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Abstract: - Some studies related to the topological structure of semigroups are provided. In, [3], considering 

and investigating the properties of the collection 𝒜 of all the proper uniformly strongly prime ideals of a Γ -

semigroup 𝑆, such study starts by constructing a topology 𝜏𝒜 on 𝒜 using a closure operator defined in terms of 

the intersection and inclusion relation among these ideals of Γ-semigroup 𝑆, which is a generalization of the 

semigroup. In this paper, we introduce three other classes of ideals in semigroups called maximal ideals, prime 

ideals and strongly irreducible ideals, respectively. Investigating properties of the collection ℳ, ℬ and 𝒮 of all 

proper maximal ideals, prime ideals and strongly irreducible ideals, respectively, of a semigroup 𝑆, we 

construct the respective topologies on them. The respective obtained topological spaces are called the structure 

spaces of the semigroup 𝑆. We study several principal topological axioms and properties in those structure 

spaces of semigroup such as separation axioms, compactness and connectedness, etc. 
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1 Introduction and Preliminaries 
In [4], the notion of uniformly strongly prime ideals 

in Γ-semigroups is introduced. Chattopadhyay and 

Kar, [3], considering and investigating the 

properties of the collection 𝒜 of all proper 

uniformly strongly prime ideals of a Γ-semigroup 𝑆, 

a topology 𝜏𝒜 on 𝒜 was constructed by means of a 

closure operator defined in terms of intersection and 

inclusion relation among these ideals of Γ-

semigroup 𝑆. The topological space (𝒜, 𝜏𝒜) is often 

called the structure space of the Γ-semigroup 𝐻. 

Since Γ semigroups are generalizations of 

semigroups, all the results obtained in, [3], hold for 

semigroups. This kind of topological space has been 

studied in different algebraic structures, [1], [2], [4], 

[5], [6], [7], [8], [9], [10], [11]. Several principal 

topological axioms and properties in this structure 

space, such as separation axioms, compactness, and 

connectedness, were studied. 

In this paper, we study three other classes of 

ideals in semigroups called maximal ideal, prime 

ideal and strongly irreducible ideal, respectively. 

Properties of the collection ℳ, ℬ and 𝒮 of all 

proper maximal ideals, prime ideals and strongly 

irreducible ideals respectively of a semigroup 𝑆 are 

investigated. We construct the respective topologies 

on them using a closure operator defined in terms of 

the intersection and inclusion relation among these 

ideals of the semigroup 𝑆. Some principal 

topological axioms and properties in those structure 

spaces of semigroup are investigated. 

Recall first the basic terms and definitions. 

Let we consider the semigroup (𝐻,⋅). 

A nonempty subset 𝐵 of a semigroup 𝐻 is called 

a sub-semigroup of 𝐻 if 𝐵 ⋅ 𝐵 ⊆ 𝐵. 

A nonempty subset 𝐼 of a semigroup 𝐻 is called 

a right (left) ideal of 𝐻 if for all 𝑥 ∈ 𝐻 and 𝑟 ∈ 𝐼, 𝑟 ⋅
𝑥 ∈ 𝐼(𝑥 ⋅ 𝑟 ∈ 𝐼). 

A nonempty subset 𝐼 of 𝐻 is called an ideal (or 

two-sided ideal) if it is both a left ideal and a right 

ideal. 

An element 𝑒 in a semigroup 𝐻 is called identity 

if 𝑥 ⋅ 𝑒 = 𝑒 ⋅ 𝑥 = 𝑥, ∀𝑥 ∈ 𝐻. 

An element 0 in a semigroup 𝐻 is called zero 

element if 𝑥 ⋅ 0 = 0 ⋅ 𝑥 = 0, ∀𝑥 ∈ 𝐻. 

An element 𝑎 in a semigroup 𝐻 is called 

idempotent element if 𝑎 = 𝑎 ⋅ 𝑎. 

The set of all idempotents of the semigroup 𝑆 is 

denoted by 𝐸(𝑆). 

A proper ideal 𝑃 of a semigroup 𝑆 is called a 

prime ideal of 𝑆 if 𝐴 ⋅ 𝐵 ⊆ 𝑃 implies 𝐴 ⊆ 𝑃 or 𝐵 ⊆
𝑃 for any two ideals 𝐴, 𝐵 of 𝐻. 

An ideal 𝐼 of a semigroup 𝐻 is said to be full if 

𝐸(𝐻) ⊆ 𝐼. 

An ideal 𝐼 of a semigroup 𝐻 is said to be a prime 

full ideal if it is both prime and full. 

