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Abstract: In this paper, we focus on a class of existence, uniqueness, and explosion in a �nite time of
solving a logarithmic wave equation model with nonlinearities with variable exponents and nonlinear
source terms under homogeneous Dirichlet boundary conditions.

utt −∆u+ |ut|m(.)−2 ut = |u|p(.)−2u ln |u|

We applied the Faedo-Galerkin method in combination with the Banach �xed point theorem to determine
the existence and uniqueness of a local solution in time. Various inequality techniques were used under
appropriate conditions to obtain the blow-up of a solution. This type of equation is related to �uid
dynamics, electrorheological �uids, quantum mechanics theory, nuclear physics, optics, and geophysics.

Key-Words: Wave equations; Logarithmic nonlinearity; variable exponents spaces; Existence; Finite

time blow-up.

Received: October 3, 2022. Revised: November 7, 2022. Accepted: November 19, 2022. Published: December 12, 2022.

1 Introduction
In recent years, many authors have paid attention
to the study of nonlocal logarithmic di�erential
equations. This is partly due to the wide use of
this species to model various phenomena such as
�uid dynamics, electrorheological �uids, nuclear
physics, optics, geophysics, quantum mechanics
theory. In this work we treat the following semi-
linear wave equation with logarithmic nonlinear
source term under homogeneous Dirichlet bound-
ary condition

utt −∆u+ |ut|m(.)−2 ut = |u|p(.)−2u ln |u| ,
in Ω× (0, T )
u(x, t) = 0,

on ∂Ω× (0, T )
u(x, 0) = u0(x), ut(x, 0) = u1(x),

in Ω,
(1.1)

In (1.1), Ω be a bounded domain in Rn(n ≥
1) with a smooth boundary ∂Ω, for all m (.) ,
p (.) : Ω → R measurable functions satisfying{

2 ≤ q1 ≤ q(x) ≤ q2 ≤ 2n
n−2 , n ≥ 3,

2 ≤ q1 ≤ q(x) ≤ q2 <∞, n ≤ 2,
(1.2)

with

q1 := ess inf
x∈Ω

q(x), q2 := ess sup
x∈Ω

q(x)

and the log�Hölder continuity condition:

|q(x)− q(y)| ≤ −A
log |x−y| , for a.e. x, y ∈ Ω,

with 0 < |x− y| < δ, A > 0, δ < 1
(1.3)

In case m, p are constants, local, global exis-
tence and long-time behavior have been consid-
ered by many authors. For example, the log-
arithmic nonlinearity term |u|p−2u ln(|u|) in the

absence of the damping term |ut|m−2 ut causes
an in�nite time blow -up of solutions with nega-
tive initial energy [4, 1, 11, 12], in contrast to the
power source term |u|p−2u, which causes a �nite
time blow-up of solutions [5, 6], it is known that

the damping term |ut|m−2 ut for any initial data
[7, 8, 13] ensures global existence. We also refer
to [9, 10] and its references for logarithmic nonlin-
earity problems. These semilinear wave equations
arise when studying various problems and can be
used as models for viscoelastic liquids, processes
of �ltration through a porous medium and liq-
uids with temperature-dependent viscosity, �ltra-
tion theory, etc. (see [36, 35]). We also refer to
[14, 15] and its references for other issues in this
direction.

In recent years, some partial di�erential equa-
tions with logarithmic nonlinearity term have at-
tracted much attention due to their wide applica-
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tion in physics and other applied sciences, such
as heat conduction with two temperature sys-
tems [17], seepage of homogeneous �uids through
a �ssured rock [16], unidirectional propagation of
nonlinear, dispersive, long waves [17, 18], �uid
�ow in �ssured porous media [19], two-phase �ow
in porous media with dynamic capillary pressure
[20, 21] and the aggregation of populations [22].
Pseudo-parabolic equations can also be viewed as
Sobolev-type or Sobolev-Galpern-type equations,
see [23, 24] and many articles have been devoted
to the study of well-posedness and qualitative
properties of solutions to these partial di�erential
equations with constant exponents. It is impor-
tant to point out that the calculation of blow-up
time and rate on nonlinear evolution equations is
an important topic (see [25, 26]), and such evalu-
ations be able conclusively characterize the blow-
up phenomenon. The terminology variable ex-
ponents comes from the fact that m(.) and p(.)
are functions and not real numbers. This term
|ut|m(.)−2 ut− |u|p(.)−2u ln |u| is then a generaliza-

tion of |ut|m−2 ut− |u|p−2u, which corresponds to
m(.), p (.) > 1 and ln |u|. In fact, (1.1) can be
cast as an extension of the variable case of the
second-order viscoelastic wave equation with vari-
able growth conditions

utt−∆u+ |ut|m(.)−2 ut = |u|p(.)−2u, in Ω× (0, T )
(1.4)

what one gets when |ut|m(.)−2 ut − |u|p(.)−2u ln |u|
considered. Equation (1.4) is a well-known model
for electrorheological �uids [32] that occurs in the
treatment of �uid dynamics. On the other hand,
results for the viscoelastic wave equation with log-
arithmic damping and variable growth conditions
are limited and rare, and the literature on these
equations is much less extensive, see [37, 39, 38].

The interest in the mathematical analysis of
partial di�erential equations in recent years has
been driven by inhomogeneous di�erential opera-
tors with variable exponents (see eg [29, 28, 27]).
The study of these systems is based on the use
of Lebesgue and Sobolev spaces with variable ex-
ponents. Note that the problems of di�erential
equations with non-standard p(x) growth are an
unfamiliar and interesting topic. These are non-
linear theory of elasticity, electrorheological �u-
ids, etc. These �uids retain the motivating prop-
erty that their viscosity depends on the electric
�eld in the �uid. For general accounts of the
underlying physics see [31] and for the mathe-
matical visions see [30]. A number of papers on
problems in so-called rheological and electrorhe-
ological �uids that indicate spaces with variable
exponents have recently been published by Dien-

ing and R�uzicka [32, 33]. The results of this work
were summarized in the books [32, 33]. Numerous
mathematical models in �uid mechanics, elastic-
ity theory (recently in image processing), see eg
[34], etc. have been shown which are obviously re-
lated to the non-standard local growth problem.
In this article we consider (1.1) and establish a
local existence result. We also show that the so-
lution explodes in �nite time T for suitable initial
dates.

