
Abstract: An important aim in biomedical studies is to study how an intermediate event and prognostic factors
influence the course of disease of a patient. In most cases, the effect of the intermediate event is considered a time-
dependent covariate and studied using extensions of the Cox proportional hazards model. Additionally, many of
these studies often involve several endpoints, making the traditional approaches much more complicated. In such
cases, multi-state models provide a useful tool to describe the survival process. This article aims to illustrate how
multi-state models can be used as an alternative to traditional approaches. It also aims to offer guidelines for
the correct use of these approaches through the analysis of survival data of patients with breast cancer. Several
analyses were performed, and methods to evaluate the effect of covariates on transition intensities and to test
some usual assumptions are discussed. Tree-based survival models, like the Cox proportional hazards models, are
popular methods for constructing a prediction model in the field of medical research. We also present the results
obtained by applying some tree-based models to the breast cancer data while showing their interpretation and
utility. An overview of available software and software developed by the authors is provided to aid researchers in
choosing an appropriate software tool for their purposes.
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regression, survival analysis, survival tree models
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1 Introduction

In many clinical studies, patients may experience
multiple events over a follow-up period. Tradition-
ally, the intermediate events are considered time-
dependent covariates (i.e., covariates that may change
their value over time) and studied using extensions
of the Cox proportional hazards model. The Cox
model with time-dependent covariates can be used,
but its use is more complicated in practice than the
Cox model with fixed covariates. Such analysis can
also be performed using multi-state models ([1], [2],
[3], [4]). These models can be successfully used to in-
vestigate the progress of patients over a given number
of states. Multi-state models can be illustrated graph-
ically using diagrams with boxes representing states
and with arrows between states representing possible
transitions. In general, states represent the occurrence
of an event that may be related to the survival prog-
nosis, such as complications after surgery, relapses, or

non-fatal episodes. In biomedical applications, states
may also represent health conditions (e.g., healthy, ill-
ness, and death), or states of a disease (such as states
of cancer or HIV infection). The complexity of the
multi-state model depends greatly on the number of
states and also on the possible transitions. The illness-
death model (Figure 1) plays a central role in the the-
ory and practice of these models, describing the dy-
namics of ‘healthy’ individuals who may pass into an
intermediate ‘illness’ state before entering an absorb-
ing state that in many situations is represented by the
death of the individual. From now on, for simplicity’s
sake, we will assume the illness-death model depicted
in Figure 1.

An important goal in multi-state modeling is to
evaluate the possible effect of a set of prognostic fac-
tors on the course of a disease. Several models have
been used to relate individual characteristics to tran-
sition intensities. A common strategy, which allows
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Figure 1: The progressive illness-death model.

a simplification of the analysis, consists of disaggre-
gating the whole process into several survival models,
fitting Cox regression models [5] for each of the tran-
sitions and considering some appropriate adjustments
to the risk sets. In general, the model can be written
as follows:

hij(t;X) = hij,0(t) exp
(
βT
ijX

)
(1)

where hij,0(t) denotes the baseline hazard func-
tion between states i and j, βij is a vector with the re-
gression parameters, and X is a vector of covariates.
For the mortality intensity function without the dis-
ease, α13(t;X), the survival times of individuals who
observed the disease are considered to be censored at
the time of the disease. Individuals who remain alive
and disease-free (‘healthy’) also contribute to cen-
sored survival times. For disease intensity, α12(t;X),
the endpoint is the time of disease onset. The survival
times of individuals who did not get ill are considered
censored, whether they are alive or have died unaf-
fected by the disease. Finally, to model α13(t;X),
the mortality intensity after disease onset, only the
survival times (censored or uncensored) truncated by
the disease time of individuals who observed the dis-
ease are considered. Note that individuals are at risk
only after entering intermediate state 2. It should be
noted that in some cases, we can impose some condi-
tions on the baseline hazard functions. For the illness-
death model, an approach that is often considered is
to assume that the baseline hazard functions for the
transition from state 1 to state 3 (1 → 3) and for the
transition between state 2 and state 3 (2 → 3) to be
proportional. In these cases, the model for these tran-
sitions is given by:

