[17] K. Gdawiec, W. Kotarski, and A. Lisowska, Vi-
sual analysis of the Newtons method with frac-
tional order derivatives, Symmetry, 11 (2019).
[18] Y. Ham, C. Chun, A fifth-order iterative method
for solving nonlinear equation, Appl. Math.
Comput. 194 (2007), 287290
A.S. Householder, The Numerical Treatment
of a Single Nonlinear Equation, McGraw-Hill,
New York, (1970).
[19] A.S. Householder, The Numerical Treatment
of a Single Nonlinear Equation, McGraw-Hill,
New York, (1970).
[20] Ioannis K. Argyros, Santhosh George, Extended
And Unified Local Convergence For Newton-
Kantorovich Method Under w? Conditions With
Applications, WSEAS Transactions on Mathe-
matics, 16(2017), 248–256.
[21] Jain, Pankaj and Bahadur Chand, Prem. Deriva-
tive free iterative methods with memory hav-
ing higher R-order of convergence. Inter-
national Journal of Nonlinear Sciences and
Numerical Simulation, 21 (2020), 641–648.
https://doi.org/10.1515/ijnsns-2019-0174
[22] B. Kalantari, E. H. Lee, Newton-Ellipsoid poly-
nomiography, Journal of Mathematics and the
Arts, 13 (2019), 336-352.
[23] S. M. Kang, A. Naseem, W. Nazeer, M. Munir,
and C. Y. Jung, Polynomiography of some iter-
ative methods, International Journal of Mathe-
matical Analysis, 11 (2017), 133-149.
[24] Y. C. Kwun, Z. Majeed, A. Naseem, W. Nazeer,
and S. M. Kang, New iterative methods using
variational iteration technique and their dynam-
ical behavior, International Journal of Pure and
Applied Mathematics, 116 (2017), 1093-1113.
[25] D. Kinkaid, W. Chenney, Numerical anal-
ysis: mathematics of scientific computing,
AMS(2009).
[26] R. King, A local convergence theorem for the
Super-Halley method in a Banach space, SIAM
J. Numer. Anal. 10 (5) (1973), 876879.
[27] J.S. Kou, Y.T. Li, X.H. Wang, A uniparametric
Chebyshev-type method free from econd deriva-
tives, Appl. Math. Comput. 179 (2006), 296-
300.
[28] J.S. Kou, Y.T. Li, X.H. Wang, Modified Halleys
method free from second derivative, Appl. Math.
Comput. 183 (2006), 704-708.
[29] J.S. Kou, Y.T. Li, X.H. Wang, A uniparamet-
ric Chebyshev-type method free from second
derivatives, Appl. Math. Comput. 179 (2006),
296–300.
[30] J.S. Kou, Y.T. Li, X.H. Wang, Modified Halley s
method free from second derivative, Appl. Math.
Comput. 183 (2006), 704–708.
[31] S. Li, Fourth-order iterative method with-
out calculating the higher derivatives
for nonlinear equation. Journal of Algo-
rithms Computational Technology.(2019)
https://doi.org/10.1177/1748302619887686
[32] B. Neta, A New Derivative-Free Method to
Solve Nonlinear Equations. Mathematics, 9
(2021). https://doi.org/ 10.3390/math9060583
[33] M.A. Noor, Some iterative methods for solving
nonlinear equations using homotopy perturba-
tion method, Int. J. Comp. Math. 87 (2010), 141-
149.
[34] M.A. Noor, V. Gupta, Modified Householder it-
erative method free from second derivatives for
nonlinear equations, Appl. Math. Comput. 190
(2007), 1701-1706.
[35] M.A. Noor, W.A. Khan, New iterative methods
for solving nonlinear equation by using homo-
topy perturbation method, Appl. Math. Comput.
219 (2012), 3565–3574.
[36] M.A. Noor, Some iterative methods for solving
nonlinear equations using homotopy perturba-
tion method, Int. J. Comp. Math. 87 (2010), 141-
149.
[37] Ourida Ourahmoun , Newton Raphson method
used to model organic solar cells under Matlab
software, WSEAS Transactions on Circuits and
Systems, 19(2020),181–185
[38] A.M. Ostrowski, Solution of Equations in Eu-
cilidean and Banach Space, third ed., Academic
Press, New York, (1973).
[39] A.M Ostrowski, Solutions of Equations and Sys-
tem of Equations, Academic Press, New York,
(1960).
[40] M. S. Petkovic, B. Neta, L.D. Petkovic and J.
Dzunic, Multipoint Methods for Solving Non-
linear Equations,( 2012).
[41] J.R. Sharma, A composite third order NewtonSt-
effensen method for solving nonlinear equations,
App. Math. Comput. 169 (2005), 242–246.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.2