2 Preliminaries
Let p : Ω → [1,∞] be a measurable function.

Lp(.)(Ω) denotes the set of the real measurable
functions u on Ω such that∫

Ω
|λu (x)|p(x) dx <∞ for some λ > 0.

The variable-exponent space Lp(.) (Ω) equipped
with the Luxemburg�type norm

∥u∥p(.)

= inf

{
λ > 0,

∫
Ω

∣∣∣∣u (x)λ

∣∣∣∣p(x) dx ≤ 1

}
,

is a Banach space. Throughout the paper, we use
∥.∥q to indicate the Lq-norm for 1 ≤ q ≤ +∞.

H1
0 (Ω) is the closure of C∞

0 (Ω) with respect to
the following norm:

∥u∥H1
0 (Ω) =

(
∥∇u∥22 + ∥u∥22

) 1

2

.

It is known that for the elements of H1
0 (Ω) the

Poincaré inequality holds,

∥u∥2 ≤ C∗ ∥∇u∥2 , for all u ∈ H1
0 (Ω).

and an equivalent norm of H1
0 (Ω) can be de�ned

by

∥u∥H1
0 (Ω) = ∥∇u∥2 =

(∫
Ω
|∇u (x)|2 dx

) 1

2

.

Lemma 2.1 [28, 29]. If p : Ω → [1,∞) is a mea-
surable function and

2 ≤ p1 ≤ p(x) ≤ p2 <
2n

n− 2
, n ≥ 3. (2.1)

Then, the embedding H1
0 (Ω) ↪→ Lp(.)(Ω) is

continuous and compact.
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3 Existence of weak solutions
In this section we present the local existence and
uniqueness of solutions for the system (1.1). Our
proof method is based on Banach's �xed point
theorem.

Theorem 3.1 Let m (.), and p (.) satis�es (1.2),
(1.3), and in addition p(.) satisfy

2 < p1 ≤ p(x) ≤ p2 < 2
n− 1

n− 2
, n ≥ 3. (3.1)

Then, for any given (u0, u1) ∈ H1
0 (Ω)×L2 (Ω)

it exists T > 0 and a unique solution u of the
problem (1.1) on (0, T ) such that

u ∈ C
(
(0, T ) ,H1

0 (Ω)
)
∩ C1

(
(0, T ) , L2 (Ω)

)
(3.2)

∩Lm(.)(Ω× (0, T )),

utt ∈ L2
(
(0, T ) ,H−1(Ω)

)
.

To prove the main theorem we need the lo-
cal existence and uniqueness of the solution of a
related problem. Then, given v, consider the fol-
lowing initial boundary value problem: utt −∆u+ |ut|m(.)−2 ut = v(x, t), in Ω× (0, T ),

u(x, t) = 0, on ∂Ω× (0, T ),
u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

(3.3)
where the exponent m(.) is a given measurable
function satisfying (1.2) and (1.3). We now have
the following existence result of the local solution
of the problem (3.3) for v ∈ L2(Ω × (0, T )), and
suitable initial value (u0, u1) ∈ H1

0 (Ω) × L2(Ω),
which we created using the Galerkin method as
in [2], or in [3, Theorem 3.1, Chapter 1].

Lemma 3.2 Suppose that m(.) satis�es (1.2), and
(1.3). Then, for all (u0, u1) ∈ H1

0 (Ω) × L2 (Ω)
and v ∈ L2(Ω × (0, T )), there is a unique local
solution u of the problem (3.3),

u ∈ L∞ ((0, T ), H1
0 (Ω)

)
,

ut ∈ L∞ ((0, T ), L2(Ω)
)
∩ Lm(.)(Ω× (0, T ))

utt ∈ L2
(
(0, T ),H−1(Ω)

)
.

(3.4)

proof.

1. Uniqueness: If the problem (3.3) has two so-
lutions u and v. Then, w = u− v must verify

wtt −∆w + ut |ut|m(.)−2 − vt |vt|m(.)−2 = 0,
in Ω× (0, T ),
w(x, t) = 0,

on ∂Ω× (0, T ),
w(x, 0) = wt(x, 0) = 0,

in Ω.

Formally, multiplying by ut and integrate
over Ω× (0, t), gives∫

Ω

(
w2
t + |∇w|2

)
+2
∫ t
0

∫
Ω

(
ut |ut|m(x)−2 − vt |vt|m(x)−2

)
(ut

−vt) dxds = 0.

By using the inequality(
|a|m(x)−2a− | bm(x)−2b

)
.(a− b) ≥ 0 (3.5)

for all a, b ∈ Rn and a.e x ∈ Ω, we get∫
Ω

(
w2
t + |∇w|2

)
= 0

which means that w = 0, since w = 0 on ∂Ω.
Therefore, the uniqueness follows.

2. Existence. Let
{
(vj)

∞
j=1

}
be an orthonormal

basis of H1
0 (Ω), with

−∆vj = λjvj in Ω, vj = 0, on ∂Ω,

let determine the �nite-dimensional subspace
Vk = span {v1, . . . , vk}, without loss of gener-
ality we may take ∥vj∥2 = 1. We will con-

struct a convergent sequence
{
uk(x, t)

}
,

uk(x, t) =

k∑
j=1

akj(t)vj ,

where uk(x, t) satisfy the system of linear dif-
ferential equations∫

Ω u
k
tt(x, t)vj(x)dx+

∫
Ω∇uk(x, t)∇vj(x)dx

+
∫
Ω

∣∣ukt (x, t)∣∣m(x)−2
ukt (x, t)vj(x)dx =

∫
Ω v(t)vj(x)dx

uk(x, 0) = uk0, u
k
t (x, 0) = uk1 ∀j = 1.2 . . . . . . k,

(3.6)
where

uk0 =

k∑
i=1

(u0, vi) v → u0 in H
1
0 (Ω),

uk1 =

k∑
i=1

(u1, vi) vi → u1 in L
2(Ω).

