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Abstract: - Noting the fact that commensal species that behave as foragers are subject to the constraints of han-
dling time, a two species commensalism model with Holling type II commensalistic benefits and stage structure is
proposed and studied. We first show that among four possible equilibria, host-only equilibrium and positive equi-
librium are possible asymptotically stable. Next, we establish a powerful lemma on the global stability property
of the single species stage structured model with linear perturbation on mature species. By applying this lemma
and the differential inequalities theory, sufficient conditions which ensure the global attractivity of the host-only
equilibrium and positive equilibrium are obtained, respectively. Our results generalize some known results.
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1 Introduction

The aim of this paper is to investigate the dynamic be-
haviors of the following commensalism system with
Holling II functional response and stage structure:

dx1
dt

= αx2 − βx1 − δ1x1,

dx2
dt

= βx1 − δ2x2 − γx22 + d
y

η1 + η2y
x2,

dy

dt
= y(b2 − a2y),

(1)
where α, β, δ1, δ2, d, b2, a2, η and γ are all positive
constants, x1(t) and x2(t) are the densities of the im-
mature and mature commensal species at time t, y(t)
is the density of the host species at time t. The follow-
ing assumptions are made in formulating the model
(1):
(A1) The birth rate of the immature commensal
species is proportional to the existing mature popula-
tion with a proportionality constant α; for the imma-
ture commensal species, the death rate and transfor-
mation rate of mature are proportional to the existing
immature population with proportionality constants β
and δ1;
(A2) The death rate of the mature commensal species
is proportional to the existing mature population with
a proportionality constant δ2. The mature commensal
species has density restriction, γ is density dependent
coefficient;
(A3) The host species satisfies the logistic model;
(A4) The host species only benefits to the mature

commensal species with rate
dy

η1 + η2y
, which is of

Holling II type.

During the last decade, many scholars investigated
the dynamic behaviors of the mutualism model or
commensalism model [1]-[39]. By means of com-
mensal interactions, one species benefits from the
other without either harming or benefiting the lat-
ter. Commensalism is very common in nature, for
example, small plants called epiphytes and the large
tree branches on which they grow. Epiphytes de-
pend on their hosts for structural support but do not
derive nourishment from them or harm them in any
way. Another example is the remora (family Echinei-
dae) that rides attached to sharks and other fishes.
One could refer to https://www.britannica.com/sci-
ence/commensalism for more background and exam-
ples.

Despite commensalism is a very common rela-
tionship in nature, its mathematical modeling lags
far behind. In 2013, for the first time, Sun and
Sun[42] first time proposed a two species commen-
salism model. Since then, many scholars worked on
this direction. Topics such as the influence of har-
vesting [2, 3, 5, 9, 10, 11, 25, 26, 32, 37, 38], the
existence of periodic solution or almost periodic so-
lution [6, 8, 12, 21, 23], the stability of the system
[1, 2, 3, 4, 7, 18, 19, 20, 25, 31, 37, 38, 39, 42], the per-
sistent and extinction property of the system [2, 19],
the influence of stage structure [13], the influence of
Allee effect [14, 15, 16, 17, 22, 29, 30, 34, 35], the in-
fluence of time delays [1, 6, 24], the influence of feed-
back control [20, 31], the bifurcation phenomenon of
the system [26, 28, 29, 30, 34, 35] etc were exten-
sively investigated.

In the real world, almost all animals have the
stage structure of immature and mature. In differ-
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ent stages, the species have different reactions to
the environment. many scholars investigated the dy-
namic behaviors of the stage structured species, see
[1, 13, 32, 40, 44, 45] and the references cited therein.
Aiello and Freedman [44] first time proposed the fol-
lowing stage-structured single species model.

dx1(t)

dt
= αx2(t)− γx1(t)

−αe−γτx2(t− τ),

dx2(t)

dt
= αe−γτx2(t− τ)− βx22(t).

(2)

They showed that the above system admits a unique
positive equilibrium which is globally asymptotically
stable. Such a result is similar to the traditional single
species Logistic model. However, in above system,
the authors did not consider the influence of death rate
of mature species. Chen, Xie, Chen [1] proposed and
studied the following May type stage-structured co-
operation model,

ẋ1(t) = b1e
−d11τ1x1(t− τ1)− d12x1(t)

− a11x
2
1(t)

c1 + f1x2(t)
− a12x

2
1(t),

ẏ1(t) = b1x1(t)− d11y1(t)

−b1e
−d11τ1x1(t− τ1),

ẋ2(t) = b2e
−d22τ2x2(t− τ2)− d21x2(t)

− a22x
2
2(t)

c2 + f2x1(t)
− a21x

2
2(t),

ẏ2(t) = b2x2(t)− d22y2(t)

−b2e
−d22τ2x2(t− τ2).

(3)

In this system, d12 and d21 represent the death rates
of the first and second mature species, respectively.
They showed that despite the cooperation between the
species, the species may still be driven to the extinc-
tion due to the stage structure. Death rate of mature
species plays crucial role on the persistence and ex-
tinction property of the system.

Instead of consider the influence of delay, some
scholars [13], [32], [40], [44] assumed that there
are proportional number of immature species be-
comes mature species. Khajanchi and Banerjee [44]
proposed the following stage structure predator-prey

model with ratio dependent functional response

dx1
dt

= αx2(t)− βx1(t)− δ1x1(t),

dx2
dt

= βx1(t)− δ2x2(t)− γx22(t)

− η(1− θ)x2(t)y(t)

g(1− θ)x2(t) + hy(t)
,

dy

dt
=

uη(1− θ)x2(t)y(t)

g(1− θ)x2(t) + hy(t)
− δ3y(t).

(4)

Here the authors assumed that the prey species is stage
structured. The authors only considered the stabil-
ity property of predator-extinction equilibrium and
the positive interior equilibrium. We would like to
point out that Xiao and Lei [12] showed that the death
rate of the mature species plays important role on the
persistence and extinction of the single species stage
structured system.