α13(t;X) = α13,0(t) exp(β
T
13X) (2)

and

α23(t;X) = α13,0(t) exp(β
T
23X + λ) (3)

When implementing a Cox regression model as
presented in the equations above, it is assumed that the

effect of each of the continuous covariates has a linear
(or log-linear) functional form. However, it should be
noted that the presence of a non-linear effect can lead
to serious consequences with an incorrect specifica-
tion of the model, resulting in biases and a decrease
in the power of statistical significance tests ([6], [7]).
An incorrect functional form can also lead to a diag-
nosis of non-proportional hazards. The lack of flex-
ibility of (semi-)parametric survival models has led
in recent decades to the development of a variety of
non-parametric regression methods based on various
statistical models, of which we highlight: the Aalen
additive hazards model approach [8] and Cox regres-
sion models with additive predictors [9]. To intro-
duce flexibility into the Cox regression model, vari-
ous smoothing methods can be applied, but penalized
splines (P-splines), introduced by Eilers and Marx
[10], are the most considered in this context. The
model can be written as follows:

hij(t;X) = hij,0(t) exp
( q∑
k=1

fk,ij(Xk)
)

(4)

where fk,ij(∙), k = 1, · · · , q are smooth functions
associated with quantitative covariates.

In themulti-state context, two differentmodels can
be considered based on assumptions made about the
dependence of transition intensities and process his-
tory. In the illness-death model this assumption is rel-
evant on transition from the intermediate state to the
absorbing state. The transition intensities can bemod-
eled using separate Cox models, assuming that the
process is Markovian (which states that the past and
future are independent, given the current state of the
process). Under this approach, known as ‘clock for-
ward’, time t=0 is the start of the study and t refers to
the time since entry into the study. In situations where
the process does not verify the Markov assumption,
it is usual to use a semi-Markov model in which the
future of the process is assumed to depend not on
the current time but on the duration in the current
state. Semi-Markov models are also called ‘clock-
reset’ models because each time the individual enters
a new state, time is reset to 0.

The Markov assumption is thus relevant in multi-
state modeling and can be checked by including co-
variates depending on the history. In the case of the
illness-death model, the Markov assumption is only
relevant for the mortality transition after recurrence.
We can therefore check this assumption by ascertain-
ing whether the length of stay in the initial ‘Healthy’
state (i.e., the past) is important in the transition from
the recurrence state to death (i.e., the future). To test
this assumption in practice, let us denote by X the
length of stay in the initial state. Fitting a Cox re-
gression model α23(t;X) = α23,0(t) exp(βX), we
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need to test the null hypothesis, H0: β = 0, against
the more general alternative, H1: β 6= 0. This al-
lows us to assess whether the intensity of the transi-
tion from the disease state to death is unaffected by
the length of stay in the previous state (i.e., whether
the Markov assumption is valid). Alternative meth-
ods for testing the Markov assumption in multi-state
models were discussed in recent papers by Soutinho
and Meira-Machado [11] and Titman and Putter [12].
The methods proposed in these two recent papers
are based on measuring the discrepancy between the
Aalen-Johansen estimator of the transition probabili-
ties (a relevant predictive quantity in multi-state mod-
els) that gives consistent estimators in Markov pro-
cesses, and recent approaches that do not rely on this
assumption. Details on the estimation of these quan-
tities can be seen in the paper by Meira-Machado and
Sestelo [4]. To be specific, the paper by Soutinho and
Meira-Machado [11] proposes a test statistic that is
based on the difference of the areas under the two es-
timated curves of the transition probabilities. In the
paper by Titman and Putter [12] a log-rank test is used
on specific transitions to compare the two estimated
curves. Simulation results reveal that the two recent
methods perform similarly revealing high power to
detect a failure of the Markov condition. Tree sur-
vival models, like the Cox proportional hazard model,
can also be used for constructing prediction models.
The hierarchy structure of these models makes them
a good alternative because they provide simple inter-
pretations of the relationship between covariates and
hazards. Additionally, adding a new patient to these
models is simple. Survival trees and survival random
forests are among the most popular nonparametric al-
ternatives to the previousmethods. Theymake no dis-
tributional assumptions on the data, providing power-
ful predictive tools that offer great flexibility.