Note that (3.6) is a system of ordinary dif-
ferential equations for akj(t). The local exis-
tence of solutions of the system (3.6) is guar-
anteed by the Picard-Lindel�of Theorem on
functional analysis concepts, which is known
to have a local solution in an interval [0, Tk)
with 0 < Tk ≤ Tmax < +∞. The extension of
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the solution to the entire interval [0,+∞) is
a consequence of the following estimates.

Multiplying (3.6) by a′kj(t) and sum over j to
�nd

1
2

d
dt

[∫
Ω

(∣∣ukt (x, t)∣∣2 dx+
∣∣∇uk(x, t)∣∣2) dx

]
+
∫
Ω

∣∣ukt (x, t)∣∣m(x) dx =
∫
Ω v(x, t)u

k
t (x, t)dx

A simple integration on (0, t) yields

1
2

∫
Ω

(∣∣ukt (x, t)∣∣2 dx+
∣∣∇uk(x, t)∣∣2) dx

+
∫ t
0

∫
Ω

∣∣ukt (x, s)∣∣m(x) dxds
= 1

2

∫
Ω

(∣∣uk1∣∣2 + ∣∣∇uk0∣∣2) dx
+
∫ t
0

∫
Ω v(x, s)u

k
t (x, s)dxds

≤ 1
2

∫
Ω

(
u21 + |∇u0|2

)
dx

+ε
∫ t
0

∫
Ω

∣∣ukt ∣∣2 dxds+ cε
∫ T
0

∫
Ω v

2dxds
≤ Cε + ε sup(0,tk)

∫
Ω

∣∣ukt (x, t)∣∣2 dx,
∀t ∈ [0, tk)

(3.7)
Hence

1
2 sup(0,tk)

∫
Ω

∣∣ukt (x, t)∣∣2 dx
+1

2 sup(0,tk)
∫
Ω

∣∣∇uk(x, t)∣∣2 dx
+
∫ tk
0

∫
Ω

∣∣ukt (x, s)m(x)
∣∣ dxds ≤ Cε

+ε sup(0,tk)
∫
Ω

∣∣ukt (x, t)∣∣2 dx
Taking ε = 1

4 , we arrive at

sup(0,tk)
∫
Ω

∣∣ukt (x, t)∣∣2 dx
+ sup(0,tk)

∫
Ω

∣∣∇uk(x, t)∣∣2 dx
+
∫ tk
0

∫
Ω

∣∣ukt (x, s)∣∣m(x) dxds ≤ C

Therefore, the solution can be prolonged to
[0, T ) and, besides, we have(

uk
)

is a bounded sequence

in L∞ ((0, T ), H1
0 (Ω)

)
,(

ukt
)

is a bounded sequence in

L∞ ((0, T ), L2(Ω)
)
∩ Lm(.)(Ω× (0, T )),∣∣ukt ∣∣m(.)−2

ukt
is a bounded sequence

in L
m(.)

m(.)−1 (Ω× (0, T )).

From Dunford�Pettis theorem, we can ex-
tract from

{(
uk
)}

a subsequence still denoted

by
{
(uk)

}
such that

uk → u weakly ∗ in L∞ ((0, T ),H1
0 (Ω)

)
,

(3.8)

ukt → ut weakly ∗ in L∞ ((0, T ), L2(Ω)
)

and weakly in Lm(.)(Ω× (0, T )),
(3.9)∣∣∣ukt ∣∣∣m(.)−2

ukt → ψ weakly

in L
m(.)

m(.)−1 (Ω× (0, T )). (3.10)

Limits (3.8)�(3.10) allow us to pass to the
limit in the approximate equation so that we
can deduce that

u ∈ C
(
[0, T ], L2(Ω)

)
, and therefore u(x, 0)

has a sense.

Now we show that u ∈ C
(
[0, T ], L2(Ω)

)
is

a solution to the system (3.3). First we

try to prove that ψ = |ut|m(.)−2 ut, for all
v ∈ L∞ ((0, T ), L2(Ω)

)
, in (3.6), integrate

over (0, t), and make k → ∞ in the results,
we can derive for a.e t ∈ [0, T ] that

1

2

d

dt

∫
Ω
utφ+

∫
Ω
(∇u.∇φ+ψφ)dx =

∫
Ω
vφdx, ∀φ ∈ H1

0 (Ω).

(3.11)

For simplicity let A(φ) = |φ|m(x)−2φ and de-
�ne (see [2, Proposition 2.5. ]),

Xk =

∫ t

0

∫
Ω

(
A
(
ukt

)
−A(φ)

)(
ukt − φ

)
dt ≥ 0,

∀φ ∈ Lm(.)
(
(0, T );H1

0 (Ω)
)

So if we using (3.7) we get

Xk =
∫ t
0

∫
Ω vu

k
t dxds+ 1

2

∫
Ω

(∣∣uk1∣∣2 + ∣∣∇uk0∣∣2) dxds

−1
2

∫
Ω

∣∣ukt (x, t)∣∣2 dx
−1

2

∫
Ω

∣∣∇uk(x, t)∣∣2 dx−
∫ t
0

∫
ΩA

(
ukt
)
φdxds

−
∫ t
0

∫
ΩA(φ)

(
ukt − φ

)
dxds

Taking k → ∞ we get

0 ≤ lim sup
k

Xk ≤
∫ t

0

∫
Ω
vutdxds

+
1

2

∫
Ω

(
u21 + |∇u0|2

)
dxds− 1

2

∫
Ω
|ut(t)|2 dx

−1

2

∫
Ω
|∇u(x, t)|2dx−

∫ t

0

∫
Ω
ψφdxds

−
∫ t

0

∫
Ω
A(φ) (ut − φ) dxds. (3.12)
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If we put φ = ut in (3.11) and integrate over
(0, T ), we get∫ t

0

∫
Ω vutdxds =

1
2

∫
Ω |ut(x, t)|2 dxds

−1
2

∫
Ω u

2
1dxds+ 1

2

∫
Ω |∇u(x, t)|2dx

−1
2

∫
Ω |∇u0|2 dx+

∫ t
0

∫
Ω ψutdxds.

