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Abstract: - This article is devoted to solving the problems of applying Monte-Carlo algorithms to filtration 
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1 Introduction 
Numerical implementation of mathematical models 
challenges the construction of effective algorithms 
for the solution of engineering problems related to 
filtration of liquids. To date, such challenges are 
approached by state-of-the-art computational 
methods based on the Monte Carlo algorithm. The 
algorithms of the Monte-Carlo methods well 
implement, firstly, multidimensional problems, and 
secondly, with the help of the algorithms of the 
Monte-Carlo methods, it is possible to find a 
solution at a single point in a complex area, which is 
a very relevant problem in underground hydraulic 
mechanics (for example, determining the point of 
greatest pressure in the area).  In this paper, solutions 
and derivatives of solutions to the above two-phase 
filtration problems are evaluated by Monte- Carlo 
methods. Estimates constructed using the "random walk 
by spheres" and "random walk by boundary" algorithms 
of Monte-Carlo methods will be mostly 𝜀 −biased. 
Unbiased estimates in most cases are unrealizable on a 
computer, since with a probability of 1 they do not go to 
the boundary of the region, and therefore are of little 
use. In practice, they are usually limited to only the first 
two points of evaluation [1-5]. 

We consider the mathematical model of filtration 
process of two immiscible liquids (water and oil) 
through the porous medium.

2 Formulation of the Problem in 
Saturations and Pressure (s, p) 
From the equation of continuity follows that 
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Here  )(00 skKK ii

 symmetric tensor of 
phase permeability, )(0 xK  filtration tensor for 
homogeneous liquid. In the same way, using 
(2), we have 
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we receive 
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In the equation of continuity (1), substituting for 
the first phase of expression (4), we come to the 
system relative to {s, p}: 
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For the initial boundary value problem (6)-(7), 
we consider the filtration flow in the fixed finite 
area Ω with piecewise-smooth border ∂Ω [6-7]. 
Let  nTSTQ ii

],,0[],,0[ external 
normal to ∂Ω. We determine boundary data in 
relation to functions s, p.  The impermeability 
conditions on ∂Ω0 for both phases are as follows 
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The boundary conditions are respectively 
rearranged to the form
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At R(x,t)=0 equality (10) and (11) are 
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condition is set only for saturation s(x,t): 
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follows that this assumption is right: 
1) as k=const for miscible liquid. For 

immiscible liquids the significant deviation k from 
a constant is observed only near limit values s=0,1 

given saturation; 
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3) if gravity is not considered, i.e. g=0 or liquids 
have identical density .21   The assumptions 2) 
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3 Formulation of the Stationary 

Problem 
Stationary boundary value problem for (s(x),p(x)) 
will be as follows: 
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if the medium is homogeneous and isotropic. 

 
Therefore, we obtain the problem:
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(23) - (25) is Dirichlet problem for Poisson 
equation [8-11]. Further we consider the case, 
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Solution, the first and second derivatives from 

solutions of this problem, in other words 
)( and )(),( xpxpxp   are estimated by the 

Monte-Carlo method. 
 

 
4 Evaluation of the Solution and  
Derivatives of the Solution by Methods 
Monte Carlo 
We formulate algorithms of Monte-Carlo 
methods for evaluating the solution and 
derivatives of the solution of the problem (26) – 
(27). 

Using a special Fredholm integral equation 
of the 2nd kind with a degenerate kernel, the form 
of which is determined by the "ball" Green 
function of problem (26), (27) we construct an 
algorithm for solving the Dirichlet problem for the 
Poisson equation. It is known that this Green 
function will take the form 
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Then, for a ball of radius d0 centered at a 
point x0, the solution of the problem (26), (27) at a 
point x0can be represented as 
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where ).( 00 xdd   The first integral in (28) is the 
integral over the surface of the sphere. ),( 0xS  the 
second one is all over the sphere .00 dxr   

Relation (28) can be considered as a 
conjugate (according to the terminology accepted 
in the theory of Monte-Carlo methods) Fredholm 
integral equation of the 2nd kind with a 
generalized kernel representing a uniform 
probability distribution on the sphere );( 0xS after 
the introduction of this kernel, the first integral in 
(28) becomes three-dimensional. Let's return to 
equation (28). It is not difficult to understand that 
the standard Monte-Carlo algorithms apply to 
such integral equations if the kernel features are 
included in the transition density of the modeled 
Markov chain. In this case, from this point 0x  we 
should move to the surface of the sphere. 

);( 0xS we call such a chain "random walk by 
spheres". The relation (28) must be supplemented 
with the following equality: 

(29)                    ,   );()( 00  xxpxp  
which means that the kernel of the integral  
equation vanishes if the first argument .x  
Thus, after reaching the border, the chain should 
be cut off, adding the value to the estimate 

)(0 xp  with the appropriate weight. 
These considerations lead to an unbiased 

probabilistic evaluation of the solution at the 
point. ,0x  which is unrealizable, since with 
probability 1, "random walk by spheres" do not 
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realizable estimate of the solution of problem 
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Monte-Carlo methods for equation (30). Equation 
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where L is the number of trajectories outgoing 
from the point .0x   

The theorem. Variance of a random variable 
 uniformly bounded by ε, therefore, 

. constD    
As proof, due to the limited initial pressure 

and initial saturation, i.e. due to the limited 
function )( and  )( 00 xsxp it is enough to assume 
that .0)(0 xp  We obtain (it is sufficient to 
consider the case of the Dirichlet problem for the 
Poisson equation, i.e. in the Helmholtz equation 
we use с=0). 
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Because of ,in  1
00 


ccnQ   it is enough 

to consider the case c=0, in which .1nQ  In this 
case, the algorithm under study is a direct  
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modeling for the integral equation (30) [9]. 
The corresponding variance is expressed by 

the following Ermakov - Zolotukhin formula 
[10]: 

 

  (34)                     ,]2[, *    ffD  
 

where f  density of the centers of spheres, and 
*

f  solution of the problem for a given 

value .  It can be shown that .)( 1
d

c
df   (see, for 

example, §3.4, [11]). At the same time  
,)(, 2

32
* dcdcf  

by virtue of the 
determination φ(x), i.e.(31). 
From here we obtain the statement of the theorem 
by integrating the variance (34) along a fairly 
narrow "border layer". 

