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Abstract.  In this article, a new series solution of a system of pantograph equations is established using the residual 
power series method (RPSM). The proposed method produces the solution in terms of a convergent infinite series, 
requiring no linearization, perturbation or discretization, in some cases it reproduces the exact solutions. We apply 
the RPSM to solve the multi-pantograph equations, and we show that the outcomes are very accurate. Some 
examples are given to demonstrate the simplicity and efficiency of the proposed method. Comparisons to the 
Laplace decomposition approach are made to verify the efficiency and applicability of the presented method in 
solving similar problems.  
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1 Introduction 
The pantograph equation, which is one of the most 
important kinds of delay differential equations, [1], 
[2], [3], [4], [5] and [6], has been studied extensively 
owing to the numerous applications in which these 
equations arise. The name pantograph originated 
from the work of the researchers, [1], on the 
collection of current by the pantograph head of an 
electric locomotive, this equation appeared in 
modeling various problems in engineering and 
sciences such as biology, economy, control, 
population studies and electrodynamics, [7], [8], [9], 
[10]. 
     In the last years, extensive work dealt with the 
pantograph equation. Several methods have been 
used to solve different types of the pantograph 
equation, such as Adomian's decomposition method, 
[5], [6], the homotopy perturbation method [7], 
Variational iteration method, [8], [9], Runge–Kutta 
methods, [10], the reproducing kernel space method, 
[11], Taylor polynomials approach, [12], [13], one-
leg 𝜃-methods [14], Spectral methods, [15], 
differential transformation method, [16], 
Discontinuous Galerkin methods, [17], Bessel matrix 
and collocation methods, [18], [19], Chebyshev 
polynomials method, [20], Laplace decomposition 
algorithm (LDA) [21], [22], and so on [23], [24], 
[25], [26], [27], [28], [29], [30].  

     The purpose of this paper is to extend the 
application of the residual power series (PSR) 
method [31], [32] to provide a symbolic approximate 
solution for a system of multi-pantograph equations: 
𝑧1

′(𝑡) = 𝛽1𝑧1(𝑡) + 𝑔1(𝑡, 𝑧1(𝛼11𝑡), 𝑧2(𝛼12𝑡),… , 𝑧𝑛(𝛼1𝑛𝑡)),    

𝑧2
′ (𝑡) = 𝛽2𝑧2(𝑡) + 𝑔2(𝑡, 𝑧1(𝛼21𝑡), 𝑧2(𝛼22𝑡),… , 𝑧𝑛(𝛼2𝑛𝑡)),    

            ⋮ 
𝑧𝑛

′ (𝑡) = 𝛽𝑛𝑧𝑛(𝑡) + 𝑔𝑛(𝑡, 𝑧1(𝛼𝑛1𝑡), 𝑧2(𝛼𝑛2𝑡),… , 𝑧𝑛(𝛼𝑛𝑛𝑡)),    
(1.1) 
Subject to the initial conditions 
𝑧𝑖(0) = 𝑧𝑖,0, 𝑖 = 1,2,3,… , 𝑛,   (1.2) (1.2) 

Where 𝛽𝑖, 𝑢𝑖,0 are constants, 𝑓𝑖 are analytical 
functions, and 0 < 𝛼𝑖𝑗 ≤ 1.  
 
The RPS was developed in [31] as an efficient 
method for determining the coefficients of the power 
series solution of the first and second-order fuzzy 
differential equation. It has been successfully applied 
in the numerical solution of the generalized Lane-
Emden equation, which is a highly nonlinear 
problem, [32]. The RPS method is effective and easy 
to construct a power-series solution for strongly 
linear and nonlinear equations without linearization, 
perturbation, or discretization.  In contrast  to the 
classical power series (CPS) methods, the RPS 
method does not need to compare the coefficients of 
the corresponding terms, and a recursion relation is 
not required. This method computes the coefficients 
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of the power series by a chain of linear equations of 
one variable. The RPS method is an alternative 
procedure for obtaining an analytic Taylor series 
solution of the system of multi-pantograph equations. 
By using residual error concept, we get a series 
solution, in practice a truncated series solution. For 
linear problems, the exact solution can be obtained 
by a few terms of the RPS method solution. As we 
shall see later, the exact solution is available when 
the solution is polynomial. Moreover, the solutions 
and all their derivatives are applicable for each 
arbitrary point in the given interval. It does not 
require any converting while switching from the first 
order to the higher order; as a result, the method can 
be applied directly to the given problem by choosing 
an appropriate value for the initial guess 
approximation. 
This paper is organized as follows: in the next 
section, we state some definitions and theorems that 
help us to construct the proposed method. In section 
3, we present the basic idea of the power series 
method. In section 4 we extend the PSR method to 
provide a symbolic approximate series solution for a 
system of multi-pantograph equations. In section 5, 
numerical examples are given to illustrate the 
capability of the proposed method. Section 6 is the 
brief conclusion of this paper. Finally, some 
references are listed at the end. 
 