(3.13)
Combine (3.12) and (3.13) gives

0 ≤ lim sup
k

Xk ≤
∫ t

0

∫
Ω
ψutdxds

−
∫ t

0

∫
Ω
ψφdxds−

∫ t

0

∫
Ω
A(φ) (ut − φ) dxds.

That is∫ t

0

∫
Ω
(ψ −A(φ)) (ut − φ) dxds ≥ 0,

∀φ ∈ Lm(.)
(
(0, T );H1

0 (Ω)
)
.

Consequently∫ t

0

∫
Ω
(ψ −A(φ)) (ut − φ) dxds ≥ 0,

∀φ ∈ Lm(.)(Ω× (0, T )),

by density of H1
0 (Ω) in L

m(.)(Ω).

Now, let φ = λw+ ut, w ∈ Lm(.)(Ω× (0, T )).
Hence, we know

−λ
∫ t

0

∫
Ω
(ψ −A (λw + ut))wdxds ≥ 0,

∀w ∈ Lm(.)(Ω× (0, T )),

for λ > 0, we have∫ t

0

∫
Ω
(ψ −A (λw + ut))wdxds ≤ 0,

∀w ∈ Lm(.)(Ω× (0, T )).

If we take λ → 0 and using the hemi-
continuity of A, we get∫ t

0

∫
Ω
(ψ −A (ut))wdxds ≤ 0,

∀w ∈ Lm(.)(Ω× (0, T )) (3.14)

Similarly we �nd for λ < 0∫ t

0

∫
Ω
(ψ −A (ut))wdxds ≥ 0,

∀w ∈ Lm(.)(Ω× (0, T )) (3.15)

From (3.14) and (3.15), for k → +∞ we get
ψ = A (ut) and∣∣∣ukt ∣∣∣m(.)−2

ukt → |ut|m(.)−2 ut

weakly in L
m(.)

m(.)−1 (Ω× (0, T )).

Therefore, from the above result and (3.8)�
(3.10), we deduce that there is u ∈
C
(
[0, T ], L2(Ω)

)
that satis�es the following

equation(
utt −∆u+ |ut|m(.)−2 ut − v, φ

)
= 0

for all φ ∈ H1
0 (Ω) and the initial conditions

u(0) = u0, ut(0) = u1,

which completes the existence proof in
Lemma (3.2).

The following lemma crucial for the proof of
our main result

Lemma 3.3 For a.e x ∈ Ω and p(.) that satisfy

(3.1), the function F(s) = |s|p(x)−2s (ln |s|) is dif-
ferentiable and

|F′(s)| ≤ (p2 − 1) |s|p(x)−2 |ln |s||
+|s|p(x)−2

≤ 2(p2−1)
e((p1−2)−k1)

|s|k1 + 2(p2−1)
e(k2−(p2−2)) |s|

k2

+
(
|s|p1−2 + |s|p2−2

)
, s ̸= 0,

(3.16)
where

p1 − 2 ≤ p2 − 2 < k2 ≤ 2
n−2 ,

for n ≥ 3,
0 < p1 − 2 ≤ p2 − 2 < k2,

for n = 1, 2,

(3.17)

and

0 < k1 < p1 − 2 ≤ p2 − 2 ≤ 2
n−2 ,

for n ≥ 3,
0 < k1 < p1 − 2 ≤ p2 − 2,

for n = 1, 2.

(3.18)

proof. Obviously we have for k ̸= 0 since ln ζ ≤
1
ekζ

k for every ζ ≥ 1 and ln ζ ≥ − 1
ekζ

−k , ζ < 1
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then for every k > 0

|F′(s)| =
∣∣(p(x)− 1) |s|p(x)−2 (ln |s|) + |s|p(x)−2

∣∣
≤ p2−1

ek

(
|s|p1+k−2 + |s|p2+k−2

)
+p2−1

ek

(
|s|p1−k−2 + |s|p2−k−2

)
+
(
|s|p1−2 + |s|p2−2

)
≤ 2p2−1

ek |s|p2+k−2 + 2p2−1
ek |s|p1−k−2

+
(
|s|p1−2 + |s|p2−2

)
= 2(p2−1)

e((p1−2)−k1)
|s|k1 + 2(p2−1)

e(k2−(p2−2)) |s|
k2

+
(
|s|p1−2 + |s|p2−2

)
,

with k1, and k2 are in (3.17)-(3.18).

Proof of Theorem (3.1).

1. Existence. Let v ∈ L∞ ((0, T ),H1
0 (Ω)\{0}

)
.

Then ∥∥|v|p(.)−2v ln |v|
∥∥2
2

≤
∫
Ω

|v|2p1−2 (ln |v|)2 dx

+
∫
Ω

|v|2p2−2 (ln |v|)2 dx

=
∫

{x∈Ω:|v(t)|<1}
|v|2p1−2 (ln |v|)2 dx

+
∫

{x∈Ω:|v(t)|<1}
|v|2p2−2 (ln |v|)2 dx

+
∫

{x∈Ω:|v(t)|≥1}
|v|2p1−2 (ln |v|)2 dx

+
∫

{x∈Ω:|v(t)|≥1}
|v|2p2−2 (ln |v|)2 dx.

