2. Variables that have a dominant influence on
consumer satisfaction and engagement are the
digitization variable (X1), Consumer Needs
(X2), and Consumer Service (X3). This can
be used as information for PT Pertamina in
increasing consumer satisfaction and
engagement. Consumer satisfaction and
engagement will increase if Digitization,
Consumer Needs, and Consumer Service.
References:
[1] Budiantara, IN. Subanar and Z. Soejoeti. Bulls.
int. stats. Inst, 51, 333-334. 1997
[2] Wahba, G. Convergence rates of" thin plate"
smoothing splines wihen the data are noisy. In
Smoothing Techniques for Curve Estimation
(pp. 233-245). Springer, Berlin, Heidelberg.
1979.
[3] Fernandes, AAR, & Solimun, S. The Effect Of
Correlation Between Responses In Bi-
Response Nonparametric Regression Using
Smoothing Spline For Longitudinal Data.
Communications In Applied Analysis, 20(3).
2016.
[4] Wang, Y., Wu, L., & Engel, B. Prediction of
sewage treatment cost in rural regions with
multivariate adaptive regression splines.
Waters, 11(2), 195. 2019.
[5] Wedarini, NMS. The effect of product quality
on customer satisfaction and loyalty telkom
flexi. E-Journal of Management, 2(5). 2012.
[6] Fernandes, A. A. R., & Cahyoningtyas, R. A.
Structural equation modelling on Latent
Variables to identify farmers satisfaction in
East Java using Mixed-Scale Data. (2021,
May). In Journal of Physics: Conference Series
(Vol. 1872, No. 1, p. 012022). IOP Publishing.
[7] Fernandes, A. A. R., Solimun, F. U.,
Aryandani, A., Chairunissa, A., Alifa, A.,
Krisnawati, E., ... & Rasyidah12, F. L. N.
Comparison Of Cluster Validity Index Using
Integrated Cluster Analysis With Structural
Equation Modelingthe War-Pls Approach.
Journal of Theoretical and Applied Information
Technology, 99(18). 2021.
[8] Liang, L., Yang, F., Cook, WD, & Zhu, J. DEA
models for supply chain efficiency evaluation.
Annals of operations research, 145(1), 35-49.
2006.
[9] Aydin, D. A comparison of the nonparametric
regression models using smoothing spline and
kernel regression. World Academy of Science,
Engineering and Technology, 36, 253-257.
2007.
[10] Friedmen, JH. Multivariate Adaptive
Regression Splines. The Annals of Statistics.
Vol.19. Number 1. pp 1-14. 1991.
[11] Fernandes, A.A.R., Solimun. Multi-responses
model in patients suffering from decubitus
wound using generalized penalized Spline.
International Journal of PharmTech Research.
9(9), pp. 488–497. 2016.
[12] Agwil, W., Rahmi, I., & Yozza, H.. Prediction
of Forest Fire Area Based on Meteorological
Data Using Multivariate Adaptive Regression
Splines (MARS) Approach. Journal of
Mathematics, 77-84. 2012.
[13] Setiyawati, A. Customer Satisfaction Study To
Achieving Customer Loyalty (Case Study on
Consumers at Bangun Rejeki Semarang Stores)
(Doctoral dissertation, Universitas
Diponegoro). 2009.
Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.3
Adji Achmad Rinaldo Fernandes,
Solimun, Lailil Muflikhah, Aisyah Alifa,
Endang Krisnawati, Ni Made Ayu Astari Badung,
Erlinda Citra Lucki Efendi