebangsaan Malaysia, Faculty of Science and
Technology 2015 Postgraduate Colloquium.
Vol. 1678. , 2015, pp. 060008-060015.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.8