Choosing σ such that

2 ≤ 2 (p1 − 1) ≤ 2 (p2 − 1) < σ ≤ 2n

n− 2
,

for n ≥ 3,

2 ≤ 2 (p1 − 1) ≤ 2 (p2 − 1) < σ,

for n = 1, 2,

and by ln ζ ≤ 1
esζ

s for any ζ ≥ 1, s > 0, we
have ∫

{x∈Ω:|v(t)|<1}
|v|2p1−2 (ln |v|)2 dx

+
∫

{x∈Ω:|v(t)|≥1}
|v|2p1−2 (ln |v|)2 dx

≤ |Ω|
e2 + 1

e2

(
2

σ+2−2p1

)2 ∫
Ω

|v|σ dx

≤ |Ω|
e2 + 1

e2C
σ
s

(
2

σ+2−2p1

)2
∥∇v∥σ2 <∞,

(3.19)

similarly ∫
{x∈Ω:|v(t)|<1}

|v|2p2−2 (ln |v|)2 dx

+
∫

{x∈Ω:|v(t)|≥1}
|v|2p2−2 (ln |v|)2 dx

≤ |Ω|
e2 + 1

e2C
σ
s

(
2

σ+2−2p2

)2
∥∇v∥σ2 <∞,

(3.20)
where Cs is the optimal constant of Sobolev
embedding H1

0 (Ω) → Lσ(Ω). So, in this case.

|v|p(.)−2v ln |v| ∈ L∞ ((0, T ), L2(Ω)
)

⊂ L2(Ω× (0, T ))

Thus for every v ∈ L∞ ((0, T ),H1
0 (Ω)\{0}

)
,

there is a unique u such that

u ∈ L∞ ((0, T ),H1
0 (Ω)

)
,

ut ∈ L∞ ((0, T ), L2(Ω)
)
∩ Lm(.)(Ω× (0, T )),

(3.21)
solve the nonlinear problem

utt −∆u+ |ut|m(.)−2 ut = |v|p(.)−2v ln |v| ,
in Ω× (0, T )
u(x, t) = 0,

on ∂Ω× (0, T )
u(x, 0) = u0(x), ut(x, 0) = u1(x),

in Ω.
(3.22)

Let R0 be a positive real number such that

R0 =

√
2
(
|u1|2 + |∇u0|2

)
,

for a su�ciently small time T > 0 we de�ne
the space BT (R0) by

BT (R0) =


v (t) ∈ L∞ ((0, T ),H1

0 (Ω)
)
,

vt (t) ∈ L∞ ((0, T ), L2(Ω)
)
),

|v′ (t)|2 + |∇v (t)|2 ≤ R2
0 on [0, T ] ,

v (0) = v0, v
′ (0) = u1.


We introduce the metric d on the space
BT (R0)

d (u, v) = sup
0≤t≤T

(
|ut (t)− vt (t)|2 + |∇u (t)−∇v (t)|2

)
for u, v ∈ BT (R0).

Obviously the space BT (R0) is the complete
metric space. Let v ∈ BT (R0). Then
|∇v(t)| ≤ R0, |v′(t)| ≤ R0 for all t ∈ [0, T ].
De�ne the mapping Φ

Φ(v) = u,
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where u satis�es (3.21) and (3.22). Then we
have

Φ(v) = u ∈ BT (R0) for v ∈ BT (R0), (3.23)

Φ : BT (R0) → BT (R0) is a contractive mapping.
(3.24)

For showing (3.23), multiply (3.22) by ut

1

2

d
dt

(∫
Ω
u2t dx+

∫
Ω
|∇u|2dx

)
+

∫
Ω
|ut|m(x) dx

=

∫
Ω
|v|p(x)−2v (ln |v|)utdx (3.25)

From Young's inequality, (3.19) and (3.20) for
all ε > 0 the following estimates hold:∣∣∫

Ω v
p(x)−2v (ln |v|)utdx

∣∣
≤
∫
Ω u

2
t dx+ 1

4

∫
Ω |v|2p(x)−2 (ln |v|)2 dx

≤
∫
Ω u

2
t dx+ 1

4

[∫
Ω |v|2p2−2 (ln |v|)2 dx

+
∫
Ω |v|2p1−2 (ln |v|)2 dx

]
≤
∫
Ω u

2
t dx

+1
4

[
2 |Ω|

e2 + 1
e2C

σ
s

(
2

σ+2−2p1

)2
∥∇v∥σ2

+ 1
e2C

σ
s

(
2

σ+2−2p2

)2
∥∇v∥σ2

]
.

So (3.25) becomes

d
dt

(
∥ut∥22 + ∥∇u∥22

)
≤ 1

e2
|Ω|+ 2

e2
Cσ
s

(
2

σ + 2− 2p2

)2

Rσ
0 +∥ut∥22 .

Thus, we have

ψv (u) (t) ≤ ψv (u) (0)

+
∫ t
0

(
1
e2 |Ω|+

2
e2C

σ
s

(
2

σ+2−2p2

)2
Rσ

0 + ψv (u) (t)

)
ds

≤ 1
2R

2
0 + β0

∫ t
0 (1 + ψv (u) (t)) ds,

where β0 = max
(

1
e2 |Ω|+

2
e2C

σ
s

(
2

σ+2−2p2

)2
Rσ

0 , 1

)
and

ψv (u) (t) = ∥ut∥22 + ∥∇u∥22 .
By the Gronwall inequality and simple calcu-
lations we have

∥ut∥22+∥∇u∥22 ≤
(
1

2
R2

0 + β0T0

)
eβ0T0 < R2

0, 0 ≤ t ≤ T0,

for su�ciently small 0 < T0 ≤ T . Thus (3.23)
is ful�lled.

Next we show (3.24). Let w = u1 − u2,
where u1 = Φ(v1) , u2 = Φ(v2) with v1,
v2 ∈ BT (R0). Then we have

(wtt, v)− (∆w, v)

+
(
|u1t (t)|m(x)−1 u1t (t)− |u2t (t)|m(x)−1 u2t (t) , v

)
=
(
|v1|p(x)−2v1 ln |v1| − |v2|p(x)−2v2 ln |v2| , v

)
,

in L2
(
0, T1;H

−1 (Ω)
)
.
(3.26)

Now, set

βv (w) (t) = |wt(t)|2 + |∇w (t)|2 .

Multiplying (3.26) by wt and using (3.5) we
get

1

2

d
dt

(
|wt(t)|2 + |∇w (t)|2

)
≤
(
|v1|p(x)−2v1 ln |v1| − |v2|p(x)−2v2 ln |v2| , wt

)
.

