
Simple algorithm for GCD of polynomials
NARDONE PASQUALE,SONNINO GIORGIO

Physics Department
Université Libre de Bruxelles

50 av F. D. Roosevelt, Bruxelles 1050
BELGIUM

Abstract: Based on the Bezout approach we propose a simple algorithm to determine the gcd of two polyno-
mials which doesn’t need division, like the Euclidean algorithm, or determinant calculations, like the Sylvester
matrix algorithm. The algorithm needs only n steps for polynomials of degree n. Formal manipulations give the
discriminant or the resultant for any degree without needing division nor determinant calculation.

Key-Words: Bezout’s identity, polynomial remainder sequence, resultant, discriminant

1 Introduction
There exist different approach to determine the great-
est common divisor (gcd) for two polynomials, most
of them are based on Euclid algorithm [1] or matrix
manipulation [4] [5] or subresultant techniques [2]. All
these methods require are long manipulations and cal-
culations around O(n2) for polynomials of degree n.
Bezout identity could be another approach. If Pn(x)
is a polynomial of degree n and Qn(x) is a polyno-
mial of degree at least n, the Bezout identity says
that gcd(Pn(x), Qn(x)) = s(x)Pn(x) + t(x)Qn(x)
where t(x) and s(x) are polynomials of degree less
then n. Finding s(x) and t(x) requires also O(n2)
manipulations. If we know that Pn(0) ̸= 0 we pro-
pose here another approach which use only a linear
combination of Pn(x) and Qn(x) and division by x
to decrease the degree of both polynomials by 1.

2 Problem Formulation
Let’s take two polynomials Pn(x) and Qn(x):

Pn(x) =
n∑

k=0

p
(n)
k xk ; Qn(x) =

n∑
k=0

q
(n)
k xk

with p
(n)
0 ̸= 0 and p

(n)
n ̸= 0. The corresponding list

of coefficients are:

pn = {p(n)0 , p
(n)
1 , · · · , p(n)n−1, p

(n)
n }

qn = {q(n)0 , q
(n)
1 , · · · , q(n)n−1, q

(n)
n }

Let’s define∆n = q
(n)
n p

(n)
0 −p

(n)
n q

(n)
0 . If∆n ̸= 0,

we can build two new polynomials of degree n − 1
by cancelling the lowest degree term and the highest

degree term:

Pn−1(x) =
1
x(q

(n)
0 Pn(x)− p

(n)
0 Qn(x))

Qn−1(x) = q
(n)
n Pn(x)− p

(n)
n Qn(x)

(1)

If ∆n = 0 then we replace Qn(x) by Q̃n(x):

Pn(x) = Pn(x)

Q̃n(x) = x(p
(n)
0 Qn(x)− q

(n)
0 Pn(x))

(2)

This correspond to the manipulation on the list of
coefficients:

p
(n−1)
k = q

(n)
0 p

(n)
k+1 − p

(n)
0 q

(n)
k+1

q
(n−1)
k = q

(n)
n p

(n)
k − p

(n)
n q

(n)
k

Note also that p(n−1)
n−1 = −q

(n−1)
0 = −∆n and this

will remains true at all iteration ending with p
(0)
0 =

−q
(0)
0 = −∆1.
If ∆n = 0 :

q̃
(n)
0 = 0

q̃
(n)
k = p

(n)
0 q

(n)
k−1 − q

(n)
0 p

(n)
k−1

k ∈ [1, n]

Note that the new q̃
(n)
1 = 0.

In term of list manipulation we have (if∆n ̸= 0) :

pn−1 = Drop[First[qn] pn − First[pn] qn, 1]
qn−1 = Drop[Last[qn] pn − Last[pn] qn,−1]

where First[list] and Last[list] takes the first
and the last element of the list respectively, while
Drop[list,1] and Drop[list,-1] drop the first
and the last element of the list respectively. If∆n = 0

Received: April 27, 2022. Revised: October 28, 2022. Accepted: December 2, 2022. Published: December 31, 2022.

