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1 Introduction

In 1983, Abd El-Monsef et al., [1], introduced the
concept of β-continuous functions as a generalization
of semi-continuity in the sense of Levive, [14], and
percontinuity due to Mashhour et al., [16]. Borsı́k
and Doboš, [9], introduced the notion of almost
quasi-continuity which is weaker than that of quasi-
continuity in the sense of Marcus, [15], and obtained
a decomposition theorem of quasi-continuity. More-
over, Popa and Noiri, [23], studied some characteri-
zations of β-continuity and showed that almost quasi-
continuity is equivalent to β-continuity. The equiv-
alence of almost quasi-continuity and β-continuity
is also shown by Borsı́k, [8], and Ewert, [10]. In
1997, Nasef and Noiri, [17], introduced and investi-
gated the concept of almost β-continuity. Several dif-
ferent forms of continuous multifunctions have been
introduced and studied over the years. Many au-
thors have researched and studied several stronger and
weaker forms of continuous functions and multifunc-
tions. The notions of upper and lower β-continuous
multifunctions were studied by Popa and Noiri, [22].
In 1999, Noiri and Popa, [20], obtained some char-
acterizations and several properties concerning upper
and lower almost β-continuous multifunctions. In
2008, Noiri and Popa, [18], introduced and studied
the notions of upper and lower C-m-continuous mul-

tifunctions as multifunctions defined on a set satisfy-
ing some minimal conditions. In 2018, Boonpok et
al., [7], introduced and investigated the concepts of
upper and lower almost (τ1, τ2)-precontinuous mul-
tifunctions. In 2020, Laprom et al., [13], intro-
duced and studied the notions of upper and lower al-
most β(τ1, τ2)-continuous multifunctions. The no-
tion of (Λ, sp)-continuous multifunctions was intro-
duced in [6]. In [5], the present authors introduced
and studied the concepts of upper and lower slightly
(Λ, sp)-continuous multifunctions. Quite recently,
Khampakdee and Boonpok, [12], introduced and in-
vestigated the notions of upper and lower β(Λ, sp)-
continuous multifunctions. The purpose of the present
paper is to introduce the concepts of upper and lower
almost β(Λ, sp)-continuous multifunctions. More-
over, several characterizations and some basic prop-
erties of upper and lower almost β(Λ, sp)-continuous
multifunctions are discussed.

2 Preliminaries

Throughout this paper, spaces (X, τ) and (Y, σ) (or
simply X and Y ) always mean topological spaces on
which no separation axioms are assumed unless ex-
plicitly stated. Let A be a subset of a topological
space (X, τ). The closure of A and the interior of
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A are denoted by Cl(A) and Int(A), respectively. A
subset A of a topological space (X, τ) is said to be
β-open [1] if A ⊆ Cl(Int(Cl(A))). The complement
of a β-open set is called β-closed. The family of all
β-open sets of a topological space (X, τ) is denoted
by β(X, τ). Let A be a subset of a topological space
(X, τ). A subset Λsp(A) [19] is defined as follows:
Λsp(A) = ∩{U | A ⊆ U,U ∈ β(X, τ)}.

Lemma 1. [19] For subsets A, B and Aα(α ∈ ∇) of
a topological space (X, τ), the following properties
hold:

(1) A ⊆ Λsp(A).

(2) If A ⊆ B, then Λsp(A) ⊆ Λsp(B).

(3) Λsp(Λsp(A)) = Λsp(A).

(4) If U ∈ β(X, τ), then Λsp(U) = U .

(5) Λsp(∩{Aα|α ∈ ∇}) ⊆ ∩{Λsp(Aα)|α ∈ ∇}.

(6) Λsp(∪{Aα|α ∈ ∇}) = ∪{Λsp(Aα)|α ∈ ∇}.

Recall that a subset A of a topological space
(X, τ) is called a Λsp-set [19] if A = Λsp(A).

Lemma 2. [19] For subsets A and Aα(α ∈ ∇) of
a topological space (X, τ), the following properties
hold:

(1) Λsp(A) is a Λsp-set.

(2) If A is β-open, then A is a Λsp-set.

(3) If Aα is a Λsp-set for each α ∈ ∇, then ∩α∈∇Aα

is a Λsp-set.

(4) If Aα is a Λsp-set for each α ∈ ∇, then ∪α∈∇Aα

is a Λsp-set.

Definition 3. [6] A subset A of a topological space
(X, τ) is called (Λ, sp)-closed if A = T ∩C, where T
is a Λsp-set and C is a β-closed set. The complement
of a (Λ, sp)-closed set is called (Λ, sp)-open.

Definition 4. [6] Let A be a subset of a topological
space (X, τ). A point x ∈ X is called a (Λ, sp)-
cluster point of A if A∩U ̸= ∅ for every (Λ, sp)-open
set U of X containing x. The set of all (Λ, sp)-cluster
points of A is called the (Λ, sp)-closure of A and is
denoted by A(Λ,sp).

Lemma 5. [6] Let A and B be subsets of a topologi-
cal space (X, τ). For the (Λ, sp)-closure, the follow-
ing properties hold:

(1) A ⊆ A(Λ,sp) and [A(Λ,sp)](Λ,sp) = A(Λ,sp).

(2) If A ⊆ B, then A(Λ,sp) ⊆ B(Λ,sp).

(3) A(Λ,sp) is (Λ, sp)-closed.

(4) A is (Λ, sp)-closed if and only if A = A(Λ,sp).

Definition 6. [6] Let A be a subset of a topological
space (X, τ). The union of all (Λ, sp)-open sets con-
tained in A is called the (Λ, sp)-interior of A and is
denoted by A(Λ,sp).