In our opinion, the commensalism models were
not well studied in the sense that up today, just one
paper [13] considers the influence of the stage struc-
ture. A recent study [43] showed that the relationship
among Brazil nut and three frog species is commen-
salism, and it is well known that frog species are stage
structured species. Hence, it is necessary to propose
somemodeling on stage structured commensalism. In
[13], Lei proposed the following two species com-
mensalism model

dx1
dt

= αx2 − βx1 − δ1x1,

dx2
dt

= βx1 − δ2x2 − γx22 + dx2y,

dy

dt
= y(b2 − a2y).

(5)

Concerned with the global stability property of the
equilibria of system (5), by constructing suitable Lya-
punov function, the author obtained the following re-
sult (Theorem 3.1 and 3.2 in [13]):
TheoremA. (1) if

(β + δ1)
(
δ2 −

db2
a2

)
− αβ > 0 (6)

hold, then A2(0, 0,
b2
a2
) is globally asymptotically sta-

ble. If

(β + δ1)
(
δ2 −

db2
a2

)
− αβ < 0 (7)
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hold, then A4(x1, x2, y) is globally asymptotically
stable, where

x1 =
αx2

β + δ1
,

x2 =
αβ −

(
δ2 − dy

)
(β + δ1)

(β + δ1)γ
,

y =
b2
a2

.

(8)

Traditional two species Lotka-Volterra coopera-
tion system, which takes the form

dx

dt
= x(r1 − a11x+ a12y),

dy

dt
= y(r2 − a21y + a22x),

is criticized by many biologist. The reason lies in the
unrealistic assumption that the benefits of the interac-
tion were unlimited and increased in direct proportion
to the density of the mutualistic partner. To overcome
this, and inspired by the fact that mutualists that be-
have as foragers are also subject to the constraints of
handling time, for example, ( for a species of solitary
bee visiting a flower species. The rate of collection
of pollen is limited by the handling time per plant),
Wright[43] proposed the following two species mu-
tualism model

dN

dt
= N

(
r1(1− c1N) +

baM

1 + aT11M

)
,

dM

dt
= M

(
r2(1− c2M) +

cdN

1 + dT22N

)
,

where the author used Holling type II functional re-

sponse
baM

1 + aT11M
to describe the feeding rate (items

per unit of time, T11 is the handling time, b is a coeffi-
cient converting M to new units of N . The model
is based on the traditional logistic equation with a
term added to include the per capita benefits of in-
teracting with the population of the mutualist partner.
The model may have none, one or two positive equi-
librium, i.e., with the introduction of functional re-
sponse, the dynamic behaviors of the system becomes
more complex.

Probably inspired by the works of Wright [43] or
some similar works, several scholars [7],[15],[16],
[17],[23],[28],[31],[39] argued that the the relation-
ship of two commensalismmodel should be described
by the suitable functional response. Li, Lin and
Chen [23] for the first time adopt the idea of func-
tional response of predator prey system, they pro-
posed the following discrete commensalism model

with Holling II functional response.

x1(k + 1) = x1(k) exp
{
a1(k)− b1(k)x1(k)

+
c1(k)x2(k)

e1(k) + f1(k)x2(k)

}
,

x2(k + 1) = x2(k) exp {a2(k)− b2(k)x2(k)}.

They studied the positive periodic solution of the sys-
tem.

Wu [7] argued that a relationship of nonlinear type
between two species is more feasible, and she estab-
lished the following two species commensal symbio-
sis model

dx

dt
= x

(
a1 − b1x+

c1y
p

1 + yp

)
,

dy

dt
= y(a2 − b2y),

(9)

where ai, bi, i = 1, 2, p and c1 are all positive con-
stants, p ≥ 1. The results of [7] is then generalized
by Lei [23] and Wu, Li and Lin [16] to the commen-
salism model with Allee effect.

Recently, Jawad [26] proposed the following com-
mensalism model with Michaelis-Menten type har-
vesting and Holling type II functional response:

du

dt
= ru

(
1− u

k

)
+

βuv

α+ u
− qEu

cE + lu
,

dv

dt
= sv

(
1− v

m

)
− dv,

where u(t) and v(t) denote the densities of the first
and second species at time t, respectively. Topics
such as permanence, saddle node bifurcation were
discussed in [26].

Chen, Chong and Lin [31] proposed the follow-
ing commensal symbiosis model with Holling type II
functional response and feedback controls:

dx

dt
= x

(
b1 − a11x+

a12y

a13 + a14y
− α1u1

)
,

dy

dt
= y(b2 − a22y − α2u2),

du1
dt

= −η1u1 + a1x,

du2
dt

= −η2u2 + a2y,

(10)
where x(t) and y(t) denote the density of the first and
second species at time t, and u1 and u2 are feedback
control variables. By developing some new analytical
technique, the authors showed that the unique positive
equilibrium is globally attractive.
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Xu, Xue, Xie and Lin [39] proposed and studied
the commensalism model with Crowley-Martin func-
tional response. i.e.,

dx

dt
= x

(
− a1 − b1x+

c1y

d1 + e1x+ f1y + g1xy

)
,

dy

dt
= y(a2 − b2y).

For autonomous case, i.e., when all the coefficients of
the system are positive constants, authors investigated
the local and global dynamic behaviors of the sys-
tem. For nonautonomous case, authors investigated
the persistent and extinction properties of the system.

Li and Wang [28] argued that a suitable model
should include some past state of the system, and they
investigated the dynamic behaviors of the following
commensalism system

dx

dt
= x

(
a1 − b1x+

c1y

1 + e1x+ f1y

)
,

dy

dt
= y(a2 − b2y(t− τ)).