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.99 Nardone Pasquale, Sonnino Giorgio

E-ISSN: 2224-2880 869 Volume 21, 2022

then we know that p(n)0 q
(n)
n − q

(n)
0 p

(n)
n = 0 so the list

p
(n)
0 qn − q

(n)
0 pn ends with 0 so the list manipulation

is :

q̃n = RotateRight[First[pn]qn − First[qn]pn]

where RotateRight[list] rotate the list to the right
(RotateRight[{a,b,c}]={c,a,b}).

So we have the same Bezout argument, the
gcd(Pn(x), Qn(x)) must divide Pn−1(x) and
Qn−1(x) or Pn(x) and Q̃n(x). Repeating k times the
iteration, it must divide Pn−k(x) and Qn−k(x).

If we reach a constant : P0(x) = p
(0)
0 andQ0(x) =

q
(0)
0 = −p

(0)
0 then gcd(Pn(x), Qn(x)) = 1. If we

reach, at some stage j of iteration, Pn−j(x) = 0 or
Qn−j(x) = 0 then the previous stage j − 1 contains
the gcd.

Repeating these steps decreases the degree of poly-
nomials. Reversing the process enables us to find
a combinations of Pn(x) and Qn(x) which gives a
monomial xk and the polynomials are co-prime, or
we reach a 0-polynomial before reaching the constant
and Pn(x), Qn(x) have a non trivial gcd.

2.1 Result
When dealing with numbers the recurrence could
gives large numbers so we can normalise the poly-
nomials by some constant

Pn−1(x) =
αn−1

x (q
(n)
0 Pn(x)− p

(n)
0 Qn(x))

Qn(x) = βn−1(q
(n)
n Pn(x)− p

(n)
n Qn(x))

(3)

choosing for example α and β such that the sum
of absolute value of the coefficients of Pn−1(x) and
Qn−1(x) are 1: α−1

n−1 =
∑n−1

k=0 ∥p
(n−1)
k ∥, β−1

n−1 =∑n−1
k=0 ∥q

(n−1)
k ∥, or that the maximum of the coeffi-

cients is always 1: α−1
n−1 = max(p(n−1)

k), β−1
n−1 =

max(q(n−1)
k).

For example P8(x) = x8 − 4x6 + 4x5 − 29x4 +
20x3 + 24x2 + 16x + 48 and Q8(x) = x8 + 3x7 −
7x4 − 21x3 − 6x2 − 18x, and let’s use the “max”
normalisation. The first iteration says that gcd must
divide P7(x) and Q7(x):

P7(x) = − 1

21x
Q8(x) andQ7(x) =

1

48
(P8(x)−Q8(x))

P7(x) = −x7

21 −
x6

7 + x3

3 +x2+ 2x
7 + 6

7 andQ7(x) =

−x7

16 −
x6

12 +
x5

12 −
11x4

24 + 41x3

48 + 5x2

8 + 17x
24 + 1, then

gcd divide{
P6(x) =

x6

78 − 2x5

13 − 2x4

13 + 11x3

13 − 67x2

78 + x− 9
13

Q6(x) =
x6

4 + x5

5 − 11x4

10 + x3 − 33x2

20 + 4x
5 − 3

10

then gcd divide{
P5(x) =

22x5

57 + 8x4

19 − 31x3

19 + x2 − 115x
57 + 11

19

Q5(x) = −32x5

187 − 19x4

187 + 155x3

187 − 151x2

187 + x− 12
17

etc.. finally gcd divide{
P3(x) = x3 + 3x2 + x+ 3

Q3(x) =
x3

3 + x2 + x
3 + 1

the next step will give Q2(x) = 0
(3Q3(x) − P3(x) = 0), with the last step:
P2(x) = P8(x)