In, [3], the following theorem is proved. 
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Theorem 1.1 [3, Theorem 2.8] Let 𝐻 be a 

semigroup and 𝑃 be an ideal of 𝐻. Then the 

following statements are equivalent:   

    1.  If 𝐴 and 𝐵 are ideals of 𝐻 such that 𝐴 ⋅
𝐵 ⊆ 𝑃, then either 𝐴 ⊆ 𝑃 or 𝐵 ⊆ 𝑃.  

    2.  If < 𝑎 > 𝑎𝑛𝑑 < 𝑏 > are principal ideals of 

𝐻 such that < 𝑎 >⋅< 𝑏 >⊆ 𝑃, then either 𝑎 ∈ 𝑃 or 

𝑏 ∈ 𝑃.  

    3.  If 𝑎 ⋅ 𝐻 ⋅ 𝑏 ⊆ 𝑃, then either 𝑎 ∈ 𝑃 or 𝑏 ∈ 𝑃 

(𝑎, 𝑏 ∈ 𝐻).  

    4.  If 𝐼1 and 𝐼2 are two right ideals of 𝐻 such 

that 𝐼1 ⋅ 𝐼2 ⊆ 𝑃, then either 𝐼1 ⊆ 𝑃 or 𝐼2 ⊆ 𝑃.  

    5.  If 𝐽1 and 𝐽2 are two left ideals of 𝐻 such 

that 𝐽1 ⋅ 𝐽2 ⊆ 𝑃, then either 𝐽1 ⊆ 𝑃 or 𝐽2 ⊆ 𝑃.  

  
Definition 1.2 [3], [4] An ideal 𝑃 of a semigroup 

𝐻 is called a uniformly strongly prime ideal (usp 

ideal) if 𝐻 contains a finite subset 𝐹 such that for all 

𝑥, 𝑦 ∈ 𝐻, 𝑥 ⋅ 𝐹 ⋅ 𝑦 ⊆ 𝑃 implies that 𝑥 ∈ 𝑃 or 𝑦 ∈ 𝑃.  

  
Theorem 1.3 [3], [4]  Let 𝐻 be a semigroup. 

Then every uniformly strongly prime ideal is a 

prime ideal.  

Throughout this paper 𝐻 will always denote 

a semigroup with zero. 
 

 

2 On Structure Space of Uniformly 

Strongly Prime Ideals of Semigroup 
In this section, let us recall some of the results and 

definitions obtained in [3]. The philosophy of them 

and their proofs will be useful for the results 

obtained in this paper. 

We denote by 𝒜 the collection of all uniformly 

strongly prime ideals of a semigroup 𝐻. For any 

subset 𝐴 of 𝒜 (that is, subcollection), we define  

 𝐴 = {𝐼 ∈ 𝒜: ⋂𝐽∈𝐴 𝐽 ⊆ 𝐼}.  

 It can be easily seen that ∅ = ∅. 

 

Theorem 2.1 Let 𝐴, 𝐵 be any two subsets of 𝒜. 

Then   

    1.  𝐴 ⊆ 𝐴.  

    2.  𝐴 = 𝐴.  

    3.  𝐴 ⊆ 𝐵 ⇒ 𝐴 ⊆ 𝐵.  

    4.  𝐴 ∪ 𝐵 = 𝐴 ∪ 𝐵.  

  

Definition 2.2 The closure operator 𝐴 → 𝐴 gives 

a topology 𝜏𝒜 on 𝒜. This topology 𝜏𝒜 is called the 

hull-kernel topology and the topological space 

(𝒜, 𝜏𝒜) is called the structure space of the 

semigroup 𝐻.  

Remark 2.3 Let {𝐼𝛼} be a collection of prime 

ideals of a semigroup 𝐻. Then ⋂ 𝐼𝛼 is either empty 

or it is an ideal of 𝐻 but it need not be a prime ideal 

of 𝐻, in general. The following example shows it.  

  
Example 2.4, [13], Let we consider the 

semigroup (𝑀,⋅), where 𝑀 = {𝑚 ∈ 𝑍|𝑚 ≥ 2}. The 

sets 𝐼(𝑝) = {𝑝, 2𝑝, 3𝑝, . . . } (𝑝 is prime) are 

obviously prime ideals of 𝑀. It is clear that the set 

⋂{𝐼(𝑝)|𝑝  𝑝𝑟𝑖𝑚𝑒} = ∅.  

In [12] it is proved that the intersection of prime 

ideals of a semigroup 𝐻 if it is not empty, is a 

semiprime ideal of 𝐻. 

We have the following proposition: 

 

Proposition 2.5 Let 𝐻 be a semigroup and {𝐼𝛼} 

be a collection of prime ideals of 𝐻 such that {𝐼𝛼} 

forms a chain. Then ⋂ 𝐼𝛼 is a prime ideal of 𝐻.  

 

Definition 2.6 Let 𝐻 be a semigroup. The 

structure space (𝒜, 𝜏𝒜) of 𝐻 is called irreducible if 

for any decomposition 𝒜 = 𝒜1 ∪ 𝒜2, where 𝒜1 

and 𝒜2 are proper closed subsets of 𝐴 (whether 

disjoint or non-disjoint), we have either 𝒜 = 𝒜1 or 

𝒜 = 𝒜2.  