 
2 Preliminaries 
In this section, we introduce some definitions and 
theorems related to Taylor's series and analytic 
functions. 
 

Definition 2.1. A function 𝑔 is called analytic at 𝑡0 ∈
𝐼 , where I is an open interval, if it can be represented 
in a form of a power series as  
                                                                 𝑔(𝑡) =
∑ 𝑐𝑛(𝑡 − 𝑡0)

𝑛∞
𝑛=0 .       (2.1)                                           

Taking 𝑡0 = 0,we get the Maclaurin series  

𝑔(𝑡) = ∑ 𝑐𝑛𝑡𝑛

∞

𝑛=0

, ∀ 𝑡 ∈ 𝐼. 
     

Theorem 2.1 [22] There are only three possibilities 
for the convergence conditions of the power series 
(2.1): 
(i) The series converges only when 𝑡 = 𝑡0, and the 
radius of convergence is zero.. 
(ii) The series converges for all 𝑡 > 𝑡0, and the radius 
of convergence is ∞. 

(iii) There is a positive number 𝑅 > 0 such that the 
series converges if |𝑡 − 𝑡0| < 𝑅 and diverges 
if |𝑡 − 𝑡0| > 𝑅. 
        Here 𝑅 is called the radius of convergence. 
 

Theorem 2.2. [22] If 𝑔 has a power series 
representation as follows: 

  

𝑔(𝑡) = ∑ 𝑐𝑛(𝑡 − 𝑡0)
𝑛

∞

𝑛=0

, |𝑡 − 𝑡0| < 𝑅, 

 
Then its coefficients 𝑐𝑛 are given by the formula: 
 

𝑐𝑛 =
𝑔(𝑛)(𝑡0)

𝑛!
, 𝑛 = 0,1,2,…. 

 
Theorem 2.3 (Convergence Analysis) [22] 
If we have 0 < 𝐾 < 1,   and ‖𝑔𝑛+1(𝑡)‖ ≤
𝐾‖𝑔𝑛(𝑡)‖, for all 𝑛 ∈ 𝑁 and 0 < 𝑡 < 𝑅 < 1, then the 
series of the numerical solutions converges to the 
exact solution. 
 

 

3 Adapting RPSM to Solve Multi-

Pantograph Equations  
In this section, we introduce the procedure of using 
RPSM in solving multi pantograph systems (1.1) and 
(1.2). 
 
We present a simple algorithm that explains the 
method and illustrates the steps of the RPSM in 
handling the proposed problem. 
To apply the RPSM, we firstly assume that the 
solutions of system (1.1) and (1.2) have the forms:  

      𝑧𝑖(𝑡) = ∑ 𝑐𝑖,𝑚𝑡𝑚∞
𝑚=0 , 𝑖 = 1,2,… , 𝑛 ,    (3.1)  (3.1) 

       
Where 𝑐𝑖,0 = 𝑧𝑖,0 , 𝑖 = 1,2,3,… , 𝑛.  
Since 𝑢𝑖(𝑡) satisfies the initial conditions (1.2), 
𝑢𝑖init

(𝑡) = 𝑢𝑖,0 are the zeroth RPS solutions of the 
IVP (1.1) and (1.2).Thus, the solutions have the 
form: 

   𝑧𝑖(𝑡) = 𝑧𝑖,0 + ∑ 𝑐𝑖,𝑚𝑡𝑚∞
𝑚=1 , 𝑖 = 1,2,… , 𝑛 ,(3.2)  (3.2) 

 And the 𝑘th-approximate solutions will be: 

   𝑧𝑖,𝑘(𝑡) = 𝑧𝑖,0 + ∑ 𝑐𝑖,𝑚𝑡𝑚

𝑘

𝑚=1

, 𝑖 = 1,2,… , 𝑛 . (3.3)  (3.3) 

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.91 Rania Saadeh

E-ISSN: 2224-2880 793 Volume 21, 2022



Following that, we define the 𝑘th-residual functions 
of system (1.1) as: 
      Res𝑖