The next sections present the results of applying
the methods mentioned here to a real breast cancer
case carried out within the German Breast Cancer
Study Group. In Section 2, we introduce the dataset
and present a detailed analysis based on the Cox pro-
portional hazards model and its extensions to cope
with multiple events. An alternative analysis obtained
by applying some of the most common tree-based
models is given in Section 3. An overview of the
available and recommended software is given in Sec-
tion 4, and we conclude this paper in Section 5.

2 Application to a real case
Several studies have been conducted in the past
decades on breast cancer. Between 1983 and 1989,
four clinical trials were conducted by the ‘German
Breast Cancer Study Group (GBSG)’, including 2746
patients with positive primary breast cancer. Details
about these studies can be found in the article by

Schumacher et al. [13]. In this paper, we use data
from one of these trials, in which a total of 720women
with breast cancer were recruited in the period July
1984 to December 1989. The data, with complete in-
formation for 686 women, is available as part of the
R software library condSURV. In this study, patients
were followed from the date of breast cancer diagno-
sis until censoring or death from breast cancer. Of the
total of 686 women, 171 died. Of those that died, 21
had a recorded survival time equal to the recurrence
time. To deal with this, and to understand the prog-
nostic factors associated with those individuals, they
will be modeled separately when using a multi-state
approach. In addition to the two event times (recur-
rence and death) and corresponding censoring indi-
cator functions, a vector of covariates including age,
tumor size, number of positive nodes, progesterone
receptor and estrogen receptor, hormone therapy, and
tumor grade are also available. A description of the
variables available in the database is presented in Ta-
ble 1.

Table 1: A description of the variables present in the
breast cancer study.

Variable Description

rectime Time to recurrence

censrec Occurrence of recurrence (0: right-censored data)

survtime Survival time

censdead Occurrence of death (0: right-censored data)

age Age at diagnosis

size Tumor size (mm)

nodes Number of lymph nodes involved (1-51)

prog_recp Number of progesterone receptors (1 – 2380)

estrg_recp Number of estrogen receptors (1-1144)

menopause Statute regarding menopause (1: pre, 2: post)

hormone Hormone therapy (1: yes, 2: no)

grade Tumor grade (I, II e III)

The information about a possible recurrence and
the corresponding times lead one to consider this co-
variate as time-dependent. This covariate can be con-
sidered as a transient (intermediate) state and mod-
eled using an illness-death model with states ‘Alive
and disease-free’, ‘Alive with recurrence’and ‘Dead’.
Thus, the prognostic factors for breast cancer mortal-
ity were first analyzed, the results of which are pre-
sented in Table 2. For this, simple and multiple re-
gressionmodels were used using the Cox proportional
hazards model, considering the occurrence of recur-
rence as a time-dependent covariate.

By analyzing the results obtained, it can be con-
cluded that there is a strong effect of the occurrence of
recurrence on survival (P < 0.001), where the hazard
ratio in the adjusted multiple regression model is 33.5
higher for patients with recurrence. Age, tumor size,
and the number of progesterone receptors are other
factors that best explain mortality according to the ad-
justed multiple regression model. The use of inter-
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Table 2: Cox regression models with recurrence as
time-dependent covariate.