As was shown above, there are several kinds of
functional response used in modelling the commen-
salism model, however, it seems that the discussion
of Wright [43] is one of the most reasonable, and
the biological explanation is plausible. Stimulated by
the above works, specially stimulated by the work of
Wright [43], we propose the system (1). As far as sys-
tem (1) is concerned, since it seems that the system is
similar to system (5), only with the cooperation term
dx2y in system (5) changed to the term with func-

tional response d
y

η1 + η2y
x2 in system (1). One may

expect the analysis method used in Lei [13] could be
directly applied to system (1), i.e., one could investi-
gate the stability property of the positive equilibrium
by constructing the Lyapunov function

V (x1, x2, y)

= k1
(
x1 − x∗∗1 − x∗∗1 ln x1

x∗∗
1

)
+k2

(
x2 − x∗∗2 − x∗∗2 ln x2

x∗∗
2

)
+k3

(
y − y∗∗ − y∗∗ ln y

y∗∗

)
,

where x∗∗1 , x∗∗2 , y∗∗ are defined in (15). However, it
is very difficult to deal with the nonlinear term to en-
sure D+V (t) < 0. By constructing Lyapunov func-
tion as above, one could obtain some sufficient con-
ditions to ensure the global stability of the solution to
system (1), however, the condition, generally speak-
ing, is not a good one, since in dealing with the term

d
y

η1 + η2y
x2, some additional conditions are needed,

which could not reflect the essential characteristic of
system (1). We mention here that in [7], Wu investi-
gated the global stability of the equilibrium of system
(9) by using the Dulac criterion, which could only be
applied to the two dimensional systems, and could not
be applied to three dimensional systems. Recently, in
the study of dynamic behaviors of the system (10),
Chen, Chong and Lin [31] developed some analytical
technique, more precisely, they essentially grasped
the characteristics of the commensalism systems, and
applied the differential inequalities theory, to obtain
some interesting results about system (10). We will
try to develop the analytic idea of [31] to investigate
the dynamic behaviors of system (1).

The paper is arranged as follows. We investigate
the existence and locally stability property of the equi-
libria of system (1) in Section 2. In Section 3, we
establish a stability result about the single species
stage structured system. In Section 4, by using the
differential inequalities theory and the Lemma estab-
lished in Section 3, we provide conditions which en-
sure the global attractivity property of the equilibria.
In Section 5, we present some numerical simulations
to show the feasibility of the main results. We end this
paper by a brief discussion.

2 Local stability
In this section, we will investigate the existence and
local stability property of system (1).

The equilibria of system (1) is determined by the
following system

αx2 − βx1 − δ1x1 = 0,

βx1 − δ2x2 − γx22 + d
y

η1 + η2y
x2 = 0,

y(b2 − a2y) = 0.
(11)

The system always admits two boundary equilibria:

A1(0, 0, 0), A2(0, 0,
b2
a2

), if, in addition

αβ > δ2(β + δ1), (12)

then the system admits another boundary equilibrium

A3

(
x∗1, x

∗
2, 0
)
, where

x∗1 =
αx∗2

β + δ1
, x∗2 =

αβ − δ2(β + δ1)

γ(β + δ1)
. (13)

If

αβ −
(
δ2 −

dy∗∗

η1 + η2y∗∗

)
(β + δ1) > 0, (14)
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then system (1) admits a unique positive equilibrium

A4

(
x∗∗1 , x∗∗2 , y∗∗

)
, where

x∗∗1 =
αx∗∗2
β + δ1

,

x∗∗2 =

αβ −
(
δ2 −

dy∗∗

η1 + η2y∗∗

)
(β + δ1)

(β + δ1)γ
,

y∗∗ =
b2
a2

.

(15)
Obviously, x∗∗1 , x∗∗2 and y∗∗ satisfies the equations

αx∗∗2 − βx∗∗1 − δ1x
∗∗
1 = 0,

βx∗∗1 − δ2x
∗∗
2 − γ(x∗∗2 )2 + d

y∗∗

η1 + η2y∗∗
x∗∗2 = 0,

b2 − a2y
∗∗ = 0.

(16)
We shall now investigate the local stability prop-

erty of the above equilibria.
The variational matrix of system (1) is

J(x1, x2, y)

=


−β − δ1 α 0

β W1 W2

0 0 −2a2y + b2

 ,

where

W1 = −δ2 − 2γx2 + d
y

η1 + η2y
,

W2 =
dx2

η1 + η2y
− dη2x2y

(η1 + η2y)2
.

Theorem 2.1 A1(0, 0, 0) is unstable.
Proof. The Jacobian matrix of the equilibrium point
A1(0, 0, 0) is given by

−β − δ1 α 0

β −δ2 0

0 0 b2

 .

The characteristic equation of the above matrix is

(λ−b2)
(
λ2+(δ1+δ2+β)λ+βδ2+δ1δ2−αβ

)
= 0.

Hence, it has one positive characteristic root λ1 = b2,
consequently, A1(0, 0, 0) is unstable. This ends the
proof of Theorem 2.1.

Theorem 2.2 Assume that

(β + δ1)

(
δ2 −

dy∗∗

η1 + η2y∗∗

)
− αβ > 0, (17)

then A2(0, 0,
b2
a2
) is locally asymptotically stable. As-

sume that

(β + δ1)

(
δ2 −

dy∗∗

η1 + η2y∗∗

)
− αβ < 0, (18)

then A2(0, 0,
b2
a2
) is unstable.

Proof. The Jacobian matrix of the system about the

equilibrium point A2(0, 0,
b2
a2
) is given by

−β − δ1 α 0

β
dy∗∗

η1 + η2y∗∗
− δ2 0

0 0 −b2

 .

The characteristic equation of the above matrix is

(λ+ b2)
[
λ2 +A1λ+A2

]
= 0. (19)

where

A1 = δ1 + δ2 + β − dy∗∗

η1 + η2y∗∗
,

A2 = (β + δ1)

(
δ2 −

dy∗∗

η1 + η2y∗∗

)
− αβ.

