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1 Introduction
Lie group analysis of differential equations is the area
of mathematics pioneered by Sophus Lie in the 19th
century (1849-1899). The first general solution of the
problem of classification was given by Sophus Lie
for an extensive class of partial differential equations,
[5]. Since then many researchers have done work on
various families of differential equations. The results
of their work have been captured in several outstand-
ing literary works, [1],[3],[5],[8],[9].The preliminary
group classification by Ibragimov, Torrisi and Valenti
[5] gave us up to thirty three equivalence classes of
submodels of the wave model of the form

utt = f(x, ux)uxx + g(x, ux). (1)

The present work examines a model which repre-
sents families of the nonlinear wave with dissipation,
namely

utt + ut = f(ux)uxx + g(ux). (2)

In this work we use the results of one-dimensional
optimal systems

(i) of the equivalence Lie algebra to obtain X5 and
hence the classification of the family of equations
(2) above ,

(ii) of the extended principal Lie algebra of equation
(2) to calculate the invariant solutions of some
examples.

The method followed in the construction of the
one-dimensional optimal systems is found in the pa-
per by Ibragimov, Torrisi and Valenti, [4]. In this pa-
per while constructing the principal Lie algebra, we
also show how to determine the Lie point symmetries
of (2). We proceed to construct the equivalence Lie
algebra, and give the extensions by o ne of the princi-
pal algebra of equation (2),[1],[2],[4]. We also show
the method of determining invariant solutions,[6],[7].
The paper also illustrates the construction of one-
dimensional optimal systems of extended principal
Lie algebras L5. We conclude by calculating invari-
ant solutions of some one-dimensional subalgebras of
each extended algebra L5.

2 Principal Lie Algebra

The principal Lie algebra Lp of the non-linear
wave equation with dissipation namely utt + ut =
f(ux)uxx + g(ux), is determined as follows:

Let the generator of equation (2) be given by

X = ξ1 (t, x, u)
∂

∂t
+ ξ2 (t, x, u)

∂

∂x
+ η (t, x, u)

∂

∂u
(3)

The second prolongation of (3) is given by

X̃2 = X+ζt
∂

∂ut
+ζx

∂

∂ux
+ζtt

∂

∂utt
+ζxx

∂

∂uxx
, (4)
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where

ζt = Dt(η)− utDt(ξ
1)− uxDt(ξ

2),
ζx = Dx(η)− utDx(ξ1)− uxDx(ξ2),
ζtt = Dt(ζ

t)− uttDt(ξ
1)− utxDt(ξ

2),
ζxx = Dx(ζx)− utxDx(ξ1)− uxxDx(ξ2),

(5)

[[5],[6],[7]].
The operators Dt and Dx denote the total deriva-

tives with respect to t and x respectively as follows:

Dt = ∂
∂t + ut

∂
∂u + utx

∂
∂ux

+ utt
∂
∂ut

+ .....

Dx = ∂
∂x + ux

∂
∂u + utx

∂
∂ut

+ uxx
∂
∂ux

+ .....
(6)

The determining equation of (2) is given by

X̃2 (utt + ut − f(ux)uxx − g(ux)) |(2) (7)

= (ζtt + ζt − fζxx − fuxζxuxx − gζx)|(2)
= 0.

In cases of arbitrary f and g it follows that

ζxx = ζx = 0, and ζtt + ζt = 0. (8)

From the equation (8) we have that

ζtt + ζt = ηtt + ut
(
2ηtu − ξ1tt − 2uxξ

2
tu

)
+u2t

(
ηuu − 2ξ1tu − uxξ2uu

)
− u3t ξ1uu

−utx
(
2ξ1t + 2uxξ

2
u + utξ

2
u

)
+ (−ut − f(ux)uxx − g(ux))(
ηu − 2ξ1t − 3utξ

1
u

)
+ ηt + ut

(
ηu − ξ1t

)
−u2t ξ1u − uxξ2t − utuxξ2u = 0.

(9)

From equation (9) we obtain

ξ2u = ξ1t = 0.
ξ1u = ηu = 0.
ξ2t = 0.
ηtt + ηt = 0 ⇒ η = c1 + c2e

−t.