𝑘(𝑡) = 𝑧𝑖,𝑘
′ (𝑡) − 𝛽𝑖𝑧𝑖,𝑘(𝑡) − 

𝑔𝑖 (
𝑡, 𝑧1,𝑘(𝛼𝑖2𝑡), 𝑧2,𝑘(𝛼𝑖2𝑡),

… , 𝑧𝑛,𝑘(𝛼𝑖𝑛𝑡)
)            (3.4) 

, 𝑖 = 1,2,… , 𝑛 , 

 (3.4) 

And the following residual functions: 
 
Res𝑖(𝑡) = lim

𝑛→∞
Res𝑖

𝑘(𝑡) 
                    = 𝑧𝑖

′(𝑡) − 𝛽𝑖𝑧𝑖(𝑡) −

𝑔𝑖(𝑡, 𝑧1(𝛼𝑖2𝑡), 𝑧2(𝛼𝑖2𝑡), … , 𝑧𝑛(𝛼𝑖𝑛𝑡)), 𝑖 = 1,2,… , 𝑛 .                                                  
(3.5) 
 
It is obvious that: Res𝑖(𝑡) = 0 for each 𝑡 ∈ (−𝑅𝑖, 𝑅𝑖) 
where 𝑅𝑖 is the radius of convergence of the power 
series (3.1). This shows that these residual functions 
are infinitely many times differentiable at 𝑡 = 0. On 
the other hand, 

                
𝑑𝑚

𝑑𝑡𝑚
Res𝑖(0) =

𝑑𝑚

𝑑𝑡𝑚
 Res𝑖

𝑘(0) = 0 ,𝑚 = 0,1,2,… , 𝑘 .   (3.6)  

In fact, these relations are fundamental rules in 
RPSM, for the proof and more details, see [31], [32]. 
Moreover, a special case of (3.6) is: 
 

      
𝑑𝑘−1

𝑑𝑡𝑘−1
 Res𝑖

𝑘(0) = 0, 𝑖 = 1,2,… , 𝑛,              
𝑘 = 1,2,… .                                             (3.7) 
 
In order to obtain the 𝑘th-approximate solutions of 
system (1.1) and (1.2), we substitute the 𝑘th-
truncated series (3.3) into Eq. (3.4) to get: 

Res𝑖
𝑘(𝑡)

= ∑ 𝑚𝑐𝑖.𝑚𝑡𝑚−1

𝑘

𝑚=1

− 𝛽𝑖 ∑ 𝑐𝑖.𝑚𝑡𝑚

𝑘

𝑚=0

− 𝑔𝑖

(

 
 
 

𝑡, ∑ 𝑐1.𝑚𝛼𝑖1
𝑚𝑡𝑚

𝑘

𝑚=0

, ∑ 𝑐2.𝑚𝛼𝑖2
𝑚𝑡𝑚

𝑘

𝑚=0

, … ,

∑ 𝑐𝑝.𝑚𝛼𝑖𝑛
𝑚𝑡𝑚

𝑘

𝑚=0 )

 
 
 

 

 𝑖 = 1,2,… , 𝑛 .                                  (3.8) 
To obtain the first approximate solution, we 
substitute 𝑡 = 0 and 𝑘 = 1 into Eq. (3.8), and using 
(3.7): 
           Res𝑖

1(0) = 0, 𝑖 = 1,2,… , 𝑛, we get: 
 

𝑐𝑖,1 = 𝛽𝑖𝑐𝑖,0 + 𝑔𝑖(0, 𝑐1.0, 𝑐2.0, … , 𝑐𝑛.0) 
         = 𝛽𝑖𝑧𝑖,0 + 𝑔𝑖(0, 𝑧1.0, 𝑧2.0, … , 𝑧𝑛.0), 

                        𝑖 = 1,2,… , 𝑛. 

 
Thus, the first approximation for the system of multi-
pantograph equations (1.1) and (1.2) can be 
expressed as: 
𝑧𝑖,1(𝑡) = 𝑧𝑖,0 + (𝛽𝑖𝑧𝑖,0 + 𝑓𝑖(0, 𝑧1.0, 𝑧2.0, … , 𝑧𝑛.0)) 𝑡, 𝑖 =

1,2,… , 𝑛. 
Similarly, to find the second approximation, we 
differentiate both sides of (3.8) with respect to 𝑡 and 
substitute 𝑡 = 0 and 𝑘 = 2, to get: 
  (

𝑑

𝑑𝑡
Res𝑖

2) (0) = 2𝑐𝑖,2 − 𝛽𝑖𝑐𝑖,1 

     −
𝑑

𝑑𝑡

(

 
 
 
 

𝑔𝑖

(

 
 
 

𝑡, ∑ 𝑐1.𝑚𝛼𝑖1
𝑚𝑡𝑚

2

𝑚=0

, ∑ 𝑐2.𝑚𝛼𝑖2
𝑚𝑡𝑚

2

𝑚=0

, … ,

∑ 𝑐𝑝.𝑚𝛼𝑖𝑛
𝑚𝑡𝑚

2

𝑚=0 )

 
 
 

)

 
 
 
 

,  

𝑖 = 1,2,… , 𝑛. 
 