Simple Multivariate

Variable n HR 95%CI p-value HR 95%CI p-value

recurrence 686 42.299 25.93- <0.001 33.565 20.434- <0.001

69.01 55.134 <0.001

age 686 1.002 0.987- 0.836 1.016 1.002- 0.028

1.016 1.030

size 686 1.021 1.012- <0.001 1.013 1.004- 0.007

1.029 1.022

nodes 686 1.071 1.053- <0.001 1.014 0.991- 0.228

1.088 1.038

prog_recp 686 0.993 0.991- <0.001 0.996 0.994- 0.001

0.996 0.998

estrg_recp 686 0.998 0.997- 0.028

0.999

Menopause

Pre 290 1 -

Post 396 1.116 0.821- 0.484

1.517

Hormone

no 440 1 - 1 -

yes 246 0.771 0.559- 0.111 0.918 0.656- 0.619

1.061 1.285

Grade

I 81 1 - 1 -

II 444 3.465 1.522- <0.001 1.149 0.493- 0.747

7.885 2.678

III 161 6.438 2.776- <0.001 1.551 0.639- 0.332

14.930 3.762

actions between the (time-) fixed covariates and the
time-dependent covariate can be considered as a flex-
ible (but less ambitious) form ofmulti-state modeling.
In this case, where the time-dependent covariate is bi-
nary, this modeling corresponds to a situation where
proportionality of hazards is assumed for transitions
1 → 3 and 2 → 3 while transition 1 → 2 is not mod-
eled. The interaction between the time-dependent co-
variate and the fixed covariates allows modeling the
situations in which the covariate has different effects
before and after the time-dependent covariate occurs
(intermediate event - recurrence). The results of ap-
plying this ‘partial’multi-state model to breast cancer
data are shown in Table 3.

Table 3: Multiple Cox regression model with interac-
tions with recurrence.

Variable HR 95%CI p-value

recurrence 244.26 8.048-7413.9 0.002

recurrence0:age 1.049 1.003-1.099 0.038

recurrence1:age 1.012 0.997-1.027 0.107

recurrence0:size 1.016 0.989-1.044 0.246

recurrence1:size 1.012 1.002-1.022 0.017

recurrence0:nodes 1.041 0.986-1.098 0.144

recurrence1:nodes 1.010 0.986-1.036 0.416

recurrence0:prog_recp 0.995 0.989-1.001 0.106

recurrence1:prog_recp 0.997 0.994-0.999 0.003

recurrence0:hormone(s) 0.862 0.348-2.131 0.747

recurrence1:hormone(s) 0.938 0.653-1.349 0.731

recurrence0:gradeII 0.884 0.191-4.097 0.875

recurrence0:gradeIII 1.397 0.268-7.299 0.692

recurrence1:gradeII 1.241 0.446-3.455 0.700

recurrence1:gradeIII 1.663 0.574-4.822 0.349

The results suggest that age has an effect on pre-
recurrence survival time (P = 0.038) with an HR
of 1.049 (95% CI: 1.003−1.099), but also suggest
that the same covariate will be of less importance in
explaining the survival of individuals who recurred
(P = 0.107). There is also statistical evidence that

tumor size (P = 0.017) and the number of proges-
terone receptors (P = 0.003) are prognostic factors
for post-recurrence survival time, with adjusted HRs
of 1.012 and 0.997, respectively. It can also be seen
that the remaining covariates were not identified as
risk factors for the occurrence of death (with or with-
out recurrence).