(10)

Thus we have that

ξ1 = c, ξ2 = c, η = c1 + c2e
−t. (11)

Thus the principal Lie algebra Lp of the non-
linear wave equation with dissipation (2)

is spanned by the following generators

X1 =
∂

∂x
, X2 =

∂

∂t
, X3 =

∂

∂u
, X4 = e−t

∂

∂u
.

(12)

2.1 Equivalence Lie Algebra and extensions
of the principal Lie Algebra

The equivalence Lie Algebra, is the non-degerate
changes in the variables, x, t and u which carries
equation (2) into an equation of the same form. The
family of non-linear waves utt + ut = f(ux)uxx +
g(ux), can be written as a system of differential equa-
tions

utt + ut = f1uxx + f2

fkx = fkt = fku = fkut = 0
(13)

k = 1, 2. The equivalence Lie algebra element for the
system (13) is given by the generators

E = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
+ µk

∂

∂fk
(14)

where ξ = ξ(x, t, u) , τ = τ(x, t, u) , η =
η(x, t, u) , µk = µk(x, t, u, ux, ut, f

1, f2). We now
introduce the following total derivatives

D̃α = ∂
∂α + fkα

∂
∂fk

+ fkαt
∂
∂fkt

+

fkαx
∂
∂fkx

+ fkαu
∂
∂fku

+ fkαut
∂

∂fkut
+ ...

for α ∈ {x, t, u, ut}.
The extension of the equivalence algebra element

E, takes the form

Ẽ = E + ζt ∂
∂ut

+ ζx ∂
∂ux

+ ζxx ∂
∂uxx

+$k
t

∂
∂fkt

+$k
x

∂
∂fkx

+$k
u

∂
∂fku

+$k
ut

∂
∂fkut

,
(15)

where

ζi = Di(η)− utDi(τ)− uxDi(ξ)
ζij = Di(ζ

i)− ujtDi(τ)− ujxDi(ξ)

for i, j ∈ {x, t} and

$k
α = D̃α(µk)− fkt D̃α(τ)− fkx D̃α(ξ)

−fku D̃α(η)− fkutD̃α(ζt)− fkuxD̃α(ζx)

where α ∈ {x, t, u, ut} , k = 1, 2.
The invariance condition for the system of equa-

tions (15) is given by

Ẽ(utt + ut − f1uxx − f2)|(15) = 0 (16)

Ẽ(fkα) = 0 for α ∈ {x, t, u, ut}. (17)

We thus obtain
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ζtt + ζt − µ1uxx − f
′
ζxx − µ2 = 0

and

$k
α = 0 for α ∈ {x, t, u, ut}.

From the equations (17) we have

(µk)α = (ζx)α = 0, α ∈ {x, t, u, ut}

and k = 1, 2, which implies that the µk are inde-
pendent of x, t, u, ut and hence

µk = µk(ux, f
1, f2), k = 1, 2.

Furthermore (ζx)α = 0 yields

ξ = a1x+ a2u+ p(t)
τ = τ(t)
η = b1u+ b2x+ q(t)

(18)

where a1, a2; b1, b2 are constants. The equations
(18), together with the invariance condition yield

ξ = a1x+ a2
τ = a3
η = a4u+ a5t+ a6x+ a7
µ1 = 2a1f

1

µ2 = a5 + a4f
2.

(19)

For the model utt + ut = f(ux)uxx + g(ux), we
have

µ1 = 2a1f
µ2 = a5 + a4g.

Therefore we obtain a 7-dimensional equivalence
algebra for the non-linear wave equation (2), which is
spanned by the following operators

E1 =
∂

∂x
(20)

E2 =
∂

∂t

E3 =
∂

∂u

E4 = x
∂

∂u

E5 = u
∂

∂u
+ g

∂

∂g
,

E6 = t
∂

∂u
+

∂

∂g
,

E7 = x
∂

∂x
+ 2f

∂

∂f

The classification of the equation (2) is obtained by
extending the principal Lie algebra X1 = ∂

∂x ,

X2 = ∂
∂t , X3 = ∂

∂u ,

X4 = e−t ∂∂u by X5 in the section that follow.