Now we estimate the derivative with respect 
to the ),3,2,1( ixi

 solution of problem (26) - 
(27) at that point 0x . For this purpose, using 

,,0 xx  we denote a point  3
0

2
0

1
0 ,, xxxx   by 

(temporarily, the upper index will correspond to 
the number of the independent variable, and the 
lower one - to a fixed point). Then the solution to 
problem (26), (27) at the point 

xx ,0  for a sphere of 
radius )( 0xd has the form 
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The spherical Green's function ),( 0drGx
 and 

its normal derivative ),( xw   are expressed by 
the formulas: 
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where ω – the unit vector of the direction from 
 ),( and ,  to 10 xaaxx   the cosine of the angle 

between ω and the axis pxx,  is the magnitude 

 

of the projection of the vector 0xr   onto the 
axis .)(, 00 dxdxx   We differentiate relation 
(35) with respect to x, taking into account the 
expressions for the definition 

),( and ),( 0 xwdrGx  , by setting x=0, we obtain: 
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Here ),( 


ii xll   is the cosine of the angles 
between 


 and coordinate axes Mixi ,3,2,1,   

is the expectation operator. The first integrals in 
expressions (36) can be estimated by the Monte-
Carlo method from one random "node" with 
density 
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To evaluate all three derivatives by 

ix  it is 
advisable to use density 
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where   ., 02
1

32100 xrxxxdxr 


 
In this case, the quality of the algorithm is 

estimated by the sum of the variance of the 
estimates of the corresponding integrals. 

Integrals standing under the sign of 
mathematical expectation in (36) can also be  
evaluated by one random "node" distributed with 
density 
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d.xr
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In work [8] algorithms for modeling random 
variables with given distribution laws, namely 
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with densities, are given: 
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Random variables with such densities are 
encountered when evaluating the solution p(x) 
and derivatives of the solution ).3,2,1(,)(





i

x

xp

i

 

Dirichlet problems for the Poisson equation. 
First, let's consider the algorithm for 

constructing a random variable with density 

.0,)/1(6)( 3 dx
d

dxx
xg 


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Replacement  

d

x
y   leads to 

 

(40)                10),1(6)(  yyyyf   
 

This expression corresponds to the distribution 
of the second ordinal statistic of three sample 
values of a random variable evenly distributed in 
the interval (0, 1). And the guiding cosines 

),3,2,1(, ili
i.e. the cosines of the angles 

between the unit vector ),( 


and coordinate 
axes 321 ,, xxx  are modeled using the algorithm: 
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otherwise, paragraph 2 is done. Here 
 3,2,1for   (0,1) ii  sample values of a 

random variable α, evenly distributed in (0,1). 
Now let's consider the algorithm for modeling a 
random variable η, distributed with density 
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Moving on to the polar coordinate system 
with the center x


and, making a replacement 

,
d

xr
y




  we find the density 
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)1(4)(
3




 y
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yfn  Hence, the modeling 

formula is obtained 
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Note that formula (36) makes it possible to 
evaluate and .(x)p  
 

 

5 Assessment of ).(xV


  

Using the estimates )3,2,1(, 



i

x

(x)p
(x)p
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


 from 

formula (36), we find .(x)p  Further, formula 
(22) for a homogeneous isotropic medium gives 
us 
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To determine the saturation s(x), we consider 
equations (15) - (17).  

 
Let us denote by the vector W


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from (14) and  ,01 KkK   we assumed that 
   constk   and  .20 constCK   Then 

.4 constCb   We also assumed that ),( sxf
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does not depend on s, i.e. ).(),( xfsxf
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  If the 

condition is satisfied 2) with respect to the 
filtration tensor for a homogeneous liquid 
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From here and from (4) it follows 
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Therefore, under some of the above 
assumptions, we obtain the estimate 
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Now, substituting (44) into (15) and taking into 
account ,20 constCK    we obtain 


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6 Conclusion 
In this paper, the issues of applying Monte-Carlo 
algorithms to filtration problems are 
investigated. We were able to apply the 
algorithms of "random walk by spheres" and 
"random walk by boundary" Monte-Carlo 
methods to solve the stationary problem of 
filtration of two immiscible inhomogeneous 
incompressible liquids in a porous medium. We 
have constructed a 𝜀 −biased estimate of the 
solution and derivatives of the solution (the first 
derivative of saturation, the first and second 
derivatives of pressure) of the stationary problem 
of two-phase filtration of incompressible 
immiscible liquids in a porous medium. Using 
the same Monte-Carlo algorithms, it is possible 
to solve the  filtration problem taking into 
account temperature (i.e. the energy equation is 
added to the filtration equations). The scientific 
novelty of the research consists in the fact that, 
theoretically and practically, the method of 
statistical testing (Monte-Carlo) for solving 
boundary value problems of stationary and non-
stationary filtration in areas of arbitrary 
configuration, which has positive possibilities of 
implementation on modern computers, is being 
developed. 
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