Next, we aim to study the prognostic factors not
only regarding mortality (with and without recur-
rence) but also regarding the occurrence of recur-
rence. To this end, Cox models were used for each
of the transitions of the multi-state model associated
with breast cancer data. In the case of the models
fitted for the transitions from initial state 1 to states
2 and 3 (1→2 and 1→3), the 686 individuals who
started the study were considered. For the 2→3 tran-
sition, only the 261 women who relapsed were con-
sidered. Before performing this multistate model-
ing (via Cox regression), it is necessary to verify the
Markov assumption that the past and future of the dis-
ease depend only on the patient’s current state. To
this end, the influence of the time that the individual
remains healthy (alive and with no evidence of dis-
ease - state 1) on the transition from the intermediate
state to the absorbing state (i.e., mortality intensity in
individuals who suffered from recurrence) was ana-
lyzed. From the results obtained, there is evidence
that length of stay has no influence on post-recurrence
survival times and, consequently, it can be assumed
that a Markov model is satisfactory for the study at
hand (P = 0.121). This conclusion was also veri-
fied (P = 0.25) when using the recent methods pro-
posed by Soutinho and Meira-Machado [11]. The in-
fluence of the covariates for each of the three tran-
sitions, assuming the Markov model, is presented in
Table 4 (single regression models) and Table 5 (mul-
tiple regression model). The results of the analysis
of the simple Cox regression models were considered
for the choice of the multiple Cox regression model.

It is noteworthy that the covariate age shows
greater importance when adjusted by the multiple re-
gression model. This was already the case when ad-
justing the regression model with time-dependent co-
variates. Conversely, at transitions 1→3 and 2→3,
the covariates grade (tumor grade) and nodes (number
of lymph nodes with the tumor) saw their importance
decrease in the multiple regression model, partly ex-
plained by their correlation with the covariate size (tu-
mor size). The Markov model approach and the Cox
regressionmodel approach, with recurrence as a time-
dependent covariate, provide similar results, reveal-
ing the impact of age on mortality in patients without
recurrence and of tumor size and progesterone recep-
tors on mortality in patients with recurrence. The ad-
vantage of the Markov model is that it allows consid-
eration of the effects of prognostic factors on recur-
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rence, revealing the impact of the number of nodules
with tumor (nodes), status on hormone therapy, and
tumor grade on recurrence.

The results by the Markov model approach indi-
cate that except for age (P = 0.665) and tumor size
(P = 0.111), the remaining covariates have an influ-
ence on the development of breast cancer recurrence.
Regarding survival, for individuals in whom recur-
rence did not occur, only age, with an HR of 1.053,
has a direct influence (P = 0.028). In the case of
post-recurrence survival, as prognostic factors, tumor
size (P = 0.030) and the number of progesterone re-
ceptors (P = 0.004) with HRs of 1.011 and 0.997,
respectively, should be considered.

The effect of continuous covariates on the loga-
rithm of the hazard function (log-hazards) is usually
assumed to have a linear form for each of the transi-
tion intensities in a multi-state model. It turns out that
this behavior is not always verified. As expected, the
incorrect functional form for the covariate age led to a
diagnosis of non-proportional hazards. There are nu-
merous approaches to dealing with this problem, and
the penalized spline smoothing methods (P-splines)
proposed by Eilers and Marx [10] are often used in
this context. These methods allow the introduction of
some flexibility to the Cox model, namely in the ef-
fects of continuous covariates. The results of apply-
ing this approach to estimate the effects of continuous
predictors, namely age, on the intensity of the occur-
rence of recurrence are presented in Table 6. Indeed,
from the sample data, it is possible to observe the pres-
ence of a non-linear effect that probably would not
have been detected through a parametric analysis due
to the absence of prior information on the shape of the
corresponding HR curve. It should be noted that the
adjustedmodel inTable 5 (for recurrence), which con-
sidered a linear effect for continuous covariates, did
not identify an effect of age on recurrence (HR=0.997;
95% CI: 0.985-1.010).

The continuous variable age was fitted with a lin-
ear and a non-linear component. The linear compo-
nent has a hazard ratio function of 0.9929 (P = 0.21).
The nonlinear component, with a probability value of
1.6e-05 indicates that the effect of age on recurrence
is nonlinear. To obtain interpretable results in a sim-
ple and summary manner, we constructed flexible HR
curves with 95% confidence intervals to describe the
relationship between age and the (logarithm) hazard
ratio for recurrence, taking a specific value as a ref-
erence. Figure 2 shows the corresponding curve for
a reference value of 50 years, a value selected as a
possible value for the onset of menopause. The corre-
sponding graph confirms the existence of a non-linear
effect between a woman’s age and the hazard of re-
currence, showing a decreasing relationship with age,
with a slight increase after age 47 and remaining ap-
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Figure 2: Nonparametric estimates of hazard rate re-
currence dependence (with 95% confidence limits) in
breast cancer patients. Reference value of 50 years of
age.