Hence, it has one negative characteristic root λ1 =
−b2 < 0, the other two characteristic roots are deter-
mined by the equation

λ2 +A1λ+A2 = 0. (20)

Noting that the two characteristic roots of equation
(20) satisfy

λ2 + λ3 = −A1,

λ2λ3 = A2,
(21)

under the assumption (18), λ2λ3 < 0, hence, λ2

and λ3 should be one positive and the other negative,
which means that one characteristic root is positive,

consequently, A2(0, 0,
b2
a2
) is unstable. Instead, as-

sumption (17) implies that

δ2 >
dy∗∗

η1 + η2y∗∗
,

and so, from (21) and (17), one has λ2 + λ3 <
0, λ2λ3 > 0. Hence, λ2 < 0, λ3 < 0. That is, un-
der the assumption (17), three characteristic roots of

the equation (19) are all negative, hence, A1(0, 0,
b2
a2
)

is locally asymptotically stable. This ends the proof
of Theorem 2.2.

Theorem 2.3 A3(x
∗
1, x

∗
2, 0) is unstable.
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Proof. Obviously, x∗1, x
∗
2 (see (13)) satisfy the equa-

tions

αx∗2 − βx∗1 − δ1x
∗
1 = 0,

βx∗1 − δ2x
∗
2 − γ(x∗2)

2 = 0.

Consequently, the Jacobian matrix at the equilibrium
point A3(x

∗
1, x

∗
2, 0) is given by

−β − δ1 α 0

β −δ2 − 2γx∗2
dx∗2
η1

0 0 b2

 .

The characteristic equation of the above matrix is

(λ− b2)

(
λ2 +B1λ+B2

)
= 0, (22)

where

B1 = δ1 + 2γx∗2 + β + δ2,

B2 = (β + δ1)(δ2 + 2γx∗2)− αβ.

Equation (22) has at least one positive root λ1 = b2,
consequently, A3(x

∗
1, x

∗
2, 0) is unstable. This ends

the proof of Theorem 2.3.

Theorem 2.4 Assume that (14) holds, then
A4(x

∗∗
1 , x∗∗2 , y∗∗), where x∗∗1 , x∗∗2 , y∗∗ are expressed

in (15), is locally asymptotically stable.
Proof. The Jacobian matrix of the system about the
equilibrium point A4(x

∗∗
1 , x∗∗2 , y∗∗) is given by

−β − δ1 α 0

β V1 V2

0 0 −2a2y
∗∗ + b2

 .

where

V1 = −δ2 − 2γx∗∗2 + d
y∗∗

η1 + η2y∗∗
,

V2 =
dx∗∗2

η1 + η2y∗∗
− dη2x

∗∗
2 y

(η1 + η2y∗∗)2
.

Noting that

−2a2y
∗∗ + b2 = −2a2

b2
a2

+ b2 = −b2,

and, from the second equation of (16), the definitions
of x∗∗1 and x∗∗2 (see (15)), we have

−δ2 − 2γx∗∗2 + d
y∗∗

η1 + η2y∗∗

= −βx∗∗1
x∗∗2

− γx∗∗2 = − αβ

β + δ1
− γx∗∗2 .

So, the characteristic equation of above matrix is(
λ+ b2

)[
λ2 + C1λ+ C2

]
= 0,

where

C1 = β + δ1 +
βα

β + δ1
+ γx∗∗2 ,

C2 = (β + δ1)
( βα

β + δ1
+ γx∗∗2

)
− αβ.

Hence, it has one negative characteristic root λ1 =
−b2 < 0, the other two characteristic roots are deter-
mined by the equation

λ2 + C1λ+ C2 = 0. (23)

Noting that from the expression of x∗∗2 (see (15)) and
condition (14), the two characteristic roots of equation
(23) satisfy

λ2 + λ3

= −C1 < 0,

λ2λ3

= (β + δ1)
( βα

β + δ1
+ γx∗∗2

)
− αβ

= (β + δ1)

(
βα

β + δ1

+

αβ −
(
δ2 − d

y∗∗

η1 + η2y∗∗

)
(β + δ1)

β + δ1


−αβ

= αβ −
(
δ2 − d

y∗∗

η1 + η2y∗∗

)
(β + δ1) > 0,

and so, λ2 < 0, λ3 < 0. Therefore, all of the
three characteristic roots are negative, consequently,
A4(x

∗∗
1 , x∗∗2 , y∗∗) is locally asymptotically stable.

This ends the proof of Theorem 2.4.

Remark 2.1. System (1) admits four equilibria,
moreover, the local stability property of this equilib-
ria is similar to the equilibria of system (5). Assume

that the inequality (17) holds, then A2(0, 0,
b2
a2
)

is locally asymptotically stable, and assume that
(14) holds, then the positive equilibrium is locally
asymptotically stable. However, A1(0, 0, 0) and
A3(x

∗
1, x

∗
2, 0) are all unstable, which means that the

second species could not be driven to extinction.
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Remark 2.2. Theorem 2.4 shows that if the positive
equilibrium exists, it’s locally asymptotically stable.

Remark 2.3. Noting that from (13) and (15), one
could easily see that x∗∗2 > x∗2, x

∗∗
1 > x∗1, that is,

commensalism increases the final density of the first
species.

Remark 2.4. When η1 = 1, η2 = 0, system (1) is
degenerate to system (5), and Theorems 2.1-2.4 is de-
generate to Theorems 2.1-2.4 of Lei [13], thus, we
generalize the main results of Lei [13] to the nonlinear
case.

3 Dynamic Behaviors of Single

Species Stage System with

Perturbation
This section will focus on the dynamic behaviors of a
single species stage structured system.

Now let’s consider the system

dx1
dt

= αx2 − βx1 − δ1x1,

dx2
dt

= βx1 − δ2x2 − γx22,

(24)

where α, β, δ1, δ2 and γ are all positive constants,
x1(t) and x2(t) are the densities of the immature and
mature members of the species at time t. One could
refer to system (1) for more detailed explanation of
the biological meaning of those coefficients. From
Theorem 4.1 and 4.2 in [32] by Xiao and Lei, we
have

Lemma 3.1. Assume that

αβ < δ2
(
β + δ1

)
(25)

holds, then the boundary equilibrium O(0, 0) of sys-
tem (24) is globally stable. Assume that

αβ > δ2
(
β + δ1

)
(26)

holds, then the positive equilibrium B(x∗1, x
∗
2) of sys-

tem (24) is globally stable, where x∗1 and x∗2 are de-
fined by (13).