According to (3.7), we have the values of 𝑐𝑖,2 as 
follows: 
 

𝑐𝑖,2 =
1

2

[
 
 
 
 
 

+𝛽𝑖𝑐𝑖,1 +
𝑑

𝑑𝑡

(

 
 
 
 

𝑔𝑖

(

 
 
 

𝑡, ∑ 𝑐1.𝑚𝛼𝑖1
𝑚𝑡𝑚

2

𝑚=0

,

∑ 𝑐2.𝑚𝛼𝑖2
𝑚𝑡𝑚

2

𝑚=0

, … , ∑ 𝑐𝑝.𝑚𝛼𝑖𝑛
𝑚𝑡𝑚

2

𝑚=0 )

 
 
 

)

 
 
 
 

]
 
 
 
 
 

 , 

 𝑖 = 1,2,… , 𝑛 . 
Thus, the second approximation for the system of multi-
pantograph equations (1.1) and (1.2) will be: 
      𝑧𝑖,2(𝑡) = 𝑧𝑖,0 + 𝑧𝑖,0 + (𝛽𝑖𝑧𝑖,0 + 𝑓𝑖(0, 𝑧𝑝,0)) 𝑡 

+
1

2

[
 
 
 
 
 

+𝛽𝑖𝑐𝑖,1

+
𝑑

𝑑𝑡

(

 
 
 
 

𝑔𝑖

(

 
 
 

𝑡, ∑ 𝑐1.𝑚𝛼𝑖1
𝑚𝑡𝑚

2

𝑚=0

, ∑ 𝑐2.𝑚𝛼𝑖2
𝑚𝑡𝑚

2

𝑚=0

, … ,

∑ 𝑐𝑝.𝑚𝛼𝑖𝑛
𝑚𝑡𝑚

2

𝑚=0 )

 
 
 

)

 
 
 
 

]
 
 
 
 
 

𝑡2 

  𝑖 = 1,2,… , 𝑛 . 
Completing in the same manner, we can obtain the 
rest of the coefficients recursively. Thus the series 
solution of      
of the multi-pantograph equations (1.2) and (1.2) are 
obtained. Moreover, higher accuracy can be achieved 
by evaluating more components of the solution.  
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4 Numerical Example and Discussion 
In this section, we consider four interesting examples 
of the multi pantograph equations, we apply the 
RPSM to solve them and analyze the results. The 
results demonstrate the efficiency and accuracy of the 
presented technique. We mention that all numerical 
computations are performed using Mathematica 11.0 
software package. 
 
Example 4.1. Consider the two-dimensional 
pantograph equations: 
 
  𝑧1

′(𝑡) = 𝑧1(𝑡) − 𝑧2(𝑡) + 𝑧1 (
𝑡

2
) − 𝑒

𝑡

2 + 𝑒−𝑡  , 

𝑧2
′ (𝑡) = −𝑧1(𝑡) − 𝑧2(𝑡) − 𝑧2 (

𝑡

2
) + 𝑒−

𝑡

2 + 𝑒𝑡  ,    (4.1) 
Subject to the initial conditions: 
𝑧1(0) = 1, 𝑧2(0) = 1 .                        (4.2) 
 
The exact solution of system (4.1) and (4.2) is: 
  𝑧1(𝑡) = 𝑒𝑡, 𝑧2(𝑡) = 𝑒−𝑡. 
 
According to the residual functions (3.5), we obtain: 

Res1(𝑡) = 𝑧1
′(𝑡) − 𝑧1(𝑡) + 𝑧2(𝑡) − 𝑧1 (

𝑡

2
) + 𝑒

𝑡

2 − 𝑒−𝑡  ,

Re𝑠2(𝑡) = 𝑧2
′ (𝑡) + 𝑧1(𝑡) + 𝑧2(𝑡) + 𝑧2 (

𝑡

2
) − 𝑒−

𝑡

2 − 𝑒𝑡  .
 

(4.3) 
According to the initial conditions (4.2), we can 
determine the first coefficients of the power series as: 
 
𝑐1,0 = 𝑧1,0 = 𝑧1(0) = 1     
and  
𝑐2,0 = 𝑧2,0 = 𝑧2(0) = 1.  
     