Lemma 7. [6] Let A and B be subsets of a topologi-
cal space (X, τ). For the (Λ, sp)-interior, the follow-
ing properties hold:

(1) A(Λ,sp) ⊆ A and [A(Λ,sp)](Λ,sp) = A(Λ,sp).

(2) If A ⊆ B, then A(Λ,sp) ⊆ B(Λ,sp).

(3) A(Λ,sp) is (Λ, sp)-open.

(4) A is (Λ, sp)-open if and only if A(Λ,sp) = A.

(5) [X −A](Λ,sp) = X −A(Λ,sp).

(6) [X −A](Λ,sp) = X −A(Λ,sp).

Definition 8. [6] A subset A of a topological space
(X, τ) is said to be:

(i) r(Λ, sp)-open if A = [A(Λ,sp)](Λ,sp);

(ii) s(Λ, sp)-open if A ⊆ [A(Λ,sp)]
(Λ,sp);

(iii) p(Λ, sp)-open if A ⊆ [A(Λ,sp)](Λ,sp);

(iv) α(Λ, sp)-open if A ⊆ [[A(Λ,sp)]
(Λ,sp)](Λ,sp);

(v) β(Λ, sp)-open if A ⊆ [[A(Λ,sp)](Λ,sp)]
(Λ,sp).

The family of all r(Λ, sp)-open (resp. s(Λ, sp)-
open, p(Λ, sp)-open, β(Λ, sp)-open, α(Λ, sp)-open)
sets in a topological space (X, τ) is denoted by
rΛspO(X, τ) (resp. sΛspO(X, τ), pΛspO(X, τ),
βΛspO(X, τ), αΛspO(X, τ)). The complement of
a r(Λ, sp)-open (resp. s(Λ, sp)-open, p(Λ, sp)-
open, β(Λ, sp)-open, α(Λ, sp)-open) set is called
r(Λ, sp)-closed (resp. s(Λ, sp)-closed, p(Λ, sp)-
closed, β(Λ, sp)-closed, α(Λ, sp)-closed).

Let A be a subset of a topological space
(X, τ). The intersection of all s(Λ, sp)-closed (resp.
p(Λ, sp)-closed, β(Λ, sp)-closed, α(Λ, sp)-closed)
sets of X containing A is called the s(Λ, sp)-closure
[24] (resp. p(Λ, sp)-closure [3], β(Λ, sp)-closure
[12], α(Λ, sp)-closure [4, 25]) of A and is denoted
by As(Λ,sp) (resp. Ap(Λ,sp), Aβ(Λ,sp), Aα(Λ,sp)). The
union of all s(Λ, sp)-open (resp. p(Λ, sp)-open,
β(Λ, sp)-open, α(Λ, sp)-open) sets of X contained
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in A is called the s(Λ, sp)-interior (resp. p(Λ, sp)-
interior, β(Λ, sp)-interior, α(Λ, sp)-interior) of A
and is denoted by As(Λ,sp) (resp. Ap(Λ,sp), Aβ(Λ,sp),
Aα(Λ,sp)).

Definition 9. [11] A subset Nx of a topological space
(X, τ) is said to be (Λ, sp)-neighbourhood of a point
x ∈ X if there exists a (Λ, sp)-open set U such that
x ∈ U ⊆ Nx.

Lemma 10. For a subset A of a topological space
(X, τ), the following properties are equivalent:

(1) Aβ(Λ,sp) is β(Λ, sp)-closed in X;

(2) A is β(Λ, sp)-closed in X if and only if A =

Aβ(Λ,sp);

(3) [X −A]β(Λ,sp) = X −Aβ(Λ,sp).

Lemma 11. Let A be a subset of a topological space
(X, τ). Then, x ∈ Aβ(Λ,sp) if and only if A ∩ U ̸= ∅
for each β(Λ, sp)-open set U containing x.

Lemma 12. Let A be a subset of a topological space
(X, τ). Then, As(Λ,sp) = A ∪ [A(Λ,sp)](Λ,sp).

Proof. Since As(Λ,sp) is s(Λ, sp)-closed, we have
[[As(Λ,sp)](Λ,sp)](Λ,sp) ⊆ As(Λ,sp). Therefore,
[A(Λ,sp)](Λ,sp) ⊆ As(Λ,sp) and hence

A ∪ [A(Λ,sp)](Λ,sp) ⊆ As(Λ,sp).

To establish the opposite inclusion we observe that

[[A ∪ [A(Λ,sp)](Λ,sp)]
(Λ,sp)](Λ,sp)

= [A(Λ,sp) ∪ [[A(Λ,sp)](Λ,sp)]
(Λ,sp)](Λ,sp)

⊆ A(Λ,sp) ∪ [[[A(Λ,sp)](Λ,sp)]
(Λ,sp)](Λ,sp)

= A(Λ,sp) ∪ [A(Λ,sp)](Λ,sp)

= A(Λ,sp).

Thus, [[A ∪ [A(Λ,sp)](Λ,sp)]
(Λ,sp)](Λ,sp) ⊆

[A(Λ,sp)](Λ,sp) ⊆ A ∪ [A(Λ,sp)](Λ,sp) and so
A∪ [A(Λ,sp)](Λ,sp) is s(Λ, sp)-closed. This shows that
As(Λ,sp) ⊆ A ∪ [A(Λ,sp)](Λ,sp).

Lemma 13. Let (X, τ) be a topological space. Then,
V s(Λ,sp) = [V (Λ,sp)](Λ,sp) for every p(Λ, sp)-open set
V of X .

Proof. Let V ∈ pΛspO(X, τ). Then, V ⊆
[V (Λ,sp)](Λ,sp) and by Lemma 12, we have V s(Λ,sp) =

V ∪ [V (Λ,sp)](Λ,sp) = [V (Λ,sp)](Λ,sp).