proximately constant thereafter. The data is quite dis-
persed at older ages, as reflected by the wide confi-
dence interval at these ages. This graphical represen-
tation reveals that the hazard of recurrence is higher
for younger women. For example, the hazard ra-
tio function takes the value of exp(1.1032) = 3.0138
(with 95% CI 1.8083-5.0230) when a 30-year-old pa-
tient is comparedwith a 50-year-old patient (reference
value).

Table 6: Multiple Cox regression model for the inten-
sity of recurrence occurrence with a non-linear effect
for age.
Variable HR 95%CI p-value

age

age (Linear) 0.993 2.1e-01

ps (age,df=4.9) (nonlinear) 1.6e-01

nodes 1.047 1.032-1.063 6.9e-10

size 1.009 1.001-1.017 3.1e-02

prog_recp 0.998 0.997-0.999 4.4e-04

Hormone 3.7e-03

no 1 -

yes 0.675 0.518-0.880

Grade

I 1 -

II 1.960 1.169-3.287 1.0e-02

III 2.078 1.188-3.634 3.7e-03

Finally, it is worth mention that the proportional
hazards assumption has been verified for all multi-
variable Cox models with the exception of the multi-
variable Coxmodel for recurrence with age as a linear
effect (Table 5).

3 Tree-based models
The Cox proportional hazards model is the most com-
mon tool for studying the effect of predictor vari-
ables on survival. However, this model assumes some
known assumptions that may not be verified in some
databases. Among these assumptions, the propor-
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tional hazards assumption and the log-linear relation-
ship between the independent covariates and the un-
derlying hazard function stand out. For these cases,
more flexible nonparametric approaches are desired.
Survival trees and survival random forests are among
the most popular nonparametric alternatives to the
Cox proportional hazard model.

Tree-based methods were first introduced by Mor-
gan and Sonquist [14] and later developed byBreiman
et. al. ([15], [16]) using the CART algorithm, which
stands for Classification And Regression Trees. The
CART algorithm is the most widely used for con-
structing these models, which have been proven to
be powerful predictive tools that offer great flexibil-
ity. They can detect and have in consideration non-
linear effects and detect certain types of interactions
between covariates without the need to specify them
in advance. Two important steps in the CART al-
gorithm are splitting and pruning, for which several
methods exist. In fact, most of the proposed tree-
based methods for censored data are distinguished by
the method that is used for the splitting criterion for
which the log-rank test has been used by Hothorn et
al. [17]. The log-rank test criterion is based on the
maximization of separation between child nodes, be-
ing used to select the covariate that enter at each node
as well the corresponding cutpoint. Other criteria
have been proposed that aim to minimize the hazard
within the child nodes. Comparative research stud-
ies of splitting methods can be found in the papers by
Radespiel-Tröger et al. ([18], [19]). The survival tree
is then built by recursively dichotomizing the sam-
ple. As the number of tree nodes increases, and dis-
similar cases become separated, each node in the tree
becomes homogeneous. The tree may grow until ter-
minal nodes are populated by individuals with similar
behavior or some stopping rule is obtained. Pruning
may be used to reduce or select an optimal size of the
tree by removing parts of the tree that do not provide
power to classify the occurrences. To this end, the
cost complexity measure, described by Breiman [15],
can be used. Agood review of the topic that includes a
method for constructing the survival tree can be found
in the paper by Bou-Hamad et al. [20].