Hence, the power series solution of system (4.1) can 
be expressed as: 
 
      𝑧1(𝑡) = 1 + 𝑐1,1𝑡 + 𝑐1,2𝑡

2 + 𝑐1,3𝑡
3 + ⋯ , 

      𝑧2(𝑡) = 1 + 𝑐2,1𝑡 + 𝑐2,2𝑡
2 + 𝑐2,3𝑡

3 + ⋯ . 
 
It is clear that the first approximations of the series 
solution for system (4.1) and (4.2) is of the form: 
𝑧1(𝑡) = 1 + 𝑐1,1𝑡 ,

𝑧2(𝑡) = 1 + 𝑐2,1𝑡 .
                                 (4.4) 

 
To find the values of the coefficients 𝑐1,1 and 𝑐2,1, we 
substitute the equations in system (4.4) into (4.3) to 
get the following 1st-residual functions of Eqs. (4.1): 
 
 

              Res1
1(𝑡) = 𝑐1,1 (1 −

3

2
𝑡) + 𝑐2,1𝑡 + 𝑒

𝑡

2 − 𝑒−𝑡 − 1 , 

     Res2
1(𝑡) = 𝑐2,1 (1 +

3

2
𝑡) + 𝑐1,1𝑡 − 𝑒−

𝑡

2 − 𝑒𝑡 + 3 . 

               (4.5) 
Setting 𝑡 = 0 in (4.5) and use the fact (3.6), then we 
obtain 𝑐1,1 = 1, and 𝑐2,1 = −1.  
Thus, the first approximations of the series solution 
of (4.1) and (4.2) are: 

       
𝑧1(𝑡) = 1 + 𝑡 

𝑧2(𝑡) = 1 − 𝑡  
  

The second approximations of the series solution of 
(4.1) and (4.2) have the forms: 
      𝑧1(𝑡) = 1 + 𝑡 + 𝑐1,2𝑡

2                       (4.6) 
      𝑧2(𝑡) = 1 − 𝑡 + 𝑐2,2𝑡

2  

In order to find the values of the coefficients 𝑐1,2, and 
𝑐2,2, we substitute (4.6) into (4.3) to get the form of 
the 2nd-residual functions of (4.1) which is: 
 
Res1

2(𝑡) = (2𝑐1,2 −
5

2
) 𝑡 + (𝑐2,2 −

5

4
𝑐1,2) 𝑡2 + 𝑒

𝑡

2 −

𝑒−𝑡,              
Res2

2(𝑡) = (2𝑐2,2 −
1

2
) 𝑡 + (𝑐1,2 +

5

4
𝑐2,2) 𝑡2 + 2 −

𝑒−
𝑡

2 − 𝑒𝑡.                                          (4.7) 
Differentiate the both sides of Eqs. (4.7) with respect 
to 𝑡 as follows: 

Res1′ (𝑡) = (2𝑐1,2 −
5

2
) + (2𝑐2,2 − 𝑐1,2

5

2
) 𝑡 +

1

2
𝑒

𝑡

2

+ 𝑒−𝑡 , 

Re𝑠2
′ (𝑡) = (2𝑐2,2 −

1

2
) + (2𝑐1,2 + 𝑐2,2

5

2
) 𝑡 +

1

2
𝑒−

𝑡

2

− 𝑒𝑡.                  (4.8)  
Substituting 𝑡 = 0 in (4.8) and using the fact in (3.6) 
leads to 𝑐1,2 =

1

2
, and 𝑐2,2 =

1

2
.  

Thus, the second approximations of the series 
solution of (4.1) and (4.2) can be written as: 

  𝑧1(𝑡) = 1 + 𝑡 +
1

2
𝑡2 , 

  𝑧2(𝑡) = 1 − 𝑡 +
1

2
𝑡2 .                          (4.9) 

Continuing with similar fashion, the series solutions 
of 𝑢1(𝑡) and 𝑢2(𝑡) will be: 

 𝑧1(𝑡) = 1 + 𝑡 +
1

2
𝑡2 +

1

6
𝑡3 +

1

24
𝑡4 + ⋯ , 

 𝑧2(𝑡) = 1 − 𝑡 +
1

2
𝑡2 −

1

6
𝑡3 +

1

24
𝑡4 − ⋯(4.10)  

The closed form of above solutions, when 𝑘 → ∞ are 
𝑢1(𝑡) = 𝑒𝑡 , 𝑢2(𝑡) = 𝑒−𝑡 which are the exact 
solutions.      
 