Now let’s consider the single species system with
linear perturbation

dx1
dt

= αx2 − βx1 − δ1x1,

dx2
dt

= βx1 − δ2x2 − γx22 + εx2,

(27)

where ε is positive constant. Obviously, if ε < δ2, the
dynamic behaviors of the system (27) is similar to that

of the system (24). However, if ε ≥ δ2, then we could
not directly apply Lemma 3.1 to system (27). In this
case, set δ

′

2 = ε− δ2, system (27) could be rewritten
as follows:

dx1
dt

= αx2 − βx1 − δ1x1,

dx2
dt

= βx1 + δ
′

2x2 − γx22,

(28)

whether system (28) has the similar dynamic behav-
iors as that of system (24) is still unknown. In (28),
δ

′

2 can not be explained as the death rate of the mature
species, indeed it is a sum of the death rate of mature
species and the perturbation coefficient, the dynamic
behaviors of this system, to the best of our knowledge,
is not investigated by the scholars. So, for the sake
of completeness, we give here the complete proof of
Lemma 3.2 below.

By simple computation, the system admits a posi-
tive equilibrium B2(x

∗
1, x

∗
2), where

x∗1 =
α(αβ + βδ

′

2 + δ1δ
′

2)

γ(β + δ1)2
, x∗2 =

αβ + βδ
′

2 + δ1δ
′

2

γ(β + δ1)
.

Concerned with the stability property of this posi-
tive equilibrium, we have the following result.

Lemma 3.2. The positive equilibrium B2(x
∗
1, x

∗
2) of

system (28) is globally asymptotically stable.

Proof. Wewill prove Lemma 3.2 by adapting the idea
of Xiao and Lei [32]. More precisely, we will prove
Lemma 3.2 by constructing a suitable Lyapunov func-
tion as follows. Set

V (x1, x2) = k1
(
x1 − x∗1 − x∗1 ln

x1

x∗
1

)
+k2

(
x2 − x∗2 − x∗2 ln

x2

x∗
2

)
,

where k1, k2 are some positive constants determined
later.

One could easily see that the function V is zero at
the equilibriumB2(x

∗
1, x

∗
2) and is positive for all other

positive values of x1 and x2. The time derivative of
V along the trajectories of (28) is

D+V (t)

= k1
x1 − x∗1

x1

(
αx2 − (β + δ1)x1

)
+k2

x2 − x∗2
x2

(
βx1 + δ

′

2x2 − γx22

)
.

(29)

Since
αx∗2 − βx∗1 − δ1x

∗
1 = 0,

βx∗1 + δ
′

2x
∗
2 − γ(x∗2)

2 = 0,
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then

αx2 − (β + δ1)x1

=
α

x∗1

(
x2x

∗
1 − x1x

∗
2

)
+ αx1

x∗2
x∗1

−
(
β + δ1

)
x1

=
α

x∗1

(
− x2(x1 − x∗1) + x1(x2 − x∗2)

)
,

(30)

and

βx1 + δ
′

2x2 − γx22

=
β

x∗2

(
x1x

∗
2 − x2x

∗
1

)
+ βx2

x∗1
x∗2

+δ
′

2x2 − γx22

=
β

x∗2

(
x1x

∗
2 − x1x2 + x1x2 − x2x

∗
1

)
+
( αβ

β + δ1
+ δ

′

2

)
x2 − γx22

=
β

x∗2

(
x1(x

∗
2 − x2) + x2(x1 − x∗1)

)
+γx∗2x2 − γx22.

(31)

Applying (30) and (31) to (29), and choosing k2 =

1, k1 =
βx∗1
x∗2α

, we finally obtain

D+V (t)

= k1
x1 − x∗1

x1

α

x∗1

(
− x2(x1 − x∗1) + x1(x2 − x∗2)

)
+k2

x2 − x∗2
x2

β

x∗2

(
x1(x

∗
2 − x2) + x2(x1 − x∗1)

)
+k2

x2 − x∗2
x2

(
γx∗2x2 − γx22

)
= − β

x∗2

[√x2
x1

(x1 − x∗1)−
√

x1
x2

(x2 − x∗2)
]2

−γ
(
x2 − x∗2

)2
.

that is, D+V (t) < 0 strictly for all x1, x2 > 0 with
the exception of the positive equilibrium B2(x

∗
1, x

∗
2),

where D+V (t) = 0. Thus, V (x1, x2) satisfies Lya-
punov’s asymptotic stability theorem, and the posi-
tive equilibriumB2(x

∗
1, x

∗
2) of system (28) is globally

asymptotically stable.

This completes the proof of Lemma 3.2.

4 Global attractivity

We had shown in Section 2 that A2(0, 0,
b2
a2
) and

A4(x
∗∗
1 , x∗∗2 , y∗∗) could be locally asymptotically

stable under some suitable assumptions. One in-
teresting issue is to investigate the global stability
property of the equilibria. In this section we will
try to obtain some sufficient conditions to ensure
the global attractivity of the equilibria A2 and A4 of
system (1).

Theorem 4.1 Assume that

(β + δ1)

(
δ2 −

dy∗∗

η1 + η2y∗∗

)
− αβ > 0 (32)

holds, then A2(0, 0,
b2
a2
) is globally attractive.

Proof. For ε > 0 enough small, condition (32) im-
plies that

(β+ δ1)

(
δ2 −

dy∗∗ + ε)

η1 + η2(y∗∗ + ε)

)
−αβ > 0. (33)

Since the third equation of system (1) is a Logistic
equation, then

lim
t→+∞

y(t) =
b2
a2

. (34)

In corresponding to the above chosen ε > 0, there
exists a T > 0 such that

y(t) <
b2
a2

+ ε
def
= y∗∗ + ε for all t > T.