 

Theorem 2.7 Let 𝐻 be a semigroup and 𝐴 be a 

closed subset of 𝒜. Then 𝐴 is irreducible if and only 

if ∅ ≠ ⋂𝐼𝛼∈𝐴 𝐼𝛼 is a prime ideal of 𝐻.  

We denote by 𝒞 the collection of all uniformly 

strongly prime full prime ideals of a semigroup 𝐻. 

We find that 𝒞 is a subset of 𝒜 and hence (𝒞, 𝜏𝒞) is 

a structure space, where 𝜏𝒞 is the subspace topology. 

In general, (𝒜, 𝜏𝒜) is not compact and 

connected. But in particular, for the structure space 

(𝒞, 𝜏𝒞), we have the following theorem:  

 

Theorem 2.8 Let 𝐻 be a semigroup. (𝒞, 𝜏𝒞) is a 

compact space.  

 

Theorem 2.9 Let 𝐻 be a semigroup. (𝒞, 𝜏𝒞) is a 

connected space.  

 

 

3 On Structure Space of Maximal 

Ideals of Semigroup 
In this section, the structure space of all maximal 

ideals of a semigroup 𝐻 with identity 1 is 

considered and studied. 

A proper ideal 𝐼 of 𝐻 is maximal in 𝐻 if for any 

ideal 𝐽 of 𝐻 with 𝐼 ⊆ 𝐽 ⊆ 𝐻, then 𝐽 = 𝐻. 
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Example 3.1 Let 𝑝 be a prime number. Let 𝐻 =
𝑝ℤ. Then (𝐻,⋅) is a semigroup. Let 𝑀 = 𝑝2ℤ is a 

maximal ideal of 𝐻.  

  

Example 3.2 The set 𝑀 = {𝑚 ∈ ℕ|𝑚 ≥ 2} is a 

maximal ideal of the semigroup (ℕ, +).  

  

Example 3.3 [13], Let 𝐻 = {𝑎0, 𝑎1, 𝑎2, . . . , 𝑎5} 

be the set of all residue classes mod 6. Then (𝐻,⋅) is 

a commutative semigroup with identity, where 𝑎𝑖 ⋅
𝑎𝑘 = 𝑎𝑙 and 𝑙 = 𝑖𝑘(mod 6). We consider 𝑀 =
{𝑎0, 𝑎2, 𝑎3, 𝑎4}. Then 𝑀 is a unique maximal ideal 

of 𝐻.  

Let ℳ be the set of all maximal ideals in a 

semigroup 𝐻. We define two topologies on ℳ. For 

every 𝑥 ∈ 𝐻, we denote by Δ𝑥 the set of all maximal 

ideals that contain 𝑥, by Γ𝑥 the set ℳ − Δ𝑥, that is, 

the set of all maximal ideals not containing 𝑥. Let 𝐼 

be an ideal of 𝐻, we denote by Δ𝐼 the set of all 

maximal ideals containing 𝐼. 

We choose the family {Δ𝑥|𝑥 ∈ 𝐻} as a subbase 

for open sets of ℳ. We shall refer to the resulting 

topology on ℳ as Δ-topology (in symbol, ℳΔ). 

Similarly, we take the family {Γ𝑥|𝑥 ∈ 𝐻} as a 

subbase for open sets of ℳ (in symbol ℳΓ). 

Let 𝐼1 and 𝐼2 be two ideals of the semigroup 𝐻. 

We denote by 𝐼1 ∨ 𝐼2 the set of finite products of 

members of 𝐼1 ∪ 𝐼2. 

Let 𝑀1, 𝑀2 be two distinct elements of ℳΔ. Then 

we have 𝑀1 ∨ 𝑀2 = 𝐻. Therefore there are 𝑎, 𝑏 

such that 1 = 𝑎 ⋅ 𝑏 and 𝑎 ∈ 𝑀1, 𝑏 ∈ 𝑀2, so we have 

Δ𝑎 ∋ 𝑀1, Δ𝑏 ∋ 𝑀2 and Δ𝑎 ∩ Δ𝑏 = ∅. Hence, we 

have  

 

Theorem 3.4 The structure space ℳ𝛥 is a 𝑇2-

space.  

Let now 𝑀 be an element of ℳΓ, and 𝑀 ≠ 𝑀1 ∈
ℳΓ, then there is an element 𝑎 such that 𝑎 ∈ 𝑀1 and 

𝑎 ∉ 𝑀. Therefore, 𝑀1 ∉ Γ𝑎 and 𝑀1 ∉ ⋂𝑥∉𝑀 Γ𝑥. 

This implies 𝑀 = ⋂𝑥∉𝑀 Γ𝑥. Hence we obtain the 

following  

 

Theorem 3.5 The structure space ℳ𝛤 is a 𝑇1-

space.  

Let 𝐼 be an ideal of 𝐻 and {𝑎𝜆} a generator of 𝐼, 

then we have  

 Δ𝐼 = ⋂𝜆 Δ𝑎𝜆
.  

