[2] Airola A., Pahikkala, T., Waegeman W., Baets, B. D.,
Salakoski, T., An experimental comparison of cross
validation techniques for estimating the area under
the ROC curve, J. Comput. Stat. & Data Anal. 55, 4,
2011, 1828–1844.
[3] Alpaydin E., Introduction to machine learning, MIT
Press, USA, 2004, 54–55.
[4] Antonakis, A. C., Sfakianakis M. E., A_ ssessing
Na¨ıve Bayes as a Method for Screening Credit
Applicants, J. App. Stat. 36, 5, 2009, 537–545.
[5] Cinar, D., Kayakutlu G., Scenario analysis using
Bayesian networks: A case study in energy sector,
Knowledge-Based Systems, 23, 3, 2010, 267–276.
[6] Drury B., Valverde-Rebaza J., Moura M. F., de
Andrade Lopes, A. A survey of the applications of
Bayesian networks in agriculture, Eng. App. Artif.
Intell., 65, 2017, 29–42.
[7] Friedman N., Geiger D., Goldszmidt M.,Bayesian
network classifiers, Mach. learn. 29, 2, 1997, 131–
163.
[8] Gamez J. A., Mateo J. L., Puerta J. M., Learning
Bayesian networks by hill climbing: efficient
methods based on progressive restriction of the
neighborhood, Data Min. Knowl. Discov., 22, 1,
2011, 106–148.
[9] Hand D. J., Principles of data mining, Drug safety, 30,
7, 2007, 621–622.
[10] Harding J. A., Shahbaz M., Kusiak A., Data mining
in manufacturing: a review, J. Manuf. Sci. Eng., 128,
4, 2006, 969–976.
[11] Hsieh N.C., Hung L. P., A data driven ensemble
classifier for credit scoring analysis, J. Exp. Sys.
Appl.: An Int. J. 37, 1, 2010, 534–545.
[12] Henriksen H. J., Rasmussen, P., Brandt G., Von
Buelow D., and Jensen F. V., Public participation
modelling using Bayesian networks in management
of groundwater contamination, Env. Model. and
Soft., 22, 8, 2007, 1101-1113.
[13] Kadam S., Raval, M., Data mining in finance, Int. J.
Eng. Trends Technol 16, 2014, 377–381.
[14] Koh H. C., Tan W. C., Goh C. P., A Two-step
Method to Construct Credit Scoring Models with
Data Mining Techniques, Int. J. Bus. Inf., 1, 1, 2006,
96–118.
[15] Lavrac N., Zupan B., Data mining in medicine. In
Data Mining and Knowledge Discovery Handbook-
Springer, Boston, USA, 2005, 1107–1137.
[16] Li H., Sun, J., Wu J., Predicting business failure
using classification and regression tree: An empirical
comparison with popular classical statistical methods
and top classification mining methods, Exp. Sys.
with Appl., 37, 8, 2010, 5895–5904.
[17] Maunder M. N., Harley S. J., Using cross validation
model selection to determine the shape of
nonparametric selectivity curves in fisheries stock
assessment models, Fisheries Res., 110, 2, 2011,
283–288.
[18] McLachlan S., Dube K., Hitman G. A., Fenton N. E.,
Kyrimi E., Bayesian networks in healthcare:
Distribution by medical condition, Artif. Intell. Med.,
107, 2020, 1–7.
[19] Nadaf M., Kadam V., Data mining in
telecommunication, Int. J. Adv. Comput. Theory
Eng., 2, 2013, 92–6.
[20] Neil M., Fenton, N. Using Bayesian networks to
model the operational risk to information technology
infrastructure in financial institutions, J. of Financ.
Transform., 22, 2008, 131–138.
[21] Ni D., Leonard J. D.,Markov chain Monte Carlo
multiple imputation using Bayesian networks for
incomplete intelligent transportation systems data,
Transp. Res. Rec., 1935, 1, 2005, 57–67.
[22] Ratanamahatana C. A., Gunopulos D., Scaling up
the Naive Bayesian Classifier: Using Decision Trees
for Feature Selection, Proceedings of Workshop on
Data Cleaning and Preprocessing: in ICDM’02,
Maebashi, Japan, December 9 - 12, 2002.
[23] Scutari M. (2021). Bnlearn - An R Package for
Bayesian Network Learning and Inference, Available
online: (accessed on 9th July 2021).
[24] Shorouq F. E., Saad G. Y., Applying Neural
Networks for Loan Decisions in the Jordanian
Commercial Banking System, J. Comput. Sci. Net.
Secur. 10, 1, 2010, 209–214.
[25] Sustersic M., Mramor D., Zupanm J., Consumer
credit scoring models with limited data, J. Exp. Sys.,
with Appl., 36, 3,2009, 4736–4744.
[26] Xhemali D., Hinde C. J., Stone R. G., Na¨ıve bayes
vs. decision trees vs. neural networks in the
classification of training web page. Inter. J. Comput.
Sci., 4, 1, 2009, 16–23.
[27] Zhang C. L., Gui R. X., Yu Y., Zh, H. Y., Web-
Scale Classification with Naive Bayes, Proceedings
of the 18th International Conference on World Wide
Web, Madrid, Spain, 20-24 April 2009, 1083–1084.
[28] Zhang W., Gao F., An Improvement to Naive Bayes
for Text Classification, Procedia Engineering, 15,
2001, 2160–2164.
Conflict of Interest:
The author states no conflict of interest.
Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself
Authors state no funding involved.
Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.6