The obtained tree structure for recurrence inten-
sity, mortality without recurrence and for time from
recurrence to death are given in Figures 3, 4, and 5,
respectively. The circles in the figures represent the
three internal nodes, whereas Kaplan-Meier plots of
survival are shown at the terminal nodes. For each
of the internal node it is shown the covariate used to
split the sample. Probability values obtained using the
log-rank test according to the splitting value can also
be obtained. All p-values of the log-rank test were
lower than 0.05. The number of subject in the termi-
nal nodes are also given. The covariates used in the

Figure 3: Survival tree for the breast cancer data. Re-
currence transition.

Figure 4: Survival tree for the breast cancer data.
Mortality transition without recurrence.

tree structure for the recurrence transition were, nodes
and progesterone receptors. The first split is based on
the variable node: subjects with a value lower or equal
to 3 go to the left node, and those with a value greater
than 3 go to the right node. After the first split, we
can see that the subjects with a value of nodes greater
than tend to have a lower survival time. Among those,
subjects with a value of progesterone receptors lower
or equal to 55 have the worst survival prognosis. As
shown in Figures 4 and 5, progesterone receptors are
the best predictors for survival (with and without re-
currence), being used to split the sample in the first
node of the tree, whereas the second split is based on
positive nodes. Again, the Kaplan-Meier survival es-
timates for the terminal nodes show that they are all
different from each other and provide useful informa-
tion that can be used for prediction purposes. For ex-
ample, it can be seen that subjects with progesterone
receptors lower or equal to 35 have a lower survival
time. Predictor groups can be easily obtained from
these three survival trees.

It is well known that, in some cases, the use of a
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Figure 5: Survival tree for the breast cancer data.
Mortality transition after recurrence.

single tree may not lead to such a good predictor of
survival since its performance may reveal high vari-
ability. Aggregation methods can be used to solve this
problem. Random survival forests ([21], [22], [23],
[24]) are one of these approaches that basically ag-
gregates the information from many trees, therefore
providingmore stable results with less variability than
those obtained from a single tree. In a Random Sur-
vival Forest (RSF), randomization is first used to se-
lect a bootstrap sample that is used for growing the
tree, and later it is used to select the covariate to be
used to split the nodes. Predictions are formed by ag-
gregating (averaging) predictions of individual trees
in the ensemble. Besides the good ability of the RSF
for predictive issues, they can also be used for study-
ing the importance of the covariates in the prognosis.
Table 7 shows the variable importance (×100) for the
three breast cancer datasets. All reported values were
averaged over 100 independent runs. Large impor-
tance values indicate variables with predictive ability,
whereas negative or near-zero values identify nonpre-
dictive variables to be filtered. From this table, we
can conclude that positive nodes, progesterone recep-
tors, age, and estrogen receptors are highly predictive
factors of recurrence. On the other hand, menopause
and tumor size are unlikely to be predictive. It can
also be seen that progesterone receptors and positive
nodes are good predictors for both of the two mortal-
ity transitions (with and without recurrence). Some
of these findings are in agreement with the results ob-
tained by the Cox models shown in Table 5. It is also
worth mentioning the predictive effect of age on the
recurrence transition, which is also in agreement with
results shown in Table 6.

4 R packages
Several researchers have developed software for
multi-state survival data analysis in recent years. A

Table 7: Variable importance (×100) for breast can-
cer datasets. All reported values averaged over 100
independent runs. Each run based on 500 trees under
log-rank splitting.

