WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.99

Nardone Pasquale, Sonnino Giorgio

Simple algorithm for GCD of polynomials

NARDONE PASQUALE,SONNINO GIORGIO
Physics Department
Université Libre de Bruxelles
50 av F. D. Roosevelt, Bruxelles 1050
BELGIUM

Abstract: Based on the Bezout approach we propose a simple algorithm to determine the gcd of two polyno-
mials which doesn’t need division, like the Euclidean algorithm, or determinant calculations, like the Sylvester
matrix algorithm. The algorithm needs only n steps for polynomials of degree n. Formal manipulations give the
discriminant or the resultant for any degree without needing division nor determinant calculation.

Key-Words: Bezout’s identity, polynomial remainder sequence, resultant, discriminant
Received: April 27, 2022. Revised: October 28, 2022. Accepted: December 2, 2022. Published: December 31, 2022.

1 Introduction

There exist different approach to determine the great-
est common divisor (gcd) for two polynomials, most
of them are based on Euclid algorithm []l]] or matrix
manipulation [4] [5] or subresultant techniques [2]. All
these methods require are long manipulations and cal-
culations around O(n?) for polynomials of degree n.
Bezout identity could be another approach. If P, (z)
is a polynomial of degree n and @Q,,(x) is a polyno-
mial of degree at least n, the Bezout identity says
that ged (P, (x), Qn(z)) = s(z)Po(x) + £(2)Qn(x)
where t(x) and s(z) are polynomials of degree less
then n. Finding s(x) and ¢(x) requires also O(n?)
manipulations. If we know that P, (0) # 0 we pro-
pose here another approach which use only a linear
combination of P,(z) and @, (z) and division by z
to decrease the degree of both polynomials by 1.

2 Problem Formulation
Let’s take two polynomials P, (x) and Q,,(x):

k=0 k=0

with p 7& 0 and pn 75 0. The corresponding list
of coefficients are:

(n) (1)

{(() 7p yPp_1:Pn }
{é 7q 7q7(1)17q7(1n)}

Let’s define A, = ")p(()") pg”)qé "OIEA, £ 0,
we can build two new polynomials of degree n—1
by cancelling the lowest degree term and the highest

E-ISSN: 2224-2880

degree term:
o) = 1(g§" Pa() — p§” Qu()) 0
Qn-1(z) = ¢ Pa(x) — pll Qu (2)
If A,, = 0 then we replace Q,(z) by Q,(z):
Py(x) = Po(x)
)

Qn(2) = 205" Qu(z) — 4§ Pa(2))

This correspond to the manipulation on the list of
coefficients:

(n=1) _ (1) (n) (n) (n)

Dy, =4do Pp+1 —Po k41
oY = gp — pl g
Note also that ng__l) = —q(()n_l) = —A, and this
will remains true at all iteration ending with p(()o) =
a) = —A
IfA,=0
~(n)
qO = 0 ,IC
~\Nn n n n n 6 [17 n]
5 = W8, — a0,

Note that the new qﬁ”) =0.
In term of list manipulation we have (if A, # 0) :

p,_1 = Drop[First[q,] p,, — First[p,] q,,, 1]
q,_1 = Drop[Last[q,] p, — Last[p,] q,,, —1]

where First[1ist] and Last[1list] takes the first
and the last element of the list respectively, while
Drop[list,1] and Drop[list,-1] drop the first
and the last element of the list respectively. If A,, = 0

Volume 21, 2022

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.99

then we know that p(()n)qun)

" a, — g
1S

— qén)pgn) = 0 so the list

p,, ends with 0 so the list manipulation

gn = RotateRight[Firstp,]q, — Firstq,|p,]

where RotateRight [1ist] rotate the list to the right
(RotateRight [{a,b,c}]={c,a,b}).

So we have the same Bezout argument, the
gcd(Pp(x),Qn(z)) must divide P,_i(z) and
Qn—1(x) or P,(x) and Q,,(z). Repeating k times the
iteration, it must divide P,,_j(z)and Qn k().

anon() =
0 _

g = —p” then ged(P,(x), Qn()) = 1. If we
reach, at some stage j of iteration, P,_;(x) = 0 or
@n—;j(x) = 0 then the previous stage j — 1 contains
the gcd.

Repeating these steps decreases the degree of poly-
nomials. Reversing the process enables us to find
a combinations of P,(x) and Q,(x) which gives a
monomial z* and the polynomials are co-prime, or
we reach a 0-polynomial before reaching the constant
and P, (z), Qn,(x) have a non trivial gcd.

If we reach a constant : Py(z) =

2.1 Result

When dealing with numbers the recurrence could
gives large numbers so we can normalise the poly-
nomials by some constant

Poi(z) = 222 (g P, (2) — p{V Qu(x))
Qn(z) = Bu1(¢" Po(z) — piV Qu(x))

choosing for example « and S such that the sum
of absolute value of the coefﬁcients of P,_1(x) and

_ 1 _
Quoa(e) are 1oty = SRy Il 8,
i Hq,(cn_l) ||, or that the maximum of the coeffi-

3)

cients is always 1: a;il = max(p,(gn 1)), ;_11 =
(n—1)
max(q,).