Example 4.2. Consider the system of multi-
pantograph equations [21]: 
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     𝑧1
′(𝑡) = −𝑧1(𝑡) − 𝑒−𝑡 cos (

𝑡

2
) 𝑧2 (

𝑡

2
)

− 2𝑒−
3𝑡

4 cos (
𝑡

2
) sin (

𝑡

4
) 𝑧1 (

𝑡

4
),  

     𝑧2
′(𝑡) = 𝑒𝑡𝑧1

2 (
𝑡

2
) − 𝑧2

2 (
𝑡

2
).             (4.11) 

 
Subject to the initial conditions: 
𝑢1(0) = 1, 𝑢2(0) = 0 .                       (4.12)   
According to residual functions in (3.5), we obtain: 

     Res1(𝑡) = 𝑧1
′(𝑡) + 𝑧1(𝑡) + 𝑒−𝑡 cos (

𝑡

2
) 𝑧2 (

𝑡

2
)

+ 2𝑒−
3𝑡

4 cos (
𝑡

2
) sin (

𝑡

4
) 𝑧1 (

𝑡

4
) ,  

     Re𝑠2(𝑡) = 𝑧2
′ (𝑡) − 𝑒𝑡𝑧1

2 (
𝑡

2
) + 𝑧2

2 (
𝑡

2
) . 

               (4.13) 
The first approximations of the series solution of 
(4.11) and (4.12) have the form: 
      𝑧1(𝑡) = 1 + 𝑐1,1𝑡 ,  
      𝑧2(𝑡) = 𝑐2,1𝑡 .                                      (4.14) 
To find the values of the coefficients 𝑐1,1 and 𝑐2,1, 
substitute Eqs. (5.14) into Eqs. (5.13) to obtain the 
1st-residual function which of the form: 
 

      Res1
1(𝑡) = 𝑐1,1 + 1 + 𝑐1,1𝑡 + 𝑐2,1

𝑡

2
𝑒−𝑡 cos (

𝑡

2
)

+ 2𝑒−
3𝑡

4 cos (
𝑡

2
) sin (

𝑡

4
) (1 + 𝑐1,1

𝑡

4
), 

      Res2
1(𝑡) = 𝑐2,1 − 𝑒𝑡 (1 + 𝑐1,1

𝑡

2
)
2
+ (𝑐2,1

𝑡

2
)
2
.                                                  

(4.15) 
 
If we set 𝑡 = 0 in Eq. (5.15) and use the fact 
Res𝑖

1(0) = 0, 𝑖 = 1,2, then we obtain 𝑐1,1 = −1, and 
𝑐2,1 = 1. Thus, the first approximations of the series 
solution for Eqs. (5.11) and (5.12) are: 
  𝑧1(𝑡) = 1 − 𝑡 , 
  𝑧2(𝑡) = 𝑡 .                                         (4.16) 
By continuing with the similar arguments of Example 
(4.1), we get the series solutions of 𝑧1(𝑡) and 𝑧2(𝑡) 
as follows: 
 

𝑧1(𝑡) = 1 − 𝑡 +
𝑡3

3
−

𝑡4

6
+

𝑡5

30
−

𝑡7

630
+

𝑡8

2520
−

𝑡9

22680
+ ⋯  

𝑧2(𝑡) = 𝑡 −
𝑡3

6
+

𝑡5

120
−

𝑡7

5040
+

𝑡9

362880
− ⋯ 

                                                                 (4.17) 
Which are the expansions of the exact solutions: 
 𝑢1(𝑡) = 𝑒−𝑡 cos 𝑡 , 𝑢2(𝑡) = sin 𝑡.        

 

Example 4.3. Consider the following system of 
multi-pantograph equations: 
 
𝑧1

′(𝑡) = 𝑧1(𝑡) − 𝑡𝑧1(2𝑡) + 3𝑧2(3𝑡) − 2 − 38𝑡 + 22𝑡2

+ 4𝑡3, 
𝑧2

′(𝑡) = −3𝑧2(𝑡) − 𝑡𝑧1 (
𝑡

2
) − 𝑧2(3𝑡) + 1 + 31𝑡 −

13𝑡2 +
𝑡3

4
 .                                    (4.18) 

Subject to the initial conditions: 
𝑧1(0) = 3, 𝑧2(0) = −1 .                         (4.19) 
Which have the exact solution: 
 𝑧1(𝑡) = 𝑡2 − 2𝑡 + 3, 𝑧2(𝑡) = −𝑡2 + 5𝑡 − 1. 