By a multifunction F : X → Y , we mean a point-
to-set correspondence from X into Y , and always as-
sume that F (x) ̸= ∅ for all x ∈ X . For a multifunc-
tion F : X → Y , following [2] we shall denote the
upper and lower inverse of a set B of Y by F+(B)
and F−(B), respectively, that is,

F+(B) = {x ∈ X | F (x) ⊆ B}

and F−(B) = {x ∈ X | F (x) ∩ B ̸= ∅}. In partic-
ular, F−(y) = {x ∈ X | y ∈ F (x)} for each point
y ∈ Y . For each A ⊆ X , F (A) = ∪x∈AF (x). Then,
F is said to be a surjection if F (X) = Y , or equiva-
lently, if for each y ∈ Y , there exists an x ∈ X such
that y ∈ F (x). Moreover, F : X → Y is called up-
per semi-continuous (resp. lower semi-continuous) if
F+(V ) (resp. F−(V )) is open in X for every open
set V of Y [21].

3 Characterizations of upper and
lower almost β(Λ, sp)-continuous
multifunctions

We begin this section by introducing the notions of up-
per and lower almost β(Λ, sp)-continuous multifunc-
tions. Furthermore, several characterizations of upper
and lower almost β(Λ, sp)-continuous multifunctions
are discussed.

Definition 14. A multifunction F : (X, τ) → (Y, σ)
is said to be:

(i) upper almost β(Λ, sp)-continuous at x ∈ X
if, for each (Λ, sp)-open set V of Y containing
F (x), there exists a β(Λ, sp)-open set U of X
containing x such that F (U) ⊆ [V (Λ,sp)](Λ,sp);

(ii) lower almost β(Λ, sp)-continuous at x ∈ X
if, for each (Λ, sp)-open set V of Y such that
F (x) ∩ V ̸= ∅, there exists a β(Λ, sp)-open set
U of X containing x such that

F (z) ∩ [V (Λ,sp)](Λ,sp) ̸= ∅

for every z ∈ U ;

(iii) upper (lower) almost β(Λ, sp)-continuous if F
has this property at each point of X .

Lemma 15. Let A be a subset of a topological space
(X, τ). Then, Aβ(Λ,sp) = A ∪ [[A(Λ,sp)]

(Λ,sp)](Λ,sp).
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Proof. We observe that

[[[A ∪ [[A(Λ,sp)]
(Λ,sp)](Λ,sp)](Λ,sp)]

(Λ,sp)](Λ,sp)

⊆ [[[A ∪ [A(Λ,sp)]
(Λ,sp)](Λ,sp)]

(Λ,sp)](Λ,sp)

⊆ [[A(Λ,sp) ∪ [A(Λ,sp)]
(Λ,sp)](Λ,sp)](Λ,sp)

= [[A(Λ,sp)]
(Λ,sp)](Λ,sp)

⊆ A ∪ [[A(Λ,sp)]
(Λ,sp)](Λ,sp).

Thus, A ∪ [[A(Λ,sp)]
(Λ,sp)](Λ,sp) is β(Λ, sp)-closed

and hence Aβ(Λ,sp) ⊆ A ∪ [[A(Λ,sp)]
(Λ,sp)](Λ,sp).

On the other hand, since Aβ(Λ,sp) is β(Λ, sp)-
closed, we have [[A(Λ,sp)]

(Λ,sp)](Λ,sp) ⊆
[[[Aβ(Λ,sp)](Λ,sp)]

(Λ,sp)](Λ,sp) ⊆ Aβ(Λ,sp) and
hence A ∪ [[A(Λ,sp)]

(Λ,sp)](Λ,sp) ⊆ Aβ(Λ,sp).

Theorem 16. For a multifunction F : (X, τ) →
(Y, σ), the following properties are equivalent:

(1) F is upper almost β(Λ, sp)-continuous at x ∈
X;

(2) x ∈ [[[F+(V s(Λ,sp))](Λ,sp)](Λ,sp)]
(Λ,sp) for any

(Λ, sp)-open set V of Y containing F (x);

(3) for each (Λ, sp)-open neighbourhood U of x and
each (Λ, sp)-open set V of Y containing F (x),
there exists a (Λ, sp)-open set G of X such that
∅ ̸= G ⊆ U and G ⊆ [F+(V s(Λ,sp))](Λ,sp);

(4) for each (Λ, sp)-open set V of Y contain-
ing F (x), there exists a s(Λ, sp)-open set
U of X containing x such that U ⊆
[F+(V s(Λ,sp))](Λ,sp).

Proof. (1) ⇒ (2): Let V be any (Λ, sp)-open
set of Y containing F (x). Then, there ex-
ists U ∈ βΛspO(X, τ) containing x such that
F (U) ⊆ V s(Λ,sp) = [V (Λ,sp)](Λ,sp). Then,
U ⊆ F+(V s(Λ,sp)). Since U is β(Λ, sp)-open,
we have x ∈ U ⊆ [[U (Λ,sp)](Λ,sp)]

(Λ,sp) ⊆
[[[F+(V s(Λ,sp))](Λ,sp)](Λ,sp)]

(Λ,sp).
(2) ⇒ (3): Let V be any (Λ, sp)-

open set of Y containing F (x) and let U be
a (Λ, sp)-open set of X containing x. Since
x ∈ [[[F+(V s(Λ,sp))](Λ,sp)](Λ,sp)]

(Λ,sp), we have
U ∩ [[F+(V s(Λ,sp))](Λ,sp)](Λ,sp) ̸= ∅. Put
G = U ∩ [[F+(V s(Λ,sp))](Λ,sp)](Λ,sp), then G is
a nonempty (Λ, sp)-open set, G ⊆ U and G ⊆
[[F+(V s(Λ,sp))](Λ,sp)](Λ,sp) ⊆ [F+(V s(Λ,sp))](Λ,sp).