For example Ps(z) = 2% — 42% + 425 — 2924 +
2023 + 2422 + 162 + 48 and Qg(z) = 2® + 327 —
7zt — 2123 — 622 — 18z, and let’s use the “max”
normalisation. The first iteration says that gcd must
divide P;(z) and Q7(z):

1

Pr(z) = —ng(x) and Qr(x) = ¢

(): . —|—2z+7andQ7()
36 - %+%—%ﬁi A B e
gcd divide
6 5
{ P6(:1:):%6f%*12§3+%*:ﬁ+ fé
Qo(r) =F+%5 -5+ 323 +*_T)
E-ISSN: 2224-2880

(Ps(z)—Qs(x))

870

Nardone Pasquale, Sonnino Giorgio

then gcd divide

{ P5(z) =
Qs(x) =

etc.. finally gcd divide

3
313) 2
155z3
187

22x 115z

57
+x

8zt
T

_19z*
187 +

+ 19
_ 12
Tar

321
187

_ 151x?
187

{ Py(z) =23 +322 +2+3
Qs(z) =% +22+2+1

the next step will give Q2(x) = 0

(3Qs(x) — Ps(x) 0) with the last step:

Py(z) = Fs(z) (63904 6305 T 3952 o

37827 T 37890) -
704 400 164 100 143
Qs(z) (_ 18025 — 18927 1 T89a°

~ T892 T 378x) -
23 + 322 + 2 + 3 and
Qa(x) Py(x) (—
Q@) (8-S +2+4-3)=0
Qs(x)) =

CL‘4

so we have ng(Pg()
2.2 On formal polynomials
Doing the algorithm on formal polynomials gives au-
tomatically the resultant or the discriminant of P, (z)
and Qy, ().

For example for the gcd of P, (x) and P, (x) for
formal polynomials (we always cancel the term 2™~ !
by translation) we have:

+

ﬁ—i—x—%)

3 +322+2+3

Pi(z)=2+pr+q Qs(z)=Ps(z) =32 +p

gives after 3 iterations the well known discriminant

(4p —|— 27q), and the Bezout expresswn is: p(9qz +
(23pqx + 2p +9¢°)z+2p*q)Q3(x) =
4p + 27 Yz and 3p(2px — 3q)P3() — (pr —

3q)(2pz + 36])@3() = (4p® + 27¢%)a”
For the general polynomial of degree 4:

Py(z) = 2 4p 2?+q a+r Qu(z) = 4234+2p 244
in 5 iterations we have the discriminant is [3]

disc = 256r°—128p*r2+144pg*r—27¢* +16p*r—4p® >

A more formal case [3] is: Pp,(z) = 2™ 4+ax+b
and Q,,,(7) = Pp(z) = m 2™ ! + a applying the
procedure gives then the discriminant [3]

mmbm—l + (m . 1)m—1am

“4)

3 Conclusion

The algorithm developed here could be use for formal
or numerical calculation of the gcd of two polynomi-
als, or the discriminant and the resultant. It doesn’t
use matrix manipulation nor determinant calculations
and for polynomials of order n, it takes n steps to
achieve the goal. It provide also the two polynomi-
als needed for Bezout identity.

Volume 21, 2022

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.99

References:

[1] Knuth, D.E. The Art of Computer Programming,
Vol. 2. Addison-Wesley, Reading, Mass., 1969

[2] W. S. Brown and J. F. Traub. 1971. On Eu-
clid’s Algorithm and the Theory of Subresul-
tants. J. ACM 18, 4 (Oct. 1971), 505-514.
DOLI:https://doi.org/10.1145/321662.321665

[3] http://www2.math.uu.se/ svante/papers/sjN5.pdf

[4] Dario A. Bini and Paola Boito. 2007. Struc-
tured matrix-based methods for polynomial
e-gcd: analysis and comparisons. In Proceed-
ings of the 2007 international symposium
on Symbolic and algebraic computation
(ISSAC °07). Association for Computing
Machinery, New York, NY, USA, 9-16.
DOLI:https://doi.org/10.1145/1277548.1277551

Fazzi, A., Guglielmi, N., & Markovsky, L
(2021). Generalized algorithms for the approx-
imate matrix polynomial GCD of reducing
data uncertainties with application to MIMO

(3]

E-ISSN: 2224-2880

871

Nardone Pasquale, Sonnino Giorgio

system and control. Journal of Computational
and Applied Mathematics, 393, [113499].
https://doi.org/10.1016/j.cam.2021.113499

Contribution of individual authors to
the creation of a scientific article
(ghostwriting policy)

Pasquale Nardone and Giorgio Sonnino contributed
equally to the development of the algorithm.

Creative Commons Attribution
License 4.0 (Attribution 4.0

International , CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en US

Volume 21, 2022

https://creativecommons.org/licenses/by/4.0/deed.en_US

	Introduction
	Problem Formulation
	Result
	On formal polynomials

	Conclusion