  
As in the previous examples, the initial guesses 
approximation as: 
𝑧1init

(𝑡) = 3  
And 
 𝑧2init

(𝑡) = −1,  
 
Then the power series expansions of the solution take 
the form: 
𝑧1(𝑡) = 3 + 𝑐1,1𝑡 + 𝑐1,2𝑡

2 + 𝑐1,3𝑡
3 + ⋯ , 

𝑧2(𝑡) = −1 + 𝑐2,1𝑡 + 𝑐2,2𝑡
2 + 𝑐2,3𝑡

3 + ⋯. (4.20) 
Consequently, the first approximations of the series 
solution of (4.18) and (4.19) are: 
      𝑧1(𝑡) = 3 + 𝑐1,1𝑡 , 
      𝑧2(𝑡) = −1 + 𝑐2,1𝑡 ,                           (4.21) 
and the1st-residual functions of Eqs. (4.19) are: 
 
Res1

1(𝑡) = 2 + 41𝑡 − 22𝑡2 − 4𝑡3 + 𝑐1,1(1 − 𝑡 + 2𝑡2)

− 9𝑡𝑐2,1, 
Res2

1(𝑡) = −5 − 28𝑡 + 13𝑡2 −
𝑡3

4
+ 𝑐1,1

𝑡2

2
+

𝑐2,1(1 + 6𝑡) .                                         (4.22) 
 
Setting 𝑡 = 0 in (4.21) and using the fact in (3.7), one 
can get 𝑐1,1 = −2, and 𝑐2,1 = 5.  
 
Thus, the second approximations of the series 
solutions of (4.18) and (4.19) are: 
 
   𝑧1(𝑡) = 3 − 2𝑡 + 𝑐1,2𝑡

2 , 

   𝑧2(𝑡) = −1 + 5𝑡 + 𝑐2,2𝑡
2 ,                   (4.23) 

 
and the 2nd –residual functions of (4.18) are: 
 
Res1

2(𝑡) = −2𝑡 − 26𝑡2 − 4𝑡3 + 𝑐1,2𝑡(2 − 𝑡 + 4𝑡2)

− 27𝑡2𝑐2,2, 
Res2

2(𝑡) = 2𝑡 + 12𝑡2 −
𝑡3

4
+ 𝑐1,2

𝑡3

4
+ 𝑐2,2𝑡(2 + 12𝑡) .                                   

(4.24) 
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Using the fact in (3.7) for 𝑘 = 2 reduces a system of 
two linear equations with two variables 𝑐1,2 and 𝑐2,2. 
The solution of this system gives 𝑐1,2 = 1, and 𝑐2,2 =
−1.  
 It is easy to discover that each of the coefficients 
𝑐1.𝑚 and 𝑐2.𝑚 for 𝑚 > 2 in the expansions (4.20) 
vanished. In other words, we have: 
 
∑ 𝑐𝑖.𝑚𝑡𝑚∞

𝑚=0 = ∑ 𝑐𝑖.𝑚𝑡𝑚3
𝑚=0 , 𝑖 = 1,2.  (4.25) 

 
Thus, the analytic approximate solution of system 
(4.18) and (4.19) coincide with the exact solution, 
which is a powerful merit in RPSM, that is it gives 
the exact solution if it is a polynomial. 
 

Example 4.4. Consider the three-dimensional 
pantograph equations : 
 

      𝑧1
′(𝑡) = 2𝑧2 (

𝑡

2
) + 𝑧3(𝑡) − 𝑡 cos (

𝑡

2
) , 

      𝑧2
′ (𝑡) = 1 − 𝑡 sin(𝑡) − 2𝑧3

2 (
𝑡

2
) , 

      𝑧3
′ (𝑡) = 𝑧2(𝑡) − 𝑧1(𝑡) − 𝑡 cos(𝑡).   (4.26) 

 
Subject to the initial conditions: 
𝑧1(0) = −1, 𝑧2(0) = 0, 𝑧3(0) = 0 .   (4.27) 
Which has the exact solution 𝑧1(𝑡) = − cos 𝑡, 
𝑧2(𝑡) = 𝑡 cos 𝑡 and 𝑧3(𝑡) = sin 𝑡. 
Repeating the same steps in the previous examples, 
we can find the numerical solution of system (4.26) 
and (4.27) as: 
 

𝑧1(𝑡) = −1 +
𝑡2

2
−

𝑡4

24
+

𝑡6

720
−

𝑡8

40320
+

𝑡10

3628800
− ⋯,  

𝑧2(𝑡) = 𝑡 −
𝑡3

2
+

𝑡5

24
−

𝑡7

720
+

𝑡9

40320
− ⋯, 

 𝑧3(𝑡) = 𝑡 −
𝑡3

6
+

𝑡5

120
−

𝑡7

5040
+

𝑡9

362880
− ⋯.  