(3) ⇒ (4): Let V be any (Λ, sp)-open set of
Y containing F (x). By U(x), we denote the fam-
ily of all (Λ, sp)-open neighbourhood of x. For

each U ∈ U(x), there exists a (Λ, sp)-open set
GU of X such that ∅ ̸= GU ⊆ U and GU ⊆
[F+(V s(Λ,sp))](Λ,sp). Put W = ∪{GU | U ∈ U(x)},
then W is (Λ, sp)-open set of X , x ∈ W (Λ,sp) and
W ⊆ [F+(V s(Λ,sp))](Λ,sp). Moreover, if we put
U0 = W ∪ {x}, then we obtain U0 is a s(Λ, sp)-open
set of X containing x and U0 ⊆ [F+(V s(Λ,sp))](Λ,sp).

(4) ⇒ (1): Let V be any (Λ, sp)-open set
of Y containing F (x). There exists a s(Λ, sp)-
open set G of X containing x such that G ⊆
[F+(V s(Λ,sp))](Λ,sp). Thus,

x ∈ G ∩ F+(V )

⊆ F+(V s(Λ,sp)) ∩ [G(Λ,sp)]
(Λ,sp)

⊆ F+(V s(Λ,sp)) ∩ [[[F+(V s(Λ,sp))](Λ,sp)](Λ,sp)]
(Λ,sp)

= [F+(V s(Λ,sp))]β(Λ,sp).

Put U = [F+(V s(Λ,sp))]β(Λ,sp), then U is a β(Λ, sp)-
open set of X containing x such that F (U) ⊆
[V (Λ,sp)](Λ,sp). This shows that F is upper almost
β(Λ, sp)-continuous at x.

Theorem 17. For a multifunction F : (X, τ) →
(Y, σ), the following properties are equivalent:

(1) F is lower almost β(Λ, sp)-continuous at a point
x of X;

(2) x ∈ [[[F−(V s(Λ,sp))](Λ,sp)](Λ,sp)]
(Λ,sp) for any

(Λ, sp)-open set V of Y such that F (x)∩V ̸= ∅;

(3) for each (Λ, sp)-open neighbourhood U of x
and each (Λ, sp)-open set V of Y such that
F (x) ∩ V ̸= ∅, there exists a nonempty (Λ, sp)-
open set G of X such that G ⊆ U and G ⊆
[F−(V s(Λ,sp))](Λ,sp);

(4) for each (Λ, sp)-open set V of Y such that
F (x) ∩ V ̸= ∅, there exists a s(Λ, sp)-open
set U of X containing x such that U ⊆
[F−(V s(Λ,sp))](Λ,sp).

Proof. The proof is similar to that of Theorem 16 and
is thus omitted.

Definition 18. A function f : (X, τ) → (Y, σ) is
called almost β(Λ, sp)-continuous at a point x ∈ X
if, for each (Λ, sp)-open set V of Y containing f(x),
there exists a β(Λ, sp)-open set U of X containing
x such that f(U) ⊆ [V (Λ,sp)](Λ,sp). If f has this
property at each point of X , then f is called almost
β(Λ, sp)-continuous.

Corollary 19. For a function f : (X, τ) → (Y, σ),
the following properties are equivalent:
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(1) f is almost β(Λ, sp)-continuous at a point x of
X;

(2) x ∈ [[[f−1(V s(Λ,sp))](Λ,sp)](Λ,sp)]
(Λ,sp) for any

(Λ, sp)-open set V of Y containing f(x);

(3) for each (Λ, sp)-open neighbourhood U of x and
each (Λ, sp)-open set V of Y containing f(x),
there exists a nonempty (Λ, sp)-open set G of X
such that G ⊆ U and G ⊆ [f−1(V s(Λ,sp))](Λ,sp);

(4) for each (Λ, sp)-open set V of Y contain-
ing f(x), there exists a s(Λ, sp)-open set
U of X containing x such that U ⊆
[f−1(V s(Λ,sp))](Λ,sp).

Theorem 20. For a multifunction F : (X, τ) →
(Y, σ), the following properties are equivalent:

(1) F is upper almost β(Λ, sp)-continuous;

(2) for each x ∈ X and each (Λ, sp)-open set V
of Y containing F (x), there exists a β(Λ, sp)-
open set U of X containing x such that F (U) ⊆
V s(Λ,sp);

(3) for each x ∈ X and each r(Λ, sp)-open set V of
Y containing F (x), there exists a β(Λ, sp)-open
set U of X containing x such that F (U) ⊆ V ;

(4) F+(V ) is β(Λ, sp)-open in X for every
r(Λ, sp)-open set V of Y ;

(5) F−(K) is β(Λ, sp)-closed in X for every
r(Λ, sp)-closed set K of Y ;

(6) F+(V ) ⊆ [F+(V s(Λ,sp))]β(Λ,sp) for every
(Λ, sp)-open set V of Y ;

(7) [F−(Ks(Λ,sp))]
β(Λ,sp) ⊆ F−(K) for every

(Λ, sp)-closed set K of Y ;

(8) [F−([K(Λ,sp)]
(Λ,sp))]β(Λ,sp) ⊆ F−(K) for every

(Λ, sp)-closed set K of Y ;

(9) [F−([[B(Λ,sp)](Λ,sp)]
(Λ,sp))]β(Λ,sp) ⊆

F−(B(Λ,sp)) for every subset B of Y ;

(10) [[[F−([K(Λ,sp)]
(Λ,sp))](Λ,sp)]

(Λ,sp)](Λ,sp) ⊆
F−(K) for every (Λ, sp)-closed set K of Y ;

(11) [[[F−(Ks(Λ,sp))](Λ,sp)]
(Λ,sp)](Λ,sp) ⊆ F−(K)

for every (Λ, sp)-closed set K of Y ;

(12) F+(V ) ⊆ [[[F+(V s(Λ,sp))](Λ,sp)](Λ,sp)]
(Λ,sp) for

every (Λ, sp)-open set V of Y .