 Therefore, the closed sets for the structure space 

ℳΓ have the form Δ𝐼1
∪ Δ𝐼2

∪. . .∪ Δ𝐼𝑛
, where 𝐼𝑖 are 

ideals of 𝐻. 

Let 𝐼 = ⋂𝑛
𝑖=1 𝐼𝑖, if 𝑀 ∈ Δ𝐼𝑖

 for some 𝑖, then 𝑀 ⊃

𝐼𝑖 and 𝑀 ⊃ 𝐼. This implies Δ𝐼 ∋ 𝑀 and we have 

⋃𝑛
𝑖=1 Δ𝐼𝑖

⊂ Δ𝐼. Suppose that there is a maximal 

ideal 𝑀 such that 𝑀 ∈ Δ𝐼\ ⋃𝑛
𝑖=1 Δ𝐼𝑖

, then 𝑀 ∈ Δ𝐼 

and 𝑀 ∉ ⋃𝑛
𝑖=1 Δ𝐼𝑖

. Therefore, 𝑀 ⊃ 𝐼 and 𝑀 do not 

contain all 𝐼𝑖(𝑖 = 1,2, . . . , 𝑛). Therefore, since 𝑀 is a 

maximal ideal, there are elements 𝑎𝑖 ∈ 𝐼𝑖 and 𝑚𝑖 ∈
𝑀 such that  

 1 = 𝑎𝑖 ⋅ 𝑚𝑖(𝑖 = 1,2, . . . , 𝑛).  

 Thus, we have  

 1 = 𝑎1 ⋅ 𝑎2 ⋅. . .⋅ 𝑎𝑛 ⋅ 𝑚, 𝑚 ∈ 𝑀  

and 𝑎1 ⋅ 𝑎2 ⋅. . . .⋅ 𝑎𝑛 ∈ 𝐼. This implies 𝐼 ∨ 𝑀 = 𝐻. 

Hence, by 𝐼 ⊂ 𝑀, we have 𝑀 = 𝐻, which is a 

contradiction. This shows the following relation:  

 ⋃𝑛
𝑖=1 Δ𝐼𝑖

= Δ𝐼  

 and we have the following  

 

Theorem 3.6 The closed sets for ℳ𝛤 are 

expressed by sets 𝛥𝐼, where 𝐼 is an ideal of 𝐻.  

By Theorem 3.5, we prove the following 

theorem.  

 

Theorem 3.7 The space ℳ𝛤 is a compact 𝑇1-

space.  

 Proof. Let {Δ𝐼𝜆
} be a family of closed sets in 

ℳΓ with the finite intersection property, where 𝐼𝜆 

are ideals in 𝐻. Therefore, any finite family of 𝐼𝜆 

does not contain the semigroup 𝐻. Hence the ideal 𝐼 

generated by {𝐼𝜆} does not contain the identity 1 of 

𝐻. This shows that 𝐼 is contained in a maximal ideal 

𝑀. Hence 𝑀 ∈ ⋂𝜆 Δ𝐼𝜆
. Therefore, since ⋂𝜆 Δ𝐼𝜆

 is 

non-empty, ℳΓ is a compact space.                         
 

 

4  On Structure Space of Prime Ideals 

of Semigroup 
In this section, the structure space ℬ of all prime 

ideals of a semigroup 𝐻 with identity 1 is 

considered and the relation of ℬ and the structure 

space ℳ of all maximal ideals of 𝐻 is investigated. 

Throughout the section, we shall treat a 

commutative semigroup 𝐻 with identity 1. An ideal 

𝑃 of 𝐻 is prime if and only if 𝑎 ⋅ 𝑏 ⊆ 𝑃 implies 𝑎 ∈
𝑃 or 𝑏 ∈ 𝑃. Since 𝐻 has an identity 1, then any 

maximal ideal is prime, therefore ℬ ⊇ ℳ. We 

notice here that a maximal ideal in a commutative 

semigroup without identity may not be prime. 

 

Example 4.1 The ideal 𝑀 of Example 3.3 is a 

maximal ideal of 𝐻 and it is a prime ideal of 𝐻. 

The ideals 𝑀 of Examples 3.1 and 3.2 

respectively, are maximal ideals but not a prime 

ideal of 𝐻.  
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To introduce a topology 𝜏 in ℬ, we take 𝜏𝑥 =
{𝑃|𝑥 ∉ 𝑃, 𝑃 ∈ ℬ} for every 𝑥 ∈ 𝐻 as an open base 

of ℬ. We have the following.  

 

Theorem 4.2 Let 𝒰 be a subset of ℬ, then  

 𝒰 = {𝑃′ ∈ ℬ| ⋂𝑃∈𝒰 𝑃 ⊂ 𝑃′},  

where 𝒰 is the closure of 𝒰 by the topology 𝜏.  

