rational expressions. Indian J. Pure Appl.
Math. 6, 1455–1458 (1975).
[4] Abu-Donia, H. M., Atia, H. A., Khater, O.
M. "Fixed point theorem by using –
contraction and –contraction in
probabilistic 2–metric spaces". Alexandria
Engineering Journal 59(3)(2020), pp.1239-
1242.
[5] Abu-Donia, H. M., Atia, H. A., Khater, O.
M. "Common fixed point theorems in
intuitionistic fuzzy metric spaces and
intuitionistic ()-contractive mappings".
Journal of Nonlinear Sciences and
Applications (JNSA), 13(6)(2020).
[6] Abu-Donia, H. M., Atia, H. A., Khater, O.
M. "Some fixed point theorems in fuzzy 2–
metric spaces under -contractive
mappings". Numerical and Computational
Methods in Sciences and Engineering
2(1)(2020), pp.11-15.
[7] Abu-Donia, H. M., Atia, H. A., Khater, O.
M. "Fixed point theorem in intuitionistic
fuzzy 3-metric spaces under strict
contractive conditions". Applied
Mathematics and Information Sciences.
14(6)(2020), pp1-5.
[8] Abu-Donia, H. M., Atia, H. A., Khater, O.
M. "Fixed point theorems for compatible
mappings in intuitionistic fuzzy 3-metric
spaces". Thermal Science, 24 (Suppl. 1),
371-376.
[9] Aubin, J.P., Cellina, A.: Differential
inclusions multivalued maps and viability
theory. Springer, Berlin(1984)
[10] Nadler Jr, S.B.: Multivalued contraction
mapping. Pac. J. Math. 30, 475–488 (1969).
[11] Ćirić, L.B., Ume, J.S.: Some common
fixed point theorems for weakly compatible
mappings. J. Math. Anal. Appl. 314, 488–
499 (2006).
[12] Fakhar, M.: Endpoints of set-valued
asymptotic contractions in metric spaces.
Appl. Math. Lett. 24,428–431 (2011).
[13] Goebel, K., Kirk, W.A.: Topics in Metric
Fixed Point Theory. Cambridge Studies in
Advanced Mathematics. Cambridge
University Press, Cambridge (1990).
[14] Gordji, M.E., Baghani, H., Khodaei, H.,
Ramezani, M.: A generalization of Nadler’s
fixed point theorem. J. Nonlinear Sci. Appl.
3, 148–151 (2010).
[15] Harandi, A.A.: End points of setvalued
contractions in metric spaces.Nonlinear
Anal. 72, 132–134 (2010).
[16] Robinson, C.: Dynamical Systems:
Stability, Symbolic Dynamics, and Chaos,
2nd edn. CRC Press, Boca Raton (1998).
[17] Strogatz, S.: Nonlinear Dynamics and
Chaos: With Applications to Physics,
Biology, Chemistry, and Engineering.
Westview Press, Boulder (2001).
[18] Lim, T.C.: Fixed point stability for set
valued contractive mappings with
applications to generalized differential
equations. J. Math. Anal. Appl. 110, 436–
441 (1985).
[19] Markin, J.T.: A fixed point stability
theorem for nonexpansive set valued
mappings. J. Math. Anal. Appl. 54, 441–443
(1976).
[20] Nadler Jr, S.B.: Sequences of contractions
and fixed points. Pac. J. Math. 27, 579–585
(1968).
[21] Samet, B.,Vetro, C.,Vetro, P.: Fixed point
theorems for --contractive type
mappings.Nonlinear Anal. 75, 2154–2165
(2012).
[22] Karapinar, E., Samet, B.: Generalized -
contractive type mappings and related fixed
point theorems with applications. Abstr.
Appl. Anal. 2012, Article ID 793486
(2012).
[23] Karapinar, E., Agarwal, R.P.: A note on
‘Coupled fixed point theorems for --
contractive-type mappings in partially
ordered metric spaces. Fixed Point Theory
Appl. 2013, 216 (2013).
[24] Salimi, P., Latif, A., Hussain, N.: Modified
--contractive mappings with
applications. Fixed Point Theory Appl.
2013, 151 (2013).
[25] Choudhury, B.S., Metiya, N.,
Bandyopadhyay, c.:Fixed points of
multivalued -admissible mappings. Rend.
Circ. Mat. Palermo (2015) 64:43–55.
Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.5
Hany A. Atia, Mona S. Bakry,
Aya A. Abd-Elrashed