Proof. (1) ⇒ (2) and (2) ⇒ (3): The proofs are
obvious.

(3) ⇒ (4): Let V be any r(Λ, sp)-open set of Y
and x ∈ F+(V ). Then, F (x) ⊆ V and there exists
a β(Λ, sp)-open set Ux of X containing x such that
F (Ux) ⊆ V . Thus, x ∈ Ux ⊆ F+(V ) and hence
F+(V ) ∈ βΛspO(X, τ).

(4) ⇒ (5): This follows from the fact that
F+(Y − B) = X − F−(B) for every subset B of
Y .

(5) ⇒ (6): Let V be any (Λ, sp)-open set of Y
and x ∈ F+(V ). Then, F (x) ⊆ V ⊆ V s(Λ,sp) and
hence

x ∈ F+(V s(Λ,sp)) = X − F−(Y − V s(Λ,sp)).

Since Y − V s(Λ,sp) is r(Λ, sp)-closed in Y ,
F−(Y − V s(Λ,sp)) is β(Λ, sp)-closed in X . Thus,
F+(V s(Λ,sp)) is a β(Λ, sp)-open set of X containing
x and hence x ∈ [F+(V s(Λ,sp))]β(Λ,sp). This shows
that F+(V ) ⊆ [F+(V s(Λ,sp))]β(Λ,sp).

(6) ⇒ (7): Let K be any (Λ, sp)-closed set of Y .
Then, Y −K is (Λ, sp)-open in Y and by (6),

X − F−(K) = F+(Y −K)

⊆ [F+([Y −K]s(Λ,sp))]β(Λ,sp)

= [F+(Y −Ks(Λ,sp))]β(Λ,sp)

= [X − F−(Ks(Λ,sp))]β(Λ,sp)

= X − [F−(Ks(Λ,sp))]
β(Λ,sp).

Thus, [F−(Ks(Λ,sp))]
β(Λ,sp) ⊆ F−(K).

(7) ⇒ (8): The proof is obvious since Ks(Λ,sp) =

[K(Λ,sp)]
(Λ,sp) for every (Λ, sp)-closed set K.

(8) ⇒ (9): The proof is obvious.
(9) ⇒ (10): It follows from Lemma 15 that

[[A(Λ,sp)]
(Λ,sp)](Λ,sp) ⊆ Aβ(Λ,sp) for every subset A.

Thus, for every (Λ, sp)-closed set K of Y , we have

[[[F−([K(Λ,sp)]
(Λ,sp))](Λ,sp)]

(Λ,sp)](Λ,sp)

⊆ [F−([K(Λ,sp)]
(Λ,sp))]β(Λ,sp)

= [F−([[K(Λ,sp)](Λ,sp)]
(Λ,sp))]β(Λ,sp)

⊆ F−(K(Λ,sp)) = F−(K).

(10) ⇒ (11): The proof is obvious since
Ks(Λ,sp) = [K(Λ,sp)]

(Λ,sp) for every (Λ, sp)-closed set
K.

(11) ⇒ (12): Let V be any (Λ, sp)-open set of
Y . Then, Y − V is (Λ, sp)-closed in Y and we have

[[[F−([Y − V ]s(Λ,sp))](Λ,sp)]
(Λ,sp)](Λ,sp)

⊆ F−(Y − V ) = X − F+(V ).
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Moreover, we have

[[[F−([Y − V ]s(Λ,sp))](Λ,sp)]
(Λ,sp)](Λ,sp)

= [[[F−(Y − V s(Λ,sp))](Λ,sp)]
(Λ,sp)](Λ,sp)

= [[[X − F+(V s(Λ,sp))](Λ,sp)]
(Λ,sp)](Λ,sp)

= X − [[[F+(V s(Λ,sp))](Λ,sp)](Λ,sp)]
(Λ,sp).

Thus, F+(V ) ⊆ [[[F+(V s(Λ,sp))](Λ,sp)](Λ,sp)]
(Λ,sp).

(12) ⇒ (1): Let x be any point of X and V
any (Λ, sp)-open set of Y containing F (x). Then,
x ∈ F+(V ) ⊆ [[[F+(V s(Λ,sp))](Λ,sp)](Λ,sp)]

(Λ,sp) and
hence F is upper almost β(Λ, sp)-continuous at x
by Theorem 16. This shows that F is upper almost
β(Λ, sp)-continuous.

Theorem 21. For a multifunction F : (X, τ) →
(Y, σ), the following properties are equivalent:

(1) F is lower almost β(Λ, sp)-continuous;

(2) for each x ∈ X and each (Λ, sp)-open set V
of Y such that F (x) ∩ V ̸= ∅, there exists a
β(Λ, sp)-open set U of X containing x such that
U ⊆ F−(V s(Λ,sp));

(3) for each x ∈ X and each r(Λ, sp)-open set V
of Y such that F (x) ∩ V ̸= ∅, there exists a
β(Λ, sp)-open set U of X containing x such that
U ⊆ F−(V );

(4) F−(V ) is β(Λ, sp)-open in X for every
r(Λ, sp)-open set V of Y ;

(5) F+(K) is β(Λ, sp)-closed in X for every
r(Λ, sp)-closed set K of Y ;

(6) F−(V ) ⊆ [F−(V s(Λ,sp))]β(Λ,sp) for every
(Λ, sp)-open set V of Y ;

(7) [F+(Ks(Λ,sp))]
β(Λ,sp) ⊆ F+(K) for every

(Λ, sp)-closed set K of Y ;