 Proof. Let 𝑃′ ∈ {𝑃′ ∈ ℬ| ⋂𝑃∈𝒰 𝑃 ⊂ 𝑃′} and let 𝜏𝑥 

be a neighbourhood of 𝑃′, then 𝑥 ∉ 𝑃′, and we have 

𝑥 ∉ ⋂𝑃∈𝒰 𝑃. Therefore, there is a prime ideal 𝑃 ∈
𝒰 such that 𝑃 does not contain 𝑥 and 𝜏𝑥 ∋ 𝑃. This 

shows that 𝑃 ∈ 𝒰. Thus we have proved that the 𝒰 

contains {𝑃′ ∈ ℬ| ⋂𝑃∈𝒰 𝑃 ⊂ 𝑃′}. 

If a prime ideal 𝑃′ is not in {𝑃′ ∈ ℬ| ⋂𝑃∈𝒰 𝑃 ⊂
𝑃′}, then ⋂𝑃∈𝒰 𝑃 − 𝑃′ ≠ ∅. Hence, for 𝑥 ∈
⋂𝑃∈𝒰 𝑃 − 𝑃′, we have 𝑥 ∈ 𝑃, 𝑃 ∈ 𝒰 and 𝑥 ∉ 𝑃′. 
This shows 𝑃 ∉ 𝜏𝑥 , 𝑃 ∈ 𝒰 and 𝑃′ ∉ 𝜏𝑥. Therefore 

𝜏𝑥 ∩ 𝒰 = ∅ and hence 𝑃′ ∉ 𝒰. The proof is 

complete.                                                              

A similar argument for ℳ relative to the Γ-

topology implies the following.  

 

Proposition 4.3 Let 𝒰 be a subset of ℳ, then  

 𝒰 = {𝑀′ ∈ ℳ| ⋂𝑀∈𝒰 𝑀 ⊂ 𝑀′},  

where 𝒰 is the closure of 𝒰 by the topology Γ.  

In a similar way to the proof of the Theorem 2.1, 

we can prove the following  

 

Theorem 4.4 The closure operation 𝒰 → 𝒰 of ℬ 

satisfies the following relations:   

    1.  𝒰 ⊆ 𝒰.  

    2.  𝒰 = 𝒰.  

    3.  𝒰 ∪ ℬ = 𝒰 ∪ ℬ.  

Proof. We shall prove only the last relation (3). By 

Theorem 4.2, 𝒰 ⊂ ℬ implies 𝒰 ⊂ ℬ and hence 𝒰 ∪

ℬ ⊂ 𝒰 ∪ ℬ. Let 𝑃 ∉ 𝒰 ∪ ℬ, then 𝑃 ∉ 𝒰 and 𝑃 ∉ ℬ. 

Hence 𝑃 ⊃ ⋂𝑃′∈𝒰 𝑃′ = 𝑃𝒰 and 𝑃 ⊃ ⋂𝑃′∈ℬ 𝑃′ = 𝑃ℬ. 

The sets ℬ𝒰 and ℬℬ are ideals. If 𝑃𝒰 ⋅ 𝑃ℬ ⊂ 𝑃, for 

any elements 𝑎, 𝑏 such that 𝑎 ∈ 𝑃𝒰 − 𝑃, 𝑏 ∈ 𝑃ℬ − 𝑃, 

we have 𝑎 ⋅ 𝑏 ∈ 𝑃 and since 𝑃 is a prime ideal, 𝑎 ∈
𝑃 or 𝑏 ∈ 𝑃, which is a contradiction. Therefore, 

𝑃 ⊃ 𝑃𝒰 ⋅ 𝑃ℬ ⊇ 𝑃𝒰 ∩ 𝑃ℬ = 𝑃𝒰∪ℬ. Hence 𝑃 ∉ 𝒰 ∪ ℬ.                                         
 

  

Theorem 4.5 The structure space ℬ is a 𝑇0-

space.  

Proof. To prove that the structure space ℬ is a 𝑇0-

space, it is sufficient to verify the following 

conditions:   

    1.  𝒰 ⊆ 𝒰.  

    2.  𝒰 = 𝒰.  

    3.  𝒰 ∪ ℬ = 𝒰 ∪ ℬ  

    4.  𝑃1 = 𝑃2 implies 𝑃1 = 𝑃2.  

By the above theorem, it is sufficient to prove 

that (𝑃1) = (𝑃2) implies 𝑃1 = 𝑃2. By 𝑃2 ∈ (𝑃1), 

then 𝑃2 ⊃ 𝑃1. Similarly 𝑃1 ⊃ 𝑃2 and we have 𝑃1 =
𝑃2.                                                                   

  

Theorem 4.6 The structure space ℬ is a compact 

𝑇1-space.  