3 One-Dimensional Optimal System

In order to determine X5 and hence the classification
of equation (2) we give details of the determination of
the one-dimensional optimal systems L4 below. Since
f and g depend on ux, we prolong the equivalence
operators Ei (20), to the following operators

Ẽi = Ei + ζx
∂

∂ux
, for i = 1, 2, ......, 7.

Therefore we have

Ẽi = Ei, for i = 1, 2, 3

Ẽ4 = x
∂

∂u
+

∂

∂ux
, Ẽ5 = u

∂

∂u
+ g

∂

∂g
+ ux

∂

∂ux
(21)

Ẽ6 = E6, E7 = x
∂

∂x
+ 2f

∂

∂f
− ux

∂

∂ux
,

We form new operators Zi by projecting each
Ẽi (18), onto the (ux, f, g)-subspace of the
(x, t, u, ut, ux, f, g)−space. We have

pr(Ẽi) = 0, for i = 1, 2, 3

Zi = pr(Ẽi+3), for i = 1, 2, 3, 4.

Z1 = pr(Ẽ5) =
∂

∂ux

Z2 = g
∂

∂g
+ ux

∂

∂ux
, Z3 =

∂

∂g
,

Z4 = 2f
∂

∂f
− ux

∂

∂ux
,

We now consider the algebra L4, which is
spanned by Z1, Z2, Z3, Z4. We wish to determine the
optimal system of one-dimensional subalgebras of the
algebra L4. The non-zero structure constants of L4 are
as follows:

[Z1, Z2] = Z1 , [Z1,Z4] = −Z1, [Z2, Z3] = −Z3,

We now consider the algebra L4, which is spanned by
Z1, Z2, Z3, Z4.We wish to determine the optimal sys-
tem of one-dimensional subalgebras of the algebra L4.
The non-zero structure constants of L4 are as follows:

[Z1, Z2] = Z1 , [Z1,Z4] = −Z1, [Z2, Z3] = −Z3,
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The generators of the adjoint algebra LA4 are given by

A1 = Z1
∂

∂Z2
− Z1

∂

∂Z4

A2 = −Z1
∂

∂Z1
− Z3

∂

∂Z3

A3 = Z3
∂

∂Z3

A4 = Z1
∂

∂Z1

In order to obtain the elements of the adjoint group GA

or the group of inner automorphisms of the algebra
L4, we integrate the equations (19) to obtain a four
parameter Lie group:

A1 : Z2 = Z2 + a1Z1, Z4 = Z4 − a1Z1

A2 : Z1 = a−1
2 Z1, Z3 = a−1

2 Z3

A3 : Z2 = Z2 + a3Z3,

A4 : Z1 = a4Z1

A matrix representation of an arbitrary element of
the adjoint group GA is of the form

M =


a−1
2 a4 a1 0 −a1

0 1 0 0

0 a−1
2 a3 a−1

2 0
0 0 0 1

 .
If we let Z ∈L4 be given by

Z = e1Z1 + e2Z2 + e3Z3 + e4Z4

Z=ē = (e1, e2, e3, e4),

then e = Me defines an equivalence relation in L4 and
hence subdivides this algebra into equivalence classes.
The components of Z map as follows under M :

e1 = a−1
2 a4e

1 + a1(e
2 − e4)

e2 = e2

e3 = a−1
2 a3e

2 + a−1
2 e3

e4 = e4

Therefore the optimal system of one-dimensional sub-
spaces of L4, obtained through the adjoint group GA,
are as follows:

Therefore the optimal system of one-dimensional
subspaces of L4, obtained through the adjoint group

GA, are as follows:

Z Generator Restrictions
Z(1) αZ2 + Z4 α 6= 1

Z(2) αZ2 + βZ3 + Z4 α 6= β

Z(3) Z1 + Z2 + Z4

Z(4) Z1 + Z2 + αZ3 + Z4

Z(5) Z3

Z(6) Z3 + Z4

Z(7) Z1 + Z3

Consider
Z(1) = αZ2 + Z4,

with α 6= 1 .