(8) [F+([K(Λ,sp)]
(Λ,sp))]β(Λ,sp) ⊆ F+(K) for every

(Λ, sp)-closed set K of Y ;

(9) [F+([[B(Λ,sp)](Λ,sp)]
(Λ,sp))]β(Λ,sp) ⊆

F+(B(Λ,sp)) for every subset B of Y ;

(10) [[[F+([K(Λ,sp)]
(Λ,sp))](Λ,sp)]

(Λ,sp)](Λ,sp) ⊆
F+(K) for every (Λ, sp)-closed set K of Y ;

(11) [[[F+(Ks(Λ,sp))](Λ,sp)]
(Λ,sp)](Λ,sp) ⊆ F+(K)

for every (Λ, sp)-closed set K of Y ;

(12) F−(V ) ⊆ [[[F−(V s(Λ,sp))](Λ,sp)](Λ,sp)]
(Λ,sp) for

every (Λ, sp)-open set V of Y .

Proof. The proof is similar to that of Theorem 20 and
is thus omitted.

Corollary 22. For a function f : (X, τ) → (Y, σ),
the following properties are equivalent:

(1) f is almost β(Λ, sp)-continuous;

(2) for each x ∈ X and each (Λ, sp)-open set V
of Y containing f(x), there exists a β(Λ, sp)-
open set U of X containing x such that f(U) ⊆
V s(Λ,sp);

(3) for each x ∈ X and each r(Λ, sp)-open set V of
Y containing f(x), there exists a β(Λ, sp)-open
set U of X containing x such that f(U) ⊆ V ;

(4) f−1(V ) is β(Λ, sp)-open in X for every
r(Λ, sp)-open set V of Y ;

(5) f−1(K) is β(Λ, sp)-closed in X for every
r(Λ, sp)-closed set K of Y ;

(6) f−1(V ) ⊆ [f−1(V s(Λ,sp))]β(Λ,sp) for every
(Λ, sp)-open set V of Y ;

(7) [f−1(Ks(Λ,sp))]
β(Λ,sp) ⊆ f−1(K) for every

(Λ, sp)-closed set K of Y ;

(8) [f−1([K(Λ,sp)]
(Λ,sp))]β(Λ,sp) ⊆ f−1(K) for ev-

ery (Λ, sp)-closed set K of Y ;

(9) [f−1([[B(Λ,sp)](Λ,sp)]
(Λ,sp))]β(Λ,sp) ⊆

f−1(B(Λ,sp)) for every subset B of Y ;

(10) [[[f−1([K(Λ,sp)]
(Λ,sp))](Λ,sp)]

(Λ,sp)](Λ,sp) ⊆
f−1(K) for every (Λ, sp)-closed set K of Y ;

(11) [[[f−1(Ks(Λ,sp))](Λ,sp)]
(Λ,sp)](Λ,sp) ⊆ f−1(K)

for every (Λ, sp)-closed set K of Y ;

(12) f−1(V ) ⊆ [[[f−1(V s(Λ,sp))](Λ,sp)](Λ,sp)]
(Λ,sp)

for every (Λ, sp)-open set V of Y .

Theorem 23. For a multifunction F : (X, τ) →
(Y, σ), the following properties are equivalent:

(1) F is upper almost β(Λ, sp)-continuous;

(2) [F−(V )]β(Λ,sp) ⊆ F−(V (Λ,sp)) for every
β(Λ, sp)-open set V of Y ;

(3) [F−(V )]β(Λ,sp) ⊆ F−(V (Λ,sp)) for every
s(Λ, sp)-open set V of Y ;

(4) F+(V ) ⊆ [F+([V (Λ,sp)](Λ,sp))]β(Λ,sp) for every
p(Λ, sp)-open set V of Y .
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Proof. (1) ⇒ (2): Let V be any β(Λ, sp)-open set of
Y . Since V (Λ,sp) is r(Λ, sp)-closed in Y and by The-
orem 20, F−[V (Λ,sp)] is β(Λ, sp)-closed in X . Thus,
[F−(V )]β(Λ,sp) ⊆ F−[V (Λ,sp)].

(2) ⇒ (3): This is obvious since sΛspO(Y, σ) ⊆
βΛspO(Y, σ).

(3) ⇒ (4): Let V ∈ pΛspO(Y, σ). Then, we have
V ⊆ [V (Λ,sp)](Λ,sp) and Y−V ⊇ [[Y−V ](Λ,sp)]

(Λ,sp).
Since [[Y − V ](Λ,sp)]

(Λ,sp) ∈ sΛspO(Y, σ), we have

X − F+(V ) = F−(Y − V )

⊇ F−([[Y − V ](Λ,sp)]
(Λ,sp))

⊇ [F−([[Y − V ](Λ,sp)]
(Λ,sp)])β(Λ,sp)

= [F−(Y − [V (Λ,sp)](Λ,sp))]
β(Λ,sp)

= [X − F+([V (Λ,sp)](Λ,sp))]
β(Λ,sp)

= X − [F+([V (Λ,sp)](Λ,sp))]β(Λ,sp)

and hence F+(V ) ⊆ [F+([V (Λ,sp)](Λ,sp))]β(Λ,sp).
(4) ⇒ (1): Let V be any r(Λ, sp)-open set of

Y . Since V ∈ pΛspO(Y, σ), we have F+(V ) ⊆
[F+([V (Λ,sp)](Λ,sp))]β(Λ,sp) = [F+(V )]β(Λ,sp) and
hence F+(V ) ∈ βΛspO(X, τ). It follows from
Theorem 20 that F is upper almost β(Λ, sp)-
continuous.