Proof. Let 𝒰𝜆 be a family of closed sets such that 

⋂𝜆 𝒰𝜆 = ∅, then we have ⋁ 𝑃𝒰𝜆
= 𝐻, where 𝑃𝒰𝜆

=

⋂𝑃∈𝒰𝜆
𝑃. Indeed: Let us suppose that ⋁ 𝑃𝒰𝜆

≠ 𝐻. 

Then there is a maximal ideal 𝑀 containing ⋁ 𝑃𝒰𝜆
. 

Therefore 𝑃𝒰𝜆
⊂ 𝑀 for every 𝜆. Hence 𝒰𝜆 ∋ 𝑀 for 

every 𝜆, and we have ⋂𝜆 𝒰𝜆 ∋ 𝑀, which is a 

contradiction. By ⋁ 𝑃𝒰𝜆
= 𝐻, we have 1 = 𝑎1 ⋅ 𝑎2 ⋅

. . .⋅ 𝑎𝑛, 𝑎𝑖 ∈ 𝑃𝒰𝜆𝑖
(𝑖 = 1,2, . . . , 𝑛). Hence ∨

𝑖=1

𝑛
𝑃𝒰𝜆𝑖

=

𝐻. If ⋂𝑛
𝑖=1 𝒰𝜆𝑖

≠ ∅, then for a prime ideal 𝑃 of 

⋂𝑛
𝑖=1 𝒰𝜆𝑖

, we have 𝑃 ⊃ 𝑃𝒰𝜆𝑖
(𝑖 = 1,2, . . . , 𝑛) and 

hence 𝑃 ⊃ ∨
𝑖=1

𝑛
𝑃𝒰𝜆𝑖

. Therefore we have ⋂𝑛
𝑖=1 𝒰𝜆𝑖

=

∅.                                                  

By the ℬ-radical 𝑟(ℬ) of the semigroup 𝐻, we 

mean the intersection of all prime ideals of 𝐻, that 

is, ⋂𝑃∈ℬ 𝑃. By the ℳ-radical 𝑟(ℳ) of 𝐻, we mean 

the intersection of all maximal ideals of 𝐻, that is, 

⋂𝑀∈ℳ 𝑀. 

From ℳ ⊆ ℬ, we have 𝑟(ℬ) ⊆ 𝑟(ℳ). In the 

following proposition we give a condition to be 

𝑟(ℬ) = 𝑟(ℳ).  

 

Theorem 4.7 The subset ℳ of ℬ is dense in ℬ, if 

and only if, 𝑟(ℬ) = 𝑟(ℳ).  

Proof. Let ℳ = ℬ for the topology 𝜏. Then we have  

 {𝑃| ⋂𝑀∈ℳ 𝑀 ⊂ 𝑃} = ℬ.  

 Hence  

 𝑟(ℳ) = ⋂𝑀∈ℳ 𝑀 ⊆ ⋂𝑃∈ℬ 𝑃 = 𝑟(ℬ).  

 Since 𝑟(ℬ) ⊆ 𝑟(ℳ), therefore we have 𝑟(ℬ) =
𝑟(ℳ). 

On the contrary, if 𝑃 ∈ ℬ − ℳ, then 𝑃 ∈ ℬ and 

𝑃 ∈ ℳ. Therefore, there is a neighborhood 𝜏𝑥 of 𝑃 

such that 𝜏𝑥 ∩ ℳ = ∅. Hence 𝑟(ℬ) = ⋂𝑃∈ℬ 𝑃 is a 

proper subset of ⋂𝑀∈ℳ 𝑀. Therefore, 𝑟(ℬ) ≠
𝑟(ℳ), which completes the proof.                          

 

Definition 4.8 If 𝑟(ℳ) is the zero ideal (0), then 

𝐴 is said to be ℳ − 𝑠𝑒𝑚𝑖𝑠𝑖𝑚𝑝𝑙𝑒.  

 

From the Theorem 4.7, we have the following  

 

Theorem 4.9 If 𝐻 is ℳ-semisimple, ℳ is dense 

in ℬ.  
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5 On Structure Space of Strongly 

Irreducible Ideals of Semigroup 
In this section, the structure space 𝒮 of all strongly 

irreducible ideals of a commutative semihypergoup 

𝐻 with identity 1 is investigated. 

An ideal 𝐼 of a semigroup 𝐻 is called irreducible, 

if and only if 𝐴 ∩ 𝐵 = 𝐼 for two ideals 𝐴, 𝐵 implies 

𝐴 = 𝐼 or 𝐵 = 𝐼. An ideal 𝐼 of a semigroup 𝐻 is 

called strongly irreducible, if and only if 𝐴 ∩ 𝐵 ⊂ 𝐼 

for every two ideals 𝐴, 𝐵 implies 𝐴 ⊂ 𝐼 or 𝐵 ⊂ 𝐼. 

From 𝐴 ⋅ 𝐵 ⊂ 𝐴 ∩ 𝐵 for any two ideals 𝐴, 𝐵, it 

follows that any prime ideals are strongly 

irreducible and any strongly irreducible ideals are 

irreducible. 