From above inequality and the first and second equa-
tions of system (1), also, noting that the function

y

η1 + η2y
is monotonically increasing, for t > T , we

have

dx1
dt

= αx2 − βx1 − δ1x1,

dx2
dt

= βx1 − δ2x2 − γx22 + d
y

η1 + η2y
x2

≤ βx1 − δ2x2 − γx22

+d
y∗∗ + ε

η1 + η2(y∗∗ + ε)
x2.

(35)
Now let’s consider the system

dv1
dt

= αv2 − βv1 − δ1v1,

dv2
dt

= βv1 − δ2v2 − γv22

+d
y∗∗ + ε

η1 + η2(y∗∗ + ε)
v2.

(36)

It follows from (33) and Lemma 3.1 that the boundary
equilibrium O(0, 0) of system (36) is globally stable.
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That is, for any positive solution (v1(t), v2(t)) of the
system (36), one has

lim
t→+∞

v1(t) = 0, lim
t→+∞

v2(t) = 0.

Let (x1(t), x2(t), x3(t)) be any positive so-
lution of system (1) with initial condition
(x1(T ), x2(T ), y(T )) = (x10, x20, y0), and let
(v1(t), v2(t)) be the positive solution of system
(36) with the initial condition (v1(T ), v2(T )) =
(x10, x20), then it follows from (35), (36) and the
differential inequality theory that

xi(t) ≤ vi(t) for all t ≥ T, i = 1, 2,

and therefore that

lim sup
t→+∞

xi(t) ≤ lim
t→+∞

vi(t) = 0, i = 1, 2.

Thus, from the positivity of the solution of system (1),
it immediately follows that

0 ≤ lim inf
t→+∞

xi(t) ≤ lim sup
t→+∞

xi(t) ≤ 0, i = 1, 2.

Therefore

lim
t→+∞

xi(t) = 0, i = 1, 2. (37)

(34) together with (37) shows that A2(0, 0,
b2
a2
) is

globally attractive.
This completes the proof of Theorem 4.1.

Theorem 4.2 Assume that

αβ −
(
δ2 −

dy∗∗

η1 + η2y∗∗

)
(β + δ1) > 0 (38)

holds, then A4(x
∗∗
1 , x∗∗2 , y∗∗), where x∗∗1 , x∗∗2 , y∗∗ are

defined in (15), is globally attractive.

Proof. For ε > 0 enough small, without loss of gener-

ality, we may assume that ε < b2
2a2

, so condition (38)

implies that

αβ −
(
δ2 −

d(y∗∗ + ε)

η1 + η2(y∗∗ + ε)

)
(β + δ1) > 0 (39)

and

αβ −
(
δ2 −

d(y∗∗ − ε)

η1 + η2(y∗∗ − ε

)
(β + δ1) > 0 (40)

hold. The third equation of system (1) is a Logistic
equation, thus

lim
t→+∞

y(t) =
b2
a2

. (41)

In correspondence to the above chosen ε > 0, there
exists a T > 0 such that

b2
a2

− ε < y(t) <
b2
a2

+ ε for all t > T, i = 1, 2.

(42)
From (42) and the first and second equation of system

(1), also, noting that the function
y

η1 + η2y
is strictly

increasing, for t > T , we have

dx1
dt

= αx2 − βx1 − δ1x1,

dx2
dt

≤ βx1 − δ2x2 − γx22

+d
y∗∗ + ε

η1 + y∗∗ + ε
x2.

(43)

Now let’s consider the system

dv1
dt

= αv2 − βv1 − δ1v1,

dv2
dt

= βv1 −
(
δ2 − d

y∗∗ + ε

η1 + η2(y∗∗ + ε)

)
v2

−γv22.
(44)

There are two subcases.
(i)

δ2 > d
y∗∗ + ε

η1 + η2(y∗∗ + ε)
.

In this case, it follows from (39) and Lemma 3.1 that
the system (44) admits a unique positive equilibrium
which is globally asymptotically stable.
(ii)

δ2 ≤ d

b2
a2

+ ε

η +
b2
a2

+ ε
.

In this case, it follows from Lemma 3.2 that the sys-
tem (44) admits a unique positive equilibrium which
is globally stable.

Hence, in any case, system (44) admits a unique
positive equilibrium (v1(ε), v2(ε)), which is globally
asymptotically stable, where

v1(ε) =
αv2(ε)

β + δ1
,

v2(ε) =

αβ −
(
δ2 − d

y∗∗ + ε

η1 + η2(y∗∗ + ε)

)
(β + δ1)

(β + δ1)γ
.

(45)
Therefore, let (v1(t), v2(t)) be any positive solution
of the system (44), one has

lim
t→+∞

v1(t) = v1(ε), lim
t→+∞

v2(t) = v2(ε). (46)
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Let (x1(t), x2(t), x3(t)) be any positive so-
lution of system (1) with initial condition
(x1(T ), x2(T ), y(T )) = (x10, x20, y0), and let
(v1(t), v2(t)) be the positive solution of system
(44) with the initial condition (v1(T ), v2(T )) =
(x10, x20), it then follows from (43), (44) and the
differential inequality theory that

xi(t) ≤ vi(t) for all t ≥ T, i = 1, 2. (47)

The positivity of the solution of system (1) and (47)
lead to

lim sup
t→+∞

xi(t) ≤ lim
t→+∞

vi(t) = vi(ε), i = 1, 2. (48)

From (42) and the first and second equation of system

(1), since
y

η1 + η2y
is strictly increasing, for t > T ,

we have

dx1
dt

= αx2 − βx1 − δ1x1,

dx2
dt

≥ βx1 − δ2x2 − γx22

+d
y∗∗ − ε

η1 + η2(y∗∗ − ε)
x2.