Theorem 24. For a multifunction F : (X, τ) →
(Y, σ), the following properties are equivalent:

(1) F is lower almost β(Λ, sp)-continuous;

(2) [F+(V )]β(Λ,sp) ⊆ F+(V (Λ,sp)) for every
β(Λ, sp)-open set V of Y ;

(3) [F+(V )]β(Λ,sp) ⊆ F+(V (Λ,sp)) for every
s(Λ, sp)-open set V of Y ;

(4) F−(V ) ⊆ [F−([V (Λ,sp)](Λ,sp))]β(Λ,sp) for every
p(Λ, sp)-open set V of Y .

Proof. The proof is similar to that of Theorem 23 and
is thus omitted.

Corollary 25. For a function f : (X, τ) → (Y, σ),
the following properties are equivalent:

(1) f is almost β(Λ, sp)-continuous;

(2) [f−1(V )]β(Λ,sp) ⊆ f−1(V (Λ,sp)) for every
β(Λ, sp)-open set V of Y ;

(3) [f−1(V )]β(Λ,sp) ⊆ f−1(V (Λ,sp)) for every
s(Λ, sp)-open set V of Y ;

(4) f−1(V ) ⊆ [f−1([V (Λ,sp)](Λ,sp))]β(Λ,sp) for ev-
ery p(Λ, sp)-open set V of Y .

For a multifunction F : (X, τ) → (Y, σ),
by F (Λ,sp) : (X, τ) → (Y, σ) we shall denote
a multifunction defined as follows: F (Λ,sp)(x) =

[F (x)](Λ,sp) for each x ∈ X . Similarly, we can de-
fine F s(Λ,sp), F p(Λ,sp), Fα(Λ,sp) and F β(Λ,sp).

Theorem 26. A multifunction F : (X, τ) → (Y, σ)
is upper almost β(Λ, sp)-continuous if and only if
F s(Λ,sp) : (X, τ) → (Y, σ) is upper almost β(Λ, sp)-
continuous.

Proof. Suppose that F is upper almost β(Λ, sp)-
continuous. Let x ∈ X and V be any (Λ, sp)-
open set of Y such that F s(Λ,sp)(x) ⊆ V . Then,
F (x) ⊆ V and by Theorem 20, there exists a
β(Λ, sp)-open set U of X containing x such that
F (U) ⊆ V β(Λ,sp). For each z ∈ U , F (z) ⊆ V s(Λ,sp)

and hence [F (U)]s(Λ,sp) ⊆ V s(Λ,sp). Therefore, we
have F s(Λ,sp)(U) ⊆ V s(Λ,sp) and by Theorem 20,
F s(Λ,sp) is upper almost β(Λ, sp)-continuous.

Conversely, suppose that F s(Λ,sp) is upper al-
most β(Λ, sp)-continuous. Let x ∈ X and V be
any (Λ, sp)-open set of Y containing F (x). Then,
F (x) ⊆ V and [F (x)]s(Λ,sp) ⊆ V s(Λ,sp). Since
V s(Λ,sp) = [V (Λ,sp)](Λ,sp) is (Λ, sp)-open, there ex-
ists a β(Λ, sp)-open set U of X containing x such
that F s(Λ,sp)(U) ⊆ [V s(Λ,sp)]s(Λ,sp) = V s(Λ,sp).
Thus, F (U) ⊆ V s(Λ,sp) and hence F is upper almost
β(Λ, sp)-continuous.

Definition 27. [11] A subset A of a topological space
(X, τ) is said to be:

(i) (Λ, sp)-paracompact if every cover of A by
(Λ, sp)-open sets of X is refined by a cover of
A which consists of (Λ, sp)-open sets of X and
is locally finite in X;

(ii) (Λ, sp)-regular if, for each x ∈ A and each
(Λ, sp)-open set U of X containing x, there ex-
ists a (Λ, sp)-open set V of X such that x ∈ V ⊆
V (Λ,sp) ⊆ U .

Lemma 28. [11] If A is a (Λ, sp)-regular (Λ, sp)-
paracompact set of a topological space (X, τ) and U
is a (Λ, sp)-open neighbourhood of A, then there ex-
ists a (Λ, sp)-open set V of X such that A ⊆ V ⊆
V (Λ,sp) ⊆ U .

Lemma 29. If F : (X, τ) → (Y, σ) is a multi-
function such that F (x) is (Λ, sp)-regular (Λ, sp)-
paracompact for each x ∈ X , then for each (Λ, sp)-
open set V of Y , G+(V ) = F+(V ), where G denotes
F β(Λ,sp), F p(Λ,sp), Fα(Λ,sp), or F (Λ,sp).
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Theorem 30. Let F : (X, τ) → (Y, σ) be a multi-
function such that F (x) is (Λ, sp)-paracompact and
(Λ, sp)-regular for each x ∈ X . Then, the following
properties are equivalent:

(1) F is upper almost β(Λ, sp)-continuous;

(2) F β(Λ,sp) is upper almost β(Λ, sp)-continuous;

(3) F p(Λ,sp) is upper almost β(Λ, sp)-continuous;

(4) Fα(Λ,sp) is upper almost β(Λ, sp)-continuous;

(5) F (Λ,sp) is upper almost β(Λ, sp)-continuous.

Proof. Similarly to Lemma 29, we put G = F β(Λ,sp),
F p(Λ,sp), Fα(Λ,sp) or F (Λ,sp). First, suppose that F
is upper almost β(Λ, sp)-continuous. Let x ∈ X and
V be any (Λ, sp)-open set of Y containing G(x). By
Lemma 29, x ∈ G+(V ) = F+(V ) and there exists
a β(Λ, sp)-open set U of X containing x such that
F (U) ⊆ V s(Λ,sp). Since F (z) is (Λ, sp)-paracompact
and (Λ, sp)-regular for each z ∈ U , by Lemma 28
there exists a (Λ, sp)-open set H such that F (z) ⊆
H ⊆ H(Λ,sp) ⊆ V s(Λ,sp); hence G(z) ⊆ H(Λ,sp) ⊆
V s(Λ,sp) for each z ∈ U . This shows that G is upper
almost β(Λ, sp)-continuous.