Let 𝒮 be the set of all strongly irreducible ideals 

of 𝐻. From the above, it is clear that ℳ ⊂ ℬ ⊂ 𝒮. 

To give a topology 𝜎 on 𝒮, we shall take 𝜎𝑥 = {𝑆 ∈
𝒮|𝑥 ∉ 𝑆} for every 𝑥 ∈ 𝐻 as an open base of 𝒮.  

 

Theorem 5.1 Let 𝒰 be a subset of 𝒮, then we 

have  

 𝒰 = {𝑆′ ∈ 𝒮| ⋂𝑆∈𝒰 𝑆 ⊂ 𝑆′}  

where 𝒰 is the closure of 𝒰 by 𝜎.  

Proof. Let ℱ = {𝑆′ ∈ 𝒮| ⋂𝑆∈𝒰 𝑆 ⊂ 𝑆′} and let 𝑆′ ∈
ℱ. Let 𝜎𝑥 be an open base of 𝑆′, then, by the 

definition of the topology 𝜎, 𝑥 ∉ 𝑆′. Hence, we have 

𝑥 ∉ ⋂𝑆∈𝒰 𝑆. It follows from this that there is a 

strongly irreducible ideal 𝑆 of 𝒰 such that 𝑥 is not 

contained in 𝑆. Hence 𝜎𝑥 ∋ 𝑆. Therefore 𝑆′ ∈ 𝒰 and 

ℱ ⊂ 𝒰. 

To prove that ℱ ⊃ 𝒰, take a strongly irreducible 

ideal 𝑆′ such that 𝑆′ ∉ ℱ. Then ⋂𝑆∈𝒰 𝑆 − 𝑆′ ≠ ∅. 

For an element 𝑥 ∈ ⋂𝑆∈𝒰 𝑆 − 𝑆′, we have 𝑥 ∈
𝑆(𝑆 ∈ 𝒰) and 𝑥 ∈ 𝑆′. Hence 𝑆′ ∈ 𝜎𝑥 and 𝑆 ∉ 𝜎𝑥 for 

all 𝑆 of 𝒰. Therefore, 𝒰 ∩ 𝜎𝑥 = ∅ and then we have 

𝑆′ ∉ 𝒰. Hence ℱ ⊃ 𝒰. The proof of the theorem is 

complete.                                                             

 

We shall prove that the structure space 𝒮 for the 

topology 𝜎 is a compact 𝑇0-space. To prove that 𝒮 is 

a 𝑇0-space, it is sufficient to verify the following 

conditions:   

    1.  𝒰 ⊆ 𝒰.  

    2.  𝒰 = 𝒰.  

    3.  𝒰 ∪ ℬ = 𝒰 ∪ ℬ  

    4.  𝑆1 = 𝑆2 implies 𝑆1 = 𝑆2.  

Conditions (1) and (2) are clear and 𝒰 ∪ ℬ implies 

𝒰 ⊂ ℬ. From this relation we have 𝒰 ∪ ℬ ⊂ 𝒰 ∪ ℬ. 

For some element of 𝑆 of 𝒰 ∪ ℬ, suppose that 𝑆 ∉

𝒰 and 𝑆 ∉ ℬ. From Theorem 5.1, we have  

 𝑆 ⊃ ⋂𝑆′∈𝒰 𝑆′ = 𝑆𝒰 and 𝑆 ⊃ ⋂𝑆′∈ℬ 𝑆′ = 𝑆ℬ.  

 𝑆𝒰 and 𝑆ℬ are ideals. If 𝑆𝒰 ∩ 𝑆ℬ ⊂ 𝑆, by the 

definition of 𝑆, 𝑆𝒰 ⊂ 𝑆 or 𝑆ℬ ⊂ 𝑆. Hence 𝑆 ⊃ 𝑆𝒰 ∩

𝑆ℬ = 𝑆𝒰∪ℬ. This shows 𝑆 ∉ 𝒰 ∪ ℬ. 

To prove that 𝑆1 = 𝑆2 implies 𝑆1 = 𝑆2, we shall 

use condition (1). Then 𝑆1 ∋ 𝑆2 and by the 

definition of closure operation, we have 𝑆1 ⊂ 𝑆2. 

Similarly, we have 𝑆1 ⊃ 𝑆2 and 𝑆1 = 𝑆2. Therefore, 

we complete the proof that 𝒮 is a 𝑇0-space. 

We shall prove that 𝒮 is a compact space. Let 𝒰𝜆 

be a family of closed sets with empty intersection. 

Let 𝑆𝒰𝜆
= ⋂𝑆∈𝒰𝜆

𝑆, suppose that ∨
𝜆

𝑆𝒰𝜆
≠ 𝑆, then 

there is a maximal ideal 𝑀 containing the ideal 

∨
𝜆

𝑆𝒰𝜆
. Therefore, we have 𝑆𝒰𝜆

⊂ 𝑀 for every 𝜆. By 

the definition of 𝑆𝒰𝜆
, 𝒰𝜆 ∋ 𝑀 for every 𝜆. Hence 

⋂ 𝒰𝜆𝜆 ∋ 𝑀, which contradicts our hypothesis of 𝒰𝜆. 