(49)

Now let’s consider the system

dw1

dt
= αw2 − βw1 − δ1w1,

dw2

dt
= βw1 −

(
δ2 − d

y∗∗ − ε

η1 + η2(y∗∗ − ε)

)
w2

−γw2
2.

(50)
There are two subcases.
(i)

δ2 > d
y∗∗ − ε

η1 + η2(y∗∗ − ε)
. (51)

In this case, it follows from (40) and Lemma 3.1 that
the system (50) admits a unique positive equilibrium
which is globally asymptotically stable.
(ii)

δ2 ≤ d
y∗∗ − ε

η1 + η2(y∗∗ − ε)
.

In this case, it follows from Lemma 3.2 that the sys-
tem (50) admits a unique positive equilibrium which
is globally stable.

Hence, in any case, system (50) admits a unique
positive equilibrium (w1(ε), w2(ε)), which is glob-

ally asymptotically stable, where

w1(ε) =
αw2(ε)

β + δ1
,

w2(ε) =

αβ −
(
δ2 − d

y∗∗ − ε

η1 + η2(y∗∗ − ε)

)
(β + δ1)

(β + δ1)γ
.

(52)
Therefore, let (w1(t), w2(t)) be any positive solution
of the system (50), one has

lim
t→+∞

w1(t) = w1(ε), lim
t→+∞

w2(t) = w2(ε). (53)

Let (x1(t), x2(t), y(t)) be any positive so-
lution of system (1) with initial condition
(x1(T ), x2(T ), y(T )) = (x10, x20, y0), and
let (w1(t), w2(t)) be the positive solution
of system (50) with the initial condition
(w1(T ), w2(T )) = (x10, x20), it then follows
from (49), (50) and the differential inequality theory
that

xi(t) ≥ wi(t) for all t ≥ T, i = 1, 2. (54)

The positivity of the solution of system (1) and (53),
(54) lead to

lim inf
t→+∞

xi(t) ≥ lim
t→+∞

wi(t) = wi(ε), i = 1, 2.

(55)
Inequality (48) together with (55) leads to

wi(ε) = lim
t→+∞

wi(t)

≤ lim inf
t→+∞

xi(t)

≤ lim sup
t→+∞

xi(t)

≤ lim
t→+∞

vi(t) = vi(ε), i = 1, 2.

(56)

From (45) and (52) one can easily see that

wi(ε) → x∗∗i , vi(ε) → x∗∗i , as ε → 0, i = 1, 2.
(57)

Noting that ε is any enough small positive constant,
letting ε → 0 in (56), (57) leads to

lim
t→+∞

xi(t) = x∗∗i , i = 1, 2. (58)

So, (41) together with (58) shows that
A4(x

∗∗
1 , x∗∗2 , y∗∗) is globally attractive.

This completes the proof of Theorem 4.2.

Remark 4.1. Theorem 4.1 and 4.2 depicts a very intu-
itive biological phenomenon. From Zhang, Chen and
Neumann [40], for single species stage structured sys-

tem (24), we can regard
α

δ2
as a relative birth rate of
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the fist mature species,
β

β + δ1
as a relative transfor-

mation rate of the first immature species. Then con-
dition (32) and (38) are equivalent to

α

δ2 − d
y∗∗

η1 + η2y∗∗

β

β + δ1
< 1, (59)

and
α

δ2 − d
y∗∗

η1 + η2y∗∗

β

β + δ1
> 1, (60)

respectively. Hence, with the help of the host species,
the relative birth rate of the mature commensal

species is increasing from
α

δ2
to

α

δ2 − d
y∗∗

η1 + η2y∗∗

,

thus finally increasing the chance of the survival of
the first species.

Remark 4.2. When η1 = 1, η2 = 0, system (1) is de-
generate to system (5), and Theorem 4.1-4.2 are de-
generate to Theorem 3.1-3.2 of Lei[13], respectively.
Thus, we generalize the main results of Lei [13] to the
nonlinear case.

5 Examples
Example 5.1. Consider the following stage structured
commensalism system

dx1
dt

= 3x2 − x1 − x1,

dx2
dt

= x1 − x2 − x22 +
dy

η1 + η2y
x2,

dy

dt
= y(1− y).

(61)

Here, corresponding to system (1), we take α =
3, β = δ1 = δ2 = γ = b2 = a2 = 1. Note that

αβ = 3 > 2 = δ2(β + δ1). (62)

In this case, without the commensalism of the second
species, the first species is globally stable. For any
positive constant d, η1 and η2, inequality (38) holds,
so it follows from Theorem 4.2 thatA4(x

∗∗
1 , x∗∗2 , y∗∗)

is globally attractive. Take d = η1 = η2 = 1,
then the positive equilibrium A4(

3
2 , 1, 1) is globally

attractive, noting that lim
t→+∞

y(t) = 1, hence, we only

give the numeric simulations of immature species
x1 and mature species x2. Also, here we fixed
x1(0) + x2(0) = 2.5, y(0) = 2. Fig. 1 shows that

lim
t→+∞

x1(t) = 3
2 , though the solutions are finally

approaching to 3
2 , moreover for the initial conditions

x1(0) <
3
2 , the solution is strictly increasing at first,

then, after it reaches the extremum, which is larger
than 3

2 , after that, the solutions becomes strictly
decreasing. On the contrary, for the initial conditions
x1(0) >

3
2 , the solution is strictly decreasing at first,

then, after it reach the extremum, which is smaller
than 3

2 , then it becomes strictly increasing. Fig.2
shows that lim

t→+∞
x2(t) = 1. However, the dynamic

behaviors is relative simple, for solutions with initial
conditions larger than 1.5, the solutions is strictly
decreasing, and for solutions with initial conditions
smaller than 1, the solutions is strictly increasing.

Figure 1: Dynamic behaviors of the first com-
ponents x1 in system (61) with the initial condi-
tion (x1(0), x2(0), y(0)) = (1, 1.5, 2), (0.5, 2, 2),
(1.5, 1, 2) and (2, 0.5, 2), respectively.