Z(1) = α(g
∂

∂g
+ ux

∂

∂ux
) + 2f

∂

∂f
− ux

∂

∂ux

= αg
∂

∂g
+ 2f

∂

∂f
+ (α− 1)ux

∂

∂ux
.

From the characteristic equation

dg

αg
=
df

2f
=

dux
(α− 1)ux

,

we obtain

f = u
2

α−1
x and g = u

α
α−1
x .

To obtain the extending vector X5, we let

Z̃ = αE5+E7

= α(u
∂

∂u
+ g

∂

∂g
) + x

∂

∂x
+ 2f

∂

∂f
.

Let X5 be the projection of Z̃ onto the (x, t, u)−
space, i.e

X5 = x
∂

∂x
+ αu

∂

∂u
.

For the vectors Z(i), i = 2, 3, · · · , 7, we proceed in
a similar manner in order to determine the functions
f, g and the extension vector X5. The classification
for equation (2) is given in the following table:

Z(i) f(ux) g(ux) X5

Z(1) u
2

α−1
x u

2
α−1
x x ∂

∂x + αu ∂
∂u

Z(2) u
2

α−1
x α−1u

2
α−1

−β
x x ∂

∂x + (αu+ βt) ∂
∂u

Z(3) e2ux C x ∂
∂x + (u+ x) ∂

∂u

Z(4) e2ux αux x ∂
∂x + (u+ x+ αt) ∂

∂u

Z(5)

Z(6) u−2
x − lnx x ∂

∂x + ut ∂∂u
Z(7) C ux (t+ x) ∂

∂u
(22)
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In what follows we will give the classification for
equation (2) for the listed generators X5.

1. If X5 = x ∂
∂x + (x+ u) ∂

∂u then
f = e2ux , and g = c

2. If X5 = x ∂
∂x + (x+ u+ αt) ∂

∂u then
f = e2ux , and g = αux
3. If X5 = (x+ t) ∂

∂u then
f = c, and g = ux
4. If X5 = x ∂

∂x + t ∂∂u then
f = u−2

x , and g = − lnux
5. If X5 = x ∂

∂x + αu ∂
∂u then

f = u
2

α−1
x , and g = u

2
α−1
x for α 6= 1

6. If X5 = x ∂
∂x + (αu+ βt) ∂

∂u then

f = u
2

α−1
x , and g = α−1(u

2
α−1
x − β) for α 6= β

Each extension will give us a five-dimensional Lie al-
gebra L5. From the above we will concentrate on the
first four whose equations are given by the following

utt + ut = e2uxuxx + c. (23)

utt + ut = e2uxuxx + αux (24)

utt + ut = cuxx + ux. (25)

utt + ut = u−2
x uxx + lnux. (26)

From the latter we have five-dimensional Lie al-
gebras for each of the equations (23) to (26). We will
only construct optimal systems of one-dimensional
Lie subalgebras for the first three equations. We will
then calculate the invariant solutions using some of
these one-dimensional subalgebras.

4 Invariant Solutions

Consider the equation

utt + ut = e2uxuxx + c, (27)

whose set of generators is given byX1 = ∂
∂x , X2 =

∂
∂t , X3 = ∂

∂u , X4 = e−t ∂∂u , X5 = x ∂
∂x + (u +

x) ∂
∂u .

We will use the one dimensional subalgebra X =
X1 + (1 + ρ)X3 i.e.

X =
∂

∂x
+ (1 + ρ)

∂

∂u
. (28)

The characteristic equation of the above generator
(28) is given by

dt

0
=
du

k
=
dx

1
where k = 1 + ρ. (29)

From equation (29) the invariants are given by

I1 = u− kx ; I2 = t. (30)

If we define I1 = φ (I2) for some function φ, then

u (t, x) = kx+ φ (t) . (31)

The substitution of (31) into equation (27) asserts
that

ut = φ
′
(t)

utt = φ
′′

(t)
ux = k
uxx = 0

hence

utt+ut−e2uxuxx−c = φ
′′

(t)+φ
′
(t)−c = 0. (32)