Now we estimate

I =

∫
Ω
|F (v1(s))− F (v2(s))| |wt| dx

=

∫
Ω

∣∣F ′(ξ)∥v∥wt

∣∣ dx,
where

v = v1−v2 and ξ = av1+(1−a)v2, 0 ≤ a ≤ 1.

By Holders, Youngs inequalities and Lemma
(3.3) we have

I2 ≤
∫
Ωw

2
t dx

∫
Ω |F ′(ξ)|2 |v|2dx

≤ 4
∫
Ωw

2
t dx

[(
2(p2−1)

e((p1−2)−k1)

)2
∫
Ω

(
|αv1 + (1− α)v2|2k1

)
|v|2dx

+
(

2(p2−1)
e(k2−(p2−2))

)2 ∫
Ω

(
|αv1 + (1− α)v2|2k2

)
|v|2dx

+ 4
∫
Ω

(
|αv1 + (1− α)v2|2(p1−2)

)
|v|2dx

+4
∫
Ω

(
|αv1 + (1− α)v2|2(p2−2)

)
|v|2dx

]
≤ c∗

(∫
Ωw

2
t dx
) (∫

Ω |v|
2n

n−2 dx
)n−2

n[(∫
Ω |αv1 + (1− α)v2|k1n

) 2

n dx

+
(∫

Ω |αv1 + (1− α)v2|nk2

) 2

n dx

+
∫
Ω

(
|αv1 + (1− α)v2|2(p1−2)

)
dx

+
∫
Ω

(
|αv1 + (1− α)v2|2(p2−2)

)
dx
]
,
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If we recall (3.1) and (3.12) we come to

I2 ≤ c∗cs
(∫

Ωw
2
t dx
)
∥∇v∥22

[
∥∇v1∥2k1

2 + ∥∇v1∥2k2

2

+ ∥∇v2∥2k1

2 + ∥∇v2∥2k2

2

+ ∥∇v1∥
2(p1−2)

2 + ∥∇v1∥
2(p2−2)

2

+ ∥∇v2∥
2(p1−2)

2 + ∥∇v2∥
2(p2−2)

2

]
≤ 8c∗csR

2(k2+p2−2)
0 d (v1, v2)βv1

(w) (t) ,

where c∗ = c (e, p1, p2, k1, k2) and cs the

Sobolev embedding H1
0 (Ω) → L

2n

n−2 (Ω).

If we combine, it follows

d
dt
βv (w) (t) ≤ ξd (v1, v2)

1

2 βv (w) (t)
1

2 .

Since βv (w) (0) = 0, by the Gronwall lemma

d (u1, u2) ≤
ξ2T

4
d (v1, v2) eT .

Choose a 0 < T1 ≤ T small enough to satisfy

ξ2

4
T1e

T1 < 1.

Thus, according to Banach's contraction
mapping theorem, there exists a �xed point
u = Φ(u) ∈ BT1

(R0), which is a locally weak
solution in time to (1.1).

2. Uniqueness. Suppose we have two solutions
u and v and set

w(s) =

{
u1(s)− u2(s), s ∈ [0, t]

0, s ∈ [t, T ],

then

w ∈ L2
(
0, T ;W

1,p(.)
0 (Ω)

)
,

wt ∈ L2
(
0, T ;H1

0 (Ω)
)

and w ful�lled

1

2

∫
Ω
w2
t dx+

1

2

∫
Ω
|∇w|2dx

≤
∫ t

0

∫
Ω
(F (u)− F (v))wtdx

Consequently, the uniqueness results from the
local Lipschitz continuity of F : R∗ → R and
the embedding H1

0 (Ω) ↪→ L2(Ω). This com-
pletes the proof of the theorem.

4 Blow-up of weak solutions
Finally, we give the su�cient conditions for m(.)
for in�ating weak solutions of the problem (1.1)
in �nite time if

2 < m1 ≤ m(x) ≤ m2

< p1 ≤ p(x) ≤ p2 < 2
n− 1

n− 2
, n ≥ 3, (4.1)

holds, and E (0) < 0, where

E(t) = 1
2

∫
Ω

(
|ut (x, t)|2 + |∇u (x, t)|2

)
dx

−
∫
Ω

1
p(x) |u (x, t)|

p(x) ln(|u (x, t) |)dx
+
∫
Ω

1
p2(x) |u (x, t) |

p(x)dx.
(4.2)

For our purpose we need to the following lemma
showing the decrease in energy E.

Lemma 4.1 The energy associated with the prob-
lem (1.1) given by (4.2) satis�es the

dE (t)

dt
= −

∫
Ω
|ut|m(x) dx ≤ 0, (4.3)

and the inequality E (t) ≤ E (0) holds, where

E(0) = 1
2

∫
Ω

(
|u1|2 + |∇u0|2

)
dx

−
∫
Ω

1
p(x) |u0|

p(x) ln(|u0|)dx
+
∫
Ω

1
p2(x) |u0|

p(x)dx.
(4.4)

Let
H (t) = −E (t) for t ≥ 0, (4.5)

since E(t) is absolutely continuous, henceH ′(t) ≥
0 and

0 < H(0) ≤ H (t) ≤
∫
Ω

1

p (x)
|u (x, t)|p(x) ln(|u|)dx.

Lemma 4.2 Let the assumptions (2.1) be ful�lled
and let u be the solution of (1.1). Then,∫

Ω
|u|p(x)dx ≥

∫
Ω2

|u|p1dx := ∥u∥p1

p1,Ω2
, (4.6)

where
Ω2 = {x ∈ Ω/|u(x, t)| ≥ 1}.

proof. Let

Ω1 = {x ∈ Ω/|u(x, t)| < 1},
so, we have∫

Ω |u|p(x)dx =
∫
Ω2

|u|p(x)dx+
∫
Ω1

|u|p(x)dx
≥
∫
Ω2

|u|p1dx+
∫
Ω1

|u|p2dx
≥
∫
Ω2

|u|p1dx := ∥u∥p1

p1,Ω2
.