Conversely, suppose that G is upper almost
β(Λ, sp)-continuous. Let x ∈ X and V be any
(Λ, sp)-open set of Y containing F (x). By Lemma
29, we have x ∈ F+(V ) = G+(V ). Therefore,
G(x) ⊆ V . Then, there exists a β(Λ, sp)-open set
U of X containing x such that G(U) ⊆ V s(Λ,sp).
Thus, F (U) ⊆ V s(Λ,sp) and hence F is upper almost
β(Λ, sp)-continuous.

Lemma 31. If F : (X, τ) → (Y, σ) is a mul-
tifunction, then for each (Λ, sp)-open set V of Y ,
G−(V ) = F−(V ), where G denotes F β(Λ,sp),
F s(Λ,sp), F p(Λ,sp), Fα(Λ,sp), or F (Λ,sp).

Theorem 32. For a multifunction F : (X, τ) →
(Y, σ), the following properties are equivalent:

(1) F is lower almost β(Λ, sp)-continuous;

(2) F β(Λ,sp) is lower almost β(Λ, sp)-continuous;

(3) F s(Λ,sp) is lower almost β(Λ, sp)-continuous;

(4) F p(Λ,sp) is lower almost β(Λ, sp)-continuous;

(5) Fα(Λ,sp) is lower almost β(Λ, sp)-continuous;

(6) F (Λ,sp) is lower almost β(Λ, sp)-continuous.

Proof. Similarly to Lemma 31, we put G = F β(Λ,sp),
F s(Λ,sp), F p(Λ,sp), Fα(Λ,sp), or F (Λ,sp). First, sup-
pose that F is lower almost β(Λ, sp)-continuous. Let
x ∈ X and V be any (Λ, sp)-open set of Y such that
G(x)∩V ̸= ∅. Since V is (Λ, sp)-open, F (x)∩V ̸= ∅
and there exists a β(Λ, sp)-open set U of X contain-
ing x such that F (z) ∩ V s(Λ,sp) ̸= ∅ for each z ∈ U .
Thus, G(z) ∩ V s(Λ,sp) ̸= ∅ for each z ∈ U . This
shows that G is lower almost β(Λ, sp)-continuous.

Conversely, suppose that G is lower almost
β(Λ, sp)-continuous. Let x ∈ X and V be any
(Λ, sp)-open set of Y such that F (x) ∩ V ̸= ∅.
Since F (x) ⊆ G(x), G(x) ∩ V ̸= ∅ and there ex-
ists a β(Λ, sp)-open set U of X containing x such that
G(z) ∩ V s(Λ,sp) ̸= ∅ for each z ∈ U . By Lemma 13,
V s(Λ,sp) = [V (Λ,sp)](Λ,sp) and F (z) ∩ V s(Λ,sp) ̸= ∅
for each z ∈ U . Thus, by Theorem 21, F is lower
almost β(Λ, sp)-continuous.

Definition 33. Let A be a subset of a topological
space (X, τ). The β(Λ, sp)-frontier of A, denoted by
βΛspFr(A), is defined by

βΛspFr(A) = Aβ(Λ,sp) ∩ [X −A]β(Λ,sp)

= Aβ(Λ,sp) −Aβ(Λ,sp).

Theorem 34. A multifunction F : (X, τ) → (Y, σ) is
not upper almost β(Λ, sp)-continuous at x ∈ X if and
only if x is in the union of the β(Λ, sp)-frontier of the
upper inverse images of r(Λ, sp)-open sets containing
F (x).

Proof. Let x be a point of X at which F is not up-
per almost β(Λ, sp)-continuous. Then, there exists a
r(Λ, sp)-open set V of Y containing F (x) such that
U ∩ (X − F+(V )) ̸= ∅ for every β(Λ, sp)-open set
U of X containing x. By Lemma 11, we have

x ∈ [X − F+(V )]β(Λ,sp).

Since x ∈ F+(V ), we obtain x ∈ [F+(V )]β(Λ,sp) and
hence x ∈ βΛspFr(F+(V )).

Conversely, suppose that V is a r(Λ, sp)-open set
of Y containing F (x) such that

x ∈ βΛspFr(F+(V )).

If F is upper almost β(Λ, sp)-continuous at x, then
there exists a β(Λ, sp)-open set of X containing x
such that F (U) ⊆ V . Therefore, x ∈ U ⊆
[F+(V )]β(Λ,sp). This is a contradiction to

x ∈ βΛspFr(F+(V )).

Thus, F is not upper almost β(Λ, sp)-continuous at
x.
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Theorem 35. A multifunction F : (X, τ) → (Y, σ)
is not lower almost β(Λ, sp)-continuous at x ∈ X if
and only if x is in the union of the β(Λ, sp)-frontier of
the lower inverse images of r(Λ, sp)-open sets meet-
ing F (x).

Proof. The proof is similar to that of Theorem 34 and
is thus omitted.

4 Conclusion

Semi-open sets, preopen sets, α-open sets and β-open
sets play an important role in the researching of gen-
eralizations of continuity in topological spaces. Using
different forms of open sets, many authors have intro-
duced and studied various types of weak forms of con-
tinuity for functions and multifunctions. This work
is concerned with the notions of of upper and lower
almost β(Λ, sp)-continuous multifunctions. More-
over, some characterizations of upper and lower al-
most β(Λ, sp)-continuous multifunctions are estab-
lished. The ideas and results of this work may mo-
tivate further research.
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