The equation (32) simplifies to

φ
′′

(t) + φ
′
(t) = c, (33)

which is a second order ODE whose solution is given
by

φ (t) = c1 + c2e
−t + ct− c. (34)

Thus the invariant solution of (27) is given by

u (t, x) = kx+ c1 + c2e
−t + ct− c, (35)

where k = 1 + ρ.
Consider the equation

utt + ut = e2uxuxx + αux (36)

which has the following set of generators X1 =
∂
∂x , X2 = ∂

∂t , X3 = ∂
∂u , X4 = e−t ∂∂u , X5 =

x ∂
∂x + (u+ x+ αt) ∂

∂u .
We will use the one dimensional subalgebra X =

X1 +X4 i.e.

X =
∂

∂x
+ e−t

∂

∂u
. (37)

The characteristic equation of the above generator
(37) is given by

dt

0
=

du

e−t
=
dx

1
(38)

From equation (38) the invariants are given by
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I1 = u− xe−t ; I2 = t. (39)

If we define I1 = φ (I2) for some function φ, then

u (t, x) = xe−t + φ (t) . (40)

The substitution of (40) into equation (36) asserts
that

ut = −xe−t + φ
′
(t)

utt = xe−t + φ
′′

(t)
ux = e−t

uxx = 0,

hence

utt+ut−e2uxuxx−αux = φ
′′

(t)+φ
′
(t)−αe−t = 0.

(41)
The equation (41) simplifies to

φ
′′

(t) + φ
′
(t) = αe−t, (42)

which is a non-linear second order ODE whose
solution is given by

φ (t) = c1 + c2e
−t + αe−t − αte−t.

The invariant solution of utt + ut = e2uxuxx +
αux is given by

u (t, x) = xe−t + c1 + c2e
−t + αe−t − αte−t. (43)

Consider the equation

utt + ut = cuxx + ux (44)

whose set of generators is given byX1 = ∂
∂x , X2 =

∂
∂t , X3 = ∂

∂u , X4 = e−t ∂∂u , X5 = (x+ t) ∂
∂u .

We will use the one dimensional subalgebras
X = αX1 + X5 and X = βX2 + X5 i.e. X =
α ∂
∂x + (x+ t) ∂

∂u , and X = β ∂
∂t + (x+ t) ∂

∂u respec-
tively to calculate the invariant solutions of (44).

Consider the one dimensional subalgebra

X = α
∂

∂x
+ (x+ t)

∂

∂u
. (45)

The characteristic equation of () is given by

dx

α
=

du

x+ t
=
dt

0
. (46)

From equation () the invariants are given by I1 =
αu− 1

2 (x+ t)2 , I2 = t.
If we let I1 be a function of I2,

u(t, x) =
1

α

{
(x+ t)2

2
+ φ (t)

}
where φ (t) = I1 i.e I1 = φ (I2) .

(47)
The substitution of (47) into (44) asserts that

ut = 1

α

{
(x+ t)− φ′ (t)

}
utt = 1

α(1− φ′′ (t))
ux = 1

α (x+ t)
uxx = 1

α .

(48)

Hence utt + ut − cuxx − ux =
1
α

{
1− φ′′ (t) + (x+ t)− (x+ t)− c− φ′ (t)

}
=

0,
simplifies to

φ
′′

(t) + φ
′
(t) = 1− c. (49)

Solving the equation (49) we obtain that

φ (t) = c1 − c2e−t + (1− t) (1− c) . (50)

Therefore the invariant solution of (44) is given
by

u(t, x) =
1

α

{
(x+ t)2

2
+ c1 − c2e−t + (1− t) (1− c)

}
.

(51)

5 Conclusion
The purpose of the project was to gain an insight
into the method of Group classification on a non lin-
ear wave equation with dissipation. From the present
project, the methods of determining the principal Lie
algebra, the equivalence Lie algebra have been gained.
However, the technique and methods of finding opti-
mal systems of one-dimensional subalgebras, the ex-
tension of the principal Lie algebra by one for a va-
riety of differential equations has been acquired. We
would like to explore them further and even for higher
dimensional subalgebras. Future projects would also
include extending on the current one to determine a
complete classification for the equation (2).
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