(
88

63x4 + 50
63x3 + 229

378x2 + 143
378x

)
−

Q8(x)
(
− 704

189x5 − 400
189x4 + 164

189x3 − 100
189x2 + 143

378x

)
=

x3 + 3x2 + x+ 3 and
Q2(x) = P8(x)

(
− 6

x3 + x− 1
x

)
−

Q8(x)
(
16
x4 − 8

x2 + x+ 4
x − 3

)
= 0

so we have gcd(P8(x), Q8(x)) = x3+3x2+x+3

2.2 On formal polynomials
Doing the algorithm on formal polynomials gives au-
tomatically the resultant or the discriminant of Pn(x)
and Qn(x).

For example for the gcd of Pn(x) and Pn(x)
′ for

formal polynomials (we always cancel the term xm−1

by translation) we have:

P3(x) = x3 + p x+ q Q3(x) = P3(x)
′ = 3x2 + p

gives after 3 iterations the well known discriminant
(4p3 + 27q2), and the Bezout expression is: p(9qx+
2p2)P3(x)−(3pqx2+(2p3+9q2)x+2p2q)Q3(x) =
−(4p3 + 27q2)x3 and 3p(2px − 3q)P3(x) − (px −
3q)(2px+ 3q)Q3(x) = (4p3 + 27q2)x2

For the general polynomial of degree 4:

P4(x) = x4+p x2+q x+r Q4(x) = 4x3+2p x+q

in 5 iterations we have the discriminant is [3]

disc = 256r3−128p2r2+144pq2r−27q4+16p4r−4p3q2

Amore formal case [3] is: Pm(x) = xm+a x+ b
and Qm(x) = Pm(x)′ = m xm−1 + a applying the
procedure gives then the discriminant [3]

mmbm−1 + (m− 1)m−1am (4)

3 Conclusion
The algorithm developed here could be use for formal
or numerical calculation of the gcd of two polynomi-
als, or the discriminant and the resultant. It doesn’t
use matrix manipulation nor determinant calculations
and for polynomials of order n, it takes n steps to
achieve the goal. It provide also the two polynomi-
als needed for Bezout identity.

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.99 Nardone Pasquale, Sonnino Giorgio

E-ISSN: 2224-2880 870 Volume 21, 2022

References:
[1] Knuth, D.E. The Art of Computer Programming,

Vol. 2. Addison-Wesley, Reading, Mass., 1969

[2] W. S. Brown and J. F. Traub. 1971. On Eu-
clid’s Algorithm and the Theory of Subresul-
tants. J. ACM 18, 4 (Oct. 1971), 505-514.
DOI:https://doi.org/10.1145/321662.321665

[3] http://www2.math.uu.se/ svante/papers/sjN5.pdf

[4] Dario A. Bini and Paola Boito. 2007. Struc-
tured matrix-based methods for polynomial
ϵ-gcd: analysis and comparisons. In Proceed-
ings of the 2007 international symposium
on Symbolic and algebraic computation
(ISSAC ’07). Association for Computing
Machinery, New York, NY, USA, 9-16.
DOI:https://doi.org/10.1145/1277548.1277551

[5] Fazzi, A., Guglielmi, N., & Markovsky, I.
(2021). Generalized algorithms for the approx-
imate matrix polynomial GCD of reducing
data uncertainties with application to MIMO

system and control. Journal of Computational
and Applied Mathematics, 393, [113499].
https://doi.org/10.1016/j.cam.2021.113499

Contribution of individual authors to
the creation of a scientific article
(ghostwriting policy)
Pasquale Nardone and Giorgio Sonnino contributed
equally to the development of the algorithm.

Creative Commons Attribution
License 4.0 (Attribution 4.0
International , CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.99 Nardone Pasquale, Sonnino Giorgio

E-ISSN: 2224-2880 871 Volume 21, 2022

https://creativecommons.org/licenses/by/4.0/deed.en_US

	Introduction
	Problem Formulation
	Result
	On formal polynomials

	Conclusion