Figure 2: Dynamic behaviors of the second com-
ponents x2 in system (61) with the initial condi-
tion (x1(0), x2(0), y(0)) = (1, 1.5, 2), (0.5, 2, 2),
(1.5, 1, 2) and (2, 0.5, 2), respectively.

Example 5.2. Consider the following stage structured

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.93 Fengde Chen, Zhong Li, Lijuan Chen

E-ISSN: 2224-2880 820 Volume 21, 2022



commensalism system

dx1
dt

= x2 − x1 − x1,

dx2
dt

= x1 − x2 − x22 +
3y

η1 + η2y
x2,

dy

dt
= y(1− y).

(63)

Here, corresponding to system (1), we take α = β =
δ1 = δ2 = γ = b2 = a2 = 1, d = 3. For
η1 = 1, η2 = 0, the system degenerates to the case 2
in system 4.1 of Lei [13]. From [13], without the com-
mensal of the second species, the first species, which
satisfies the equations

dx1
dt

= x2 − x1 − x1,

dx2
dt

= x1 − x2 − x22,

(64)

will be driven to extinction. Also, with the commen-
sal of the second species, the system admits a unique
positive equilibrium A4(

3
4 ,

3
2 , 1), which is globally

asymptotically stable.
Noting that from the third equation of (63), we

have y∗∗ = 1. By simple computation, if

(β + δ1)

(
δ2 −

3

η1 + η2

)
− αβ

= 2
(
1− 3

η1+η2

)
− 1 > 0,

(65)

which is equivalent to η1 + η2 > 6 holds true,
then it follows from Theorem 4.1 that A2(0, 0, 1)
is globally attractive. Let’s take η1 = 9, η2 = 1.
Numeric simulations reported in Fig. 3 and 4 sup-
ports this assertion. By a similarly discussion, if
η1 + η2 < 6 holds, then it follows from Theorem
4.2 that A4(x

∗∗
1 , x∗∗2 , 1) is globally attractive. Let’s

take η1 = 1, η2 = 1, then A4(0.5, 1, 1) is globally
attractive. Numeric simulations reported in Fig. 5
and 6 supports this assertion. In Fig. 3-6, we choose
the initial conditions x1(0) + x2(0) = 2, y(0) = 1.

6 Conclusion
Stimulated by the work ofWright [41], we argued that
in the commensal relationship between two species,
the commensal species is also subjected to the con-
straints of handling time. For example, consider a
species of solitary bee visiting a flower species. The
rate of collection of pollen is limited by the handling
time per plant. This finally motivated us to propose a
two species commensalism model with Holling type
II functional response and stage structure. If η1 =

Figure 3: Dynamic behaviors of the first com-
ponent x1 in system (64) with η1 = 9, η2 = 1,
and the initial condition (x1(0), x2(0), y(0)) =
(1, 1, 1), (1.8, 0.2, 1) and (0.2, 1.8, 1), respec-
tively.

Figure 4: Dynamic behaviors of the second com-
ponent x2 in system (64) with η1 = 9, η2 = 1,
and the initial condition (x1(0), x2(0), y(0)) =
(1, 1, 1), (1.8, 0.2, 1) and (0.2, 1.8, 1), respec-
tively.

Figure 5: Dynamic behaviors of the first com-
ponent x1 in system (64) with η1 = 1, η2 = 1,
and the initial condition (x1(0), x2(0), y(0)) =
(1, 1, 1), (1.8, 0.2, 1) and (0.2, 1.8, 1), respec-
tively.
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Figure 6: Dynamic behaviors of the second com-
ponent x2 in system (64) with η1 = 1, η2 = 1,
and the initial condition (x1(0), x2(0), y(0)) =
(1, 1, 1), (1.8, 0.2, 1) and (0.2, 1.8, 1), respec-
tively.

1, η2 = 0, then our model is degenerate to the model
considered by Lei [13].

We first showed that the system can admit four
equilibria, however, only two of them can be locally
asymptotically stable.

From Lemma 3.1 we know that for the stage struc-
tured single species system, depending on the rela-
tionship of the coefficients, the species may be driven
to extinction or survival in the long run. Theorem 4.2
shows that if the species without commensalism of the
second species could survive in the long run, then for
the commensalism system, two species could coex-
ist in a stable state. If the first species will be driven
to extinction without the commensalism, then, Theo-
rem 4.1 shows that limited commensalism still could
not avoid the extinction of the first species. However,
Theorem 4.2 shows that if the commensalism effect is
large enough, then two species can coexist in a stable
state.

One can easily see that if η1 = 1, η2 = 0, then
Theorems 2.1-2.4 degenerate to Theorems 2.1-2.4,
Theorems 4.1-4.2 degenerate to Theorems 3.1-3.2 in
Lei [13], hence, we generalize the main result of
Lei [13].

What we really concern is the influence of Holling
type II response, which, from the point ofWright [43],
can be explained as the handling time of commensal
time. Example 5.2 shows that handling time has nega-
tive effect on the persistent property of the commensal
species. If η1 + η2y

∗∗ is large enough, the influence
of the host will be reduced, and with the influence
of stage structure, despite the commensalism of host
species, the commensal species will still be driven to
extinction.

We mention here that the following two aspects
need to be studied. The first one is about the influ-
ence of delay. Amore plausible model should include

some past state of the system [28], this leads to the
delayed modelling. A recent study [28] shows that
delay could change the dynamic behaviors of the sys-
tem greatly. Up today still no scholars propose and
study the delayed stage structured commensal model,
we will try to do some work in this direction. The sec-
ond one is to investigate the influence of Allee effect.
Already, several scholars [14], [15], [16], [17], [34],
[35] studied the commensalism system with Allee ef-
fect, however, all of those works did not consider the
stage structure of the species. We will try to do some
works on this direction in the future.
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