Therefore, ∨
𝜆

𝑆𝒰𝜆
= 𝐻. Therefore, we have 1 = 𝑎1 ⋅

𝑎2 ⋅. . .⋅ 𝑎𝑛(𝑎𝑖 ∈ 𝑆𝒰𝜆𝑖
(𝑖 = 1,2, . . . , 𝑛)). Therefore, we 

have 𝐻 = 𝑆𝒰𝜆1
∨ 𝑆𝒰𝜆2

∨. . .∨ 𝑆𝒰𝜆𝑛
. If ⋂𝑛

𝑖=1 𝒰𝜆𝑖
≠ ∅, 

for all strongly irreducible ideals 𝑆 of ⋂𝑛
𝑖=1 𝒰𝜆𝑖

, 𝑆 ⊃

𝑆𝒰𝜆𝑖
(𝑖 = 1,2, . . . , 𝑛) and 𝑆 ⊃ ∨

𝑖=1

𝑛
𝑆𝒰𝜆𝑖

. If ⋂𝑛
𝑖=1 𝒰𝜆𝑖

=

𝐻, we can easily prove that 𝒮 is a compact space. If 

⋂𝑛
𝑖=1 𝒰𝜆𝑖

 contains a proper strongly irreducible 

ideal 𝑆, we have 𝑆 ⊃ ∨
𝑖=1

𝑛
𝑆𝒰𝜆𝑖

, which is a 

contradiction to 𝐻 = ∨
𝑖=1

𝑛
𝑆𝒰𝜆𝑖

. Therefore 

⋂𝑛
𝑖=1 𝒰𝒰𝜆𝑖

= ∅. Hence 𝒮 is a compact space. Thus, 

we have proved the following.  

 

Theorem 5.2 The structure space (𝒮, 𝜎) is 

compact 𝑇0-space.  

 

By 𝒮 − 𝑟𝑎𝑑𝑖𝑐𝑎𝑙 𝑟(𝒮) of a semigroup, we mean 

the intersection of all strongly irreducible ideals of 

it, that is, ⋂𝑆∈𝒮 𝑆. From ℳ ⊂ ℬ ⊂ 𝒮, we have 

𝑟(ℳ) ⊃ 𝑟(ℬ) ⊃ 𝑟(𝒮).  

 

Theorem 5.3 The subset ℬ of 𝒮 is dense in 𝒮, if 

and only if 𝑟(ℬ) = 𝑟(𝒮).  

Proof. Let ℬ = 𝒮 for the topology 𝜎, then we have  

 {𝑆| ⋂𝑃∈ℬ 𝑃 ⊂ 𝑆} = 𝒮.  

 Hence, we have  

 𝑟(ℬ) = ⋂𝑃∈ℬ 𝑃 ⊂ ⋂𝑆∈𝒮 𝑆 = 𝑟(𝒮).  

 On the other hand, 𝑟(ℬ) ⊃ 𝑟(𝒮). This shows 

𝑟(𝒮) = 𝑟(ℬ). 

Conversely, suppose that 𝒮 − ℬ ≠, then there is 

a strongly irreducible ideal 𝑆 such that 𝑆 ∉ ℬ and 

𝑆 ∈ 𝒮. Therefore, there is a neighborhood 𝜎𝑥 of 𝑆 
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that does not meet ℬ. Therefore, 𝑟(𝒮) = ⋂𝑆∈𝒮 𝑆 is a 

proper subset of ⋂𝑃∈ℬ 𝑃, and we have 𝑟(𝒮) ≠
𝑟(ℬ).                                                                         

  

Corollary 5.4 The subset ℳ of 𝒮 is dense in 𝒮, 

if and only if 𝑟(ℳ) = 𝑟(𝒮).  

  

Corollary 5.5 Let 𝐻 be a semigroup with 0. If 𝐻 

is ℳ-semisimple, then ℳ and ℬ are dense in 𝒮.  

 

 

6 Conclusions 
In this paper, we investigated three other classes of 

ideals in semigroups called maximal ideals, prime 

ideals and strongly irreducible ideals, respectively. 

Properties of the collection ℳ, ℬ and 𝒮 of all 

proper maximal ideals, prime ideals and strongly 

irreducible ideals respectively of a semigroup 𝑆 

were investigated. We constructed the respective 

topologies on them using a closure operator defined 

in terms of intersection and inclusion relation 

among these ideals of the semigroup 𝑆. Some 

principal topological axioms and properties in those 

structure spaces of semigroup were investigated. 

In future work, one can develop and extend the 

study of these structure spaces in Γ-semigroups or 

further in semihypergroups, Γ-semihypergroups and 

other kinds of hyperstructures. 
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