Thus (4.6).
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Lemma 4.3 Under the assumptions of Theorem
(3.1), the function H (t) presented above yields
the following estimates:

0 < H(0) ≤ H (t) ≤ |Ω|
p1e

+
Bs

(s− p2) ep1
∥∇u∥s2 , t ≥ 0,

(4.7)
where s is chosen su�ciently small such that

p1 ≤ p2 < s ≤ 2n

n− 2
, for n ≥ 3, (4.8)

p1 ≤ p2 < s <∞ for n = 1, 2,

and Bs is a positive constant of embedding H
1
0 (Ω)

in Ls(Ω) such that

∥u∥s ≤ Bs∥∇u∥2, ∀u ∈ H1
0 (Ω). (4.9)

proof. By Lemma (4.1), H(t) is nondecreasing in
t. Thus

H (t) ≥ H(0) = −E(0) > 0, t ≥ 0. (4.10)

Combining (4.2), (4.3), (4.5) and using the fact
that ln ζ ≤ 1

eσ ζ
σ for any σ > 0 we have

0 < H (t) < 1
p1

∫
Ω |u (x, t)|p(x) ln(|u (x, t) |)dx

= 1
p1

∫
{x∈Ω:|u(x)|<1} |u (x, t)|

p(x)−1 (|u (x, t)|
(ln(|u (x, t) |))) dx

+ 1
p1

∫
{x∈Ω:|u(x)|≥1} |u (x, t)|

p(x) ln(|u (x, t) |)dx
≤ |Ω|

p1e
+ 1

σep1

∫
{x∈Ω:|u(x)|≥1}

|u|p2+σ dx

≤ |Ω|
p1e

+ 1
σep1

∥u∥p2+σ
p2+σ

≤ |Ω|
p1e

+ Bs

(s−p2)ep1
∥∇u∥s2 ,

(4.11)
and (4.7) follows.

Theorem 4.4 Suppose the conditions of Theorem
(3.1) are satis�ed. Moreover, let (4.1) hold as well
as E(0) < 0. Then the solution of problem (1.1)
given by Theorem (3.1) blows up in �nite time.

proof. for each t in [0, T ) let de�ne

L(t) := H1−α(t) + ε

∫
Ω
u(x, t)ut(x, t)dx, (4.12)

with ε > 0 is small enough to be chosen later and
α such that

0 < α ≤ min
{
p1 − 2

2p1
,
p1 −m2

p1 (m2 − 1)
,

2 (p1 −m1)

s (m1 − 1) p1
,
2 (p1 −m1)

s (m2 − 1) p1

}
. (4.13)

A straightforward derivation of (4.12) using Eq.
(1.1), we obtain

L′(t) = (1− α)H−α(t)H ′(t)

+ε

∫
Ω

[
u2t − |∇u|2

]

+ε

∫
Ω
|u|p(x) (ln |u|)− ε

∫
Ω
|ut|m(x)−2 uut (4.14)

On the right-hand side of (4.14) by adding and

subtracting ε(1−η)p1H(t) with 0 < η < p1−2
p1

, we

obtain

L′(t) = (1− α)H−α(t)H ′(t) + ε(1− η)p1H(t)
+η
∫
Ω |u|p(x) (ln |u|) dx

+ε
(
(1−η)p1

2 + 1
)
∥ut∥22 + ε

(
(1−η)p1

2 − 1
)
∥∇u∥22

−ε
∫
Ω uut |ut|

m(x)−2 dx,
(4.15)

Due to the fact that (4.6), taking into account

1

p22

∫
Ω
|u (x, t) |p(x)dx < 1

p1

∫
Ω
|u|p(x) (ln |u|) dx,

(4.15) result in

L′(t) ≥ (1− α)H−α(t)H ′(t)− ε
∫
Ω |ut|m(x)−2 uutdx

+εβ
[
H(t) + ∥ut∥22 + ∥∇u∥22 +

∫
Ω |u (x, t) |p(x)dx

]
≥ (1− α)H−α(t)H ′(t)− ε

∫
Ω |ut|m(x)−2 uutdx

+εβ
[
H(t) + ∥ut∥22 + ∥∇u∥22 + ∥u∥p1

p1,Ω2

]
,

(4.16)
where

β = min
{
(1− η)p1,

p1
p22
η,

(1− η)p1
2

+ 1

,
(1− η)p1

2
− 1

}
> 0.

Now, using Young's inequality, we estimate the
last term in (4.14) in the manner shown below∫

Ω
|ut|m(x)−1 |u|dx ≤ 1

m1

∫
Ω
ζm(x)|u|m(x)dx

+
m2 − 1

m2

∫
Ω
ζ
− m(x)

m(x)−1 |ut|m(x) dx, ∀ζ > 0. (4.17)

Consequently, by taking δ such that

ζ
− m(x)

m(x)−1 = kH−α(t), k > 0,
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By putting it in (4.17) with k large enough to be
determined later, we obtain∫

Ω
|ut|m(x)−1 |u|dx ≤

1

m1

∫
Ω
k1−m(x)|u|m(x)Hα(m(x)−1)(t)dx

+
(m2 − 1) k

m2
H−α(t)H ′(t). (4.18)

The result of joining (4.16) with (4.18)

L′(t) ≥
[
(1− α)− ε

(
m2−1
m2

)
k
]
H−α(t)H ′(t)

+εβ
[
H(t) + ∥ut∥22 + ∥∇u∥22 + ∥u(t)∥p1

p1

]
−εk1−m1

m1
Hα(m2−1)(t)

∫
Ω |u|m(x)dx.

(4.19)
Applying lemma (4.3) we have

Hα(m2−1)(t)
∫
Ω |u(t)|m(x)dx

≤ C

[
2α(m2−1)−1

(
|Ω|
p1e

)α(m2−1)

+2α(m2−1)−1 1
(s−p2)ep1

∥∇u∥sα(m2−1)
2(

∥u∥m1

p1,Ω2
+ ∥u∥m2

p1,Ω2

)]
≤ 2α(m2−1)−1C

(
|Ω|
p1e

)α(m2−1)

×
((

∥u∥p1

p1,Ω2

)m1
p1 +

(
∥u∥p1

p1,Ω2

)m2
p1

)
+2α(m2−1)−1C 1

(s−p2)ep1
∥∇u∥sα(m2−1)

2

×
(
∥u∥m1

p1,Ω2
+ ∥u∥m2

p1,Ω2

)
.