   (4.28) 
For the third example which are the exact solutions 
𝑧1(𝑡) = − cos 𝑡 , 𝑧2(𝑡) = 𝑡 cos 𝑡 and , 𝑧3(𝑡) = sin 𝑡.      
To show the accuracy of the presented method, we 
report two types of errors. The first one is the 
residual error,Re𝑖 and defined as: 

Re𝑖(𝑡) = |
𝑑

𝑑𝑡
𝑧𝑖,RPS

𝑘 (𝑡) − 𝛽𝑖𝑧𝑖,RPS
𝑘 (𝑡) −

𝑔𝑖 ((
𝑡, 𝑧1,RPS

𝑘 (𝛼𝑖2𝑡), 𝑧2,RPS
𝑘 (𝛼𝑖2𝑡),

… , 𝑧𝑛,RPS
𝑘 (𝛼𝑖𝑛𝑡)

))| (4.29) 

 
 
While the exact error,Ex𝑘 is defined, by: 
Ex𝑖(𝑡):= |𝑧𝑖,Exact(𝑡) − 𝑧𝑖,RPS

𝑘 (𝑡)|.       (4.30) 
 
Where, 𝑢𝑖,RPS

𝑘  is the 𝑘th-order approximation of 𝑧𝑖(𝑡) 
obtained by the RPS method, and 𝑧𝑖,Exact(𝑡) is the exact 
value of 𝑧𝑖(𝑡), 𝑖 = 1,2,… , 𝑛. We introduce Table 1, 
Table 2 and Table 3, below to show the related errors of 
𝑧1(𝑡), 𝑧2(𝑡) 𝑎𝑛𝑑 𝑧3(𝑡). 
 
Without loss of generality, we will test the accuracy of 
the presented method for the fourth example. 
 In Table 1,2 and 3, the residual errors, exact errors and 
the exact errors obtained by the Laplace decomposition 
algorithm (LDA), [21], have been calculated for various 
values of 𝑡 in [0,1] to compare the 10th-order 
approximate RPS method solution with LDA. From the 
tables, it can be seen that the RPS method provides us 
with the accurate approximate solution of system (4.26) 
and (4.27). Moreover, we can control the error also by 
evaluating more components of the solution. 
 
 
 

 
 

Table 1. Exact and residual error of 𝑧1(𝑡) of  Example (4.4) 
𝑡            Exact Error(LDA)            Exact Error(RPS)            Residual Error(RPS) 
0.2            8.904 × 10−5                          0                          0 
0.4            1.511 × 10−3             1.1102 × 10−6                          0 
0.6            8.051 × 10−3                          0                          0 
0.8            2.665 × 10−2                          0             1.1102 × 10−16 
1.0            6.766 × 10−2            1.1102 × 10−16             1.1102 × 10−16 
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Table 2. Exact and residual error of 𝑧2(𝑡) of Example (4.4) 
𝑡            Exact Error(LDA)            Exact Error(RPS)            Residual Error(RPS) 
0.2            5.496 × 10−6                          0                          0 
0.4            1.808 × 10−4             5.5511 × 10−17                          0 
0.6            1.408 × 10−3                          0             1.1102 × 10−16 
0.8            6.069 × 10−3             1.1102 × 10−16                          0 
1.0            1.890 × 10−2             1.1102 × 10−16              2.2204 × 10−16 

 
 

Table 3. Exact and residual error of 𝑧3(𝑡) of Example (4.4) 
𝑡            Exact Error(LDA)            Exact Error(RPS)            Residual Error(RPS) 
0.2            6.4558 × 10−5             2.7755 × 10−17             2.7755 × 10−17 
0.4            9.9595 × 10−4                          0             5.5511 × 10−17 
0.6            4.8397 × 10−3                          0             5.5511 × 10−17 
0.8            1.4613 × 10−2                          0                          0 
1.0            3.3917 × 10−2                          0             1.1102 × 10−16 

 

5 Conclusion
The aim of this work is to propose an efficient 
algorithm of the solution of the system of pantograph 
equations. We extended the RPS method to solve this 
class of systems of IVPs. We conclude that the RPS 
method is a powerful and efficient technique in 
constructing approximate series solutions of linear 
and nonlinear IVPs of different types. The proposed 
algorithm produced a rapidly convergent series 
without requiring perturbations, discretization, or 
other restrictive assumptions which may change the 
structure of the problem being solved. We believe 
that the efficiency of the RPS method gives it a much 
wider applicability. In the future, we will expand the 
applications of the presented method to solve more 
physical and engineering problems.  
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