Variable Recurrence Mortality without Mortality after

Variable Recurrence recurrence recurrence

nodes 6.544878 2.642534 1.631170

prog_recp 2.309012 5.914801 6.742094

age 1.919673 -0.889223 -0.419527

estrg_recp 1.235000 1.068243 0.409769

hormone 0.669168 -0.247917 0.200952

grade 0.569283 -0.077202 1.297796

size 0.248867 2.851047 0.333358

menopause -0.003882 -0.160168 -0.067455

comprehensive list of packages available on the R
software distribution network (CRAN) can be ob-
tained in the ‘CRAN task view’ under the topic
‘Survival Analysis’ [25]. To provide biomedical re-
searchers with a user-friendly tool in the context of
multi-state models, a package has been developed
for the R statistical software called survidm ([26],
[27]). This package can be used to perform multi-
state regression using Cox (semi-) Markov models.
The package goes far beyond multi-state regression,
providing biomedical researchers with the ability to
obtain other interpretable results in a simple and sum-
marized way. This includes estimates of various pre-
dictive probabilities, such as transition probabilities,
occupancy probabilities, cumulative incidence func-
tions, and the distribution of length of stay in each
state. A limitation of the survidm package is that
it can only be used for the progressive illness-death
model. However, this turns out to be an advantage
for users who wish to analyze data from a model with
this structure. In these cases, the survidm package is
ideal, as it is easy to use with a strong resemblance to
the survival package, which is well known and widely
used in the R software user community. For models
with a structure other than the illness-death model, we
recommend using the mstate package. These two R
packages as well as the markovMSM package can also
be used to check the markov assumption.

The survival and mgcv packages by Terry Th-
erneau and Simon Wood, respectively, can be used
to introduce flexibility into the Cox regression model
whereas CatPredi can be used to categorize contin-
uous predictors. The smoothHR library, developed by
Araújo andMeira-Machado, allows the calculation of
point estimates for the hazard function ratio and their
corresponding confidence limits for continuous pre-
dictors considering a non-linear effect, introduced us-
ing penalized splines.

Several R packages have been recently developed
that implement tree-based models. Tree-structured
models for survival analysis are now implemented in
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rpart R package. Recursive partitioning algorithms
have been also implemented in the partykitR pack-
agewhereas randomForestSRC implements a unified
treatment of Breiman’s random forests [15] for sur-
vival, regression and classification problems [21].

5 Discussion
Multi-state models can be successfully used for de-
scribing complex event history data, for example,
stages in the disease progression of a patient. Al-
though the relevance of these models is well acknowl-
edged, they are still not frequently applied, in par-
ticular by non-statisticians. One major goal in sur-
vival studies is to study the relationship between the
different covariates and disease evolution, for which
the Cox proportional hazards model is the most com-
monly used tool. Besides assuming proportional
hazards, the effect of a given continuous predictor
through the Coxmodel on log-hazards is modeled lin-
early. This paper aims to review some of the statisti-
cal methods for analyzing data with multiple events,
providing alternative approaches with an emphasis on
practical issues such as the estimation of the effect of
covariates and how to overcome the aforementioned
difficulties. We attempted to propose a comprehen-
sive approach to analyze a variety of methodologic is-
sues related to the analysis of survival data with mul-
tiple events using data from breast cancer patients.
First, we focused on estimating, and adjusting for the
impact of recurrence on survival through the use of
time-dependent Cox regression analyses. The use of
interactions between the fixed covariates and recur-
rence (time-dependent covariate) was used to obtain a
flexible (but less ambitious) form of multi-state mod-
eling. We have shown that an alternative multi-state
approach that consists on using a stratified Cox re-
gressionmodel based on the ‘clock forward’approach
may be preferable. We have shown that in all these ap-
proaches, the erroneous assumption of linearity may
have serious consequences. Fitting the incorrect func-
tional effect of a continuous predictor may lead to
bias and decreased power of tests for statistical signif-
icance. It may also lead to nonproportional hazards.
All these issues may be corrected but they can also be
avoided using popular nonparametric alternatives to
the Cox proportional hazard model that are based on
survival trees and survival random forests. Another
interesting and possibly undervalued aspect of multi-
state models is the possibility of applying these mod-
els to obtain predictions probabilities of the clinical
prognosis, such as the occupation probabilities, the
transition probabilities ([26], [27]), and the cumula-
tive incidence functions. This can be seen in the paper
by Meira-Machado and Sestelo [4]. All these quanti-
ties can be obtained using software developed by the
authors ([28], [29]). Data and all R input commands

used in this study are available upon request from the
corresponding authors.
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