(4.20)
We are to analyze the terms on the right-hand
side of (4.20). By using Young's inequality, we
have

∥∇u∥sα(m2−1)
2 ∥u∥m1

p1,Ω2
≤ m1

p1
∥u(t)∥p1

p1,Ω2

+C p1−m1

p1
∥∇u∥

sα(m2−1)p1
p1−m1

2

= m1

p1
∥u(t)∥p1

p1,Ω2

+C p1−m1

p1

(
∥∇u∥22

) sα(m2−1)p1
2(p1−m1)

,

similarly

∥∇u∥sα(m2−1)
2 ∥u(t)∥m2

p1,Ω2
≤ m2

p1
∥u(t)∥p1

p1,Ω2

+C
p1 −m2

p1

(
∥∇u∥22

) sα(m2−1)p1
2(p1−m2)

.

Using the following well-known algebraic inequal-
ity:

zτ ≤ z+1 ≤
(
1 +

1

d

)
(z+d), ∀z ≥ 0, 0 < τ ≤ 1, d ≥ 0,

(4.21)

with z = ∥u(t)∥p1

p1,Ω2
, a = 1+ 1

H(0) , d = H(0) and

τ = m1

p1

(
τ = m2

p1

)
, respectively, then the condi-

tion (4.1) implies that 0 < τ ≤ 1 and therefore(
∥u(t)∥p1

p1,Ω2

)m1
p1 +

(
∥u(t)∥p1

p1,Ω2

)m2
p1

≤ 2a
(
∥u(t)∥p1

p1,Ω2
+H(0)

)
≤ 2a

(
∥u(t)∥p1

p1,Ω2
+H(t)

)
,

similarly, with z = ∥∇u∥22 , b = 1+ 1
H(0) , d = H(0)

and τ = sα(m2−1)p1

2(p1−m1)
, then the condition (4.13) im-

plies that 0 < τ ≤ 1 and therefore(
∥∇u∥22

) sα(m2−1)p1
2(p1−m1)

≤ b
((

∥∇u∥22 +H(0)
))

≤ b
((

∥∇u∥22 +H(t)
))

,

also, with z = ∥∇u∥22 , h = 1 + 1
H(0) , d = H(0)

and τ = sα(m2−1)p1

2(p1−m2)
,

(
∥∇u∥22

) sα(m2−1)p1
2(p1−m2) ≤ h

((
∥∇u∥22 +H(t)

))
,

therefore, (4.20) leads to

Hα(m2−1)(t)

∫
Ω
|u(t)|m(x)dx

≤ C
(
∥u(t)∥p1

p1,Ω2
+H(t) + ∥∇u∥22

)
, ∀t ∈ [0, T ].

(4.22)
where C to indicate a generic positive constant
depending on (Ω, e, h, p1,2,m1,2) only. Combining
(4.19) and (4.22) yields

L′(t) ≥
(
(1− α)− ε

(
m2−1
m2

)
k
)
H−α(t)H ′(t)

+ε
(
β − k1−m1

m1
C
)

×
[
H(t) + ∥ut∥22 + ∥∇u∥22 + ∥u(t)∥p1

p1,Ω2

]
.

(4.23)

At this point we pick γ = β − k1−m1

m1
C > 0, (it is

the case when k >
(
βm1

C

) 1

1−m1 ).

Once k is �xed we pick ε > 0 su�cient small
so that

(1− α)− ε

(
m2 − 1

m2

)
k ≥ 0

and L(0) = H1−α(0) + ε

∫
Ω
u0(x)u1(x)dx > 0.
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Hence (4.23) takes the form

L′(t) ≥ γ
(
H(t) + ∥ut∥22 + ∥∇u∥22 + ∥u(t)∥p1

p1,Ω2

)
.

(4.24)
Therefore, we have

L(t) ≥ L(0) > 0, for all t ≥ 0

On the other hand from (4.12),

L
1

1−α (t) ≤ 21/(1−α)

(
H(t) +

∣∣∣∣∫
Ω
uut(x, t)dx

∣∣∣∣ 1

1−α

)
,

(4.25)
By applying Holder's inequality we see that∣∣∣∣∫

Ω
uut(x, t)dx

∣∣∣∣ ≤ C∥u∥p1
∥ut∥2 ≤ 2C∥u∥p1,Ω2

∥ut∥2 .

Again, algebraic inequality (4.21), with z =
∥u∥p1

p1,Ω2
, h = 1 + 1

H(0) , d = H(0) and 0 < τ =
2

(1−2α)p1
≤ 1 (see (4.13)), gives(

∥u∥p1

p1,Ω2

) 2

(1−2α)p1 ≤ C
(
∥u∥p1

p1,Ω2
+H(t)

)
,

Thus, Young's inequality gives∣∣∫
Ω uut(x, t)dx

∣∣1/(1−α)

≤ C

[
∥u∥

2(1−α)

1−2α

p1,Ω2
+ ∥ut∥2(1−α)

2

]1/(1−α)

≤ C

[(
∥u∥p1

p1,Ω2

) 2

(1−2α)p1 + ∥ut∥22

]
≤ C

[
∥u∥p1

p1,Ω2
+H(t) + ∥ut∥22

]
, for all t ≥ 0,

joining it with (4.24) and (4.25) yields

L′(t) ≥ δL
1

1−α (t), for all t ≥ 0, (4.26)

where δ is a positive constant depending on
(ε, γ, C). With a simple integration of (4.26) over
(0, t) we infer that

L
α

1−α (t) ≥ 1

L
α

1−α (0)− α
1−αδt

. (4.27)

Consequently, L(t) blows up in a �nite time T̂

T̂ ≤ 1− α

δαL
α

1−α (0)
.
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