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Abstract: - This article. in the introduction, gives a brief historic description on surfaces of finite Chen-type and 

of coordinate finite Chen-type according to the first, second and third fundamental form of a surface in the 

Euclidean space E3. Then, an important class of surfaces was introduced, namely, the ruled surfaces were 

classified according to its coordinate finite Chen type with respect to the second fundamental form.  
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1 Introduction 
Euclidean immersions of finite type were defined by 

B.-Y. Chen about forty years ago and since then 

research concerning this topic has become active by 

many differential geometers. Many results on this 

subject have been collected in the book [7]. Let Mn 

be an n-dimensional submanifold of an arbitrary 

dimensional Euclidean space Em. Denote by I the 

Beltrami- Laplace operator on Mn with respect to the 

first fundamental form I of Mn. A submanifold Mn is 

said to be of finite type with respect to the first 

fundamental form I, if the vector field x of Mn can 

be written as a finite sum of nonconstant ei-

genvectors of the Laplacian ΔI, that is, 

x = c+


k

i

i

1

x ,                             (1) 

 

where ΔIxi = λixi, i = 1,, k, c is a constant vector 

and λ1, λ2, …, λk are eigenvalues of ΔI. Moreover, if 

there are exactly k nonconstant eigenvectors x1, …, 

xk appearing in (1) which all belong to different 

eigenvalues λ1, …, λk, then Mn is said to be of I-type 

k. However, if λi = 0 for some i = 1, , k, then Mn is 

said to be of null I-type k , otherwise Mn is said to be 

of infinite type. 

The class of finite type submanifolds in an arbitrary 

dimensional Euclidean space is very large, 

meanwhile results about surfaces of finite type in 

the Euclidean 3-space with respect to the first 

fundamental form is very little known. Actually, so 

far, minimal surfaces, the circular cylinders, and the 

spheres are the only known surfaces of finite type in 

the Euclidean 3-space. So in [8] B.-Y. Chen 

mentions the following problem 

 

Problem1. Determine all surfaces of finite type in 

E3. 

Important families of surfaces were studied by 

different authors by proving that finite type ruled 

surfaces, [10], finite type quadrics, [9], finite type 

tubes [6], finite type cyclides of Dupin, [11], [12], 

finite type cones, [13], and finite type spiral surfaces 

[5] are surfaces of the only known examples in E3. 

However, for surfaces of revolution, translation 

surfaces as well as helicoidal surfaces, the 

classification of its finite type surfaces is not known 

yet. 

In this area, S. Stamatakis and H. Al-Zoubi studied 

the notion of surfaces of finite type with respect to 

the second or third fundamental forms. Based on 

this view, we raise the following questions: 

 

Problem 2. Classify all surfaces of finite II-type in 

E3. 

 

Problem 3. Classify all surfaces of finite III-type in 

E3. 

According to problem 2, ruled surfaces [1] and 

tubes are the only families that were studied 

according to their finite type classification. 

However, for all other classical families of surfaces, 

the classification of its finite type surfaces is not 

known yet. 

This type of study can be also extended to any 

smooth map, not necessary for the position vector of 

the surface, for example, the Gauss map of a 

surface. Here again, we give the following other two 

problems  

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.87

Hassan Al-Zoubi, Hamza Alzaareer, 
Amjed Zraiqat, Tareq Hamadneh, 

Waseem Al-Mashaleh

E-ISSN: 2224-2880 765 Volume 21, 2022



Problem 4. Classify all surfaces of finite II-type 

Gauss map in E3. 

 

Problem 5. Classify all surfaces of finite III-type 

Gauss map in E3. 

On one hand, an interesting theme within this 

context is to study surfaces in E3 for which the 

position vector x satisfies the condition ΔJx = Ax, J 

= I, II, and A is a square matrix of order 3. Surfaces 

satisfying this condition are said of coordinate finite 

type. So we are led to the following problems 

 

Problem 6. Classify all surfaces of coordinate finite 

II-type in E3. 

 

Problem 7. Classify all surfaces of coordinate finite 

III-type in E3. 

On the other hand, the last two problems mentioned 

above can be applied for the Gauss map of a 

surface, that is  

 

Problem 8. Classify all surfaces of coordinate finite 

II-type Gauss map in E3. 

 

Problem 9. Classify all surfaces of coordinate finite 

III-type Gauss map in E3. 

Here also some results concerning the last two 

problems can be found in [2] and [3].  

In [4] the authors classified surfaces of revolution in 

the Lorentz-Minkowski space, while in [15] 

translation surfaces in Sol3 were studied. 

 

 

2  Fundamentals 
Let x = x(u1, u2) be a parametric representation of a 

surface S in the Euclidean space E3 with non 

vanishing Gauss curvature. Let I = gijduiduj, II = 

bijduiduj and III = eijduiduj be the thee well-known 

fundamental forms of S. For sufficient differentiable 

functions f(u1, u2) and g(u1, u2) on S, the first 

differential parameter of Beltrami with respect to 

the fundamental form J = I, II, III is defined by  

 

J(f,g): = aij f/i g/j,                           (2) 

 

where f/i: = 
iu

f



  and (aij) denotes the inverse tensor 

of (gij), (bij) and (eij) for J = I, II and III respectively.  

The second differential parameter of Beltrami with 

respect to the fundamental form J = I, II, III of M is 

defined by 

ΔJf: = –aij J

i f/j,                         (3) 

 

where f is a sufficiently differentiable function, J

i
 

is the covariant derivative in the ui direction with 

respect to the fundamental form J and (αij) stands, as 

in definition (2), for the inverse tensor of (gij), (bij) 

and (eij) for J = I, II and III respectively. Applying 

(3) for the position vector x of S we have 

IIx = –
1

2K
 gradIIIK – 2n.                   (4) 

 

From (4) we obtain the following result: 

 

Theorem 1 A surface S in E3 is of II-type 1 if and 

only if S is part of a sphere. 

Interesting research also one can follow the idea in 

[14] by defining the first and second Laplace 

operator using the definition of the fractional vector 

operators. 

Up to now, the only known surfaces of finite II-type 

in E3 are parts of spheres. In this paper we will pay 

attention to surfaces of finite II-type. Firstly, we will 

establish a formula for IIx. Further, we continue 

our study by proving coordinate finite type ruled 

surfaces in the Euclidean 3-space, that is, their 

position vector x satisfies:  

 

ΔIIx = x                                      (5)  

 

 

3  Main Result 
In the three-dimensional Euclidean space E3 let S be 

a ruled Cr-surface, r ≥ 3, of nonvanishing Gaussian 

curvature defined by an injective Cr-immersion x = 

x(s, t) on a region U: = I  R (I  R open interval) 

of R2. The surface S can be expressed in terms of a 

directrix curve  : α = α (s) and a unit vector field β 

(s) pointing along the rulings as follows 

 

S: x(s,t) = α(s) + tβ(s), sJ, –  t      (6)           

 

Moreover, we can take the parameter s to be the arc 

length along the spherical curve β(s). Thus for the 

curves α, β we have  

 α', β  = 0,  β, β  = 1,  β', β'  = 1, 

where the differentiation with respect to s is denoted 

by a prime and  ,  denotes the standard scalar 

product in E3. It can be easily verified that the first 

and the second fundamental forms of S are given by

  

Ι = qds2 + dt2, 

II =
q

p ds2 + 
q

A2 dtds, 

where 
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  q =  α', α' + 2 α', β' t + t2, 

p = (α', β, α") + [(α', β, β") + (β', β, α")]t 

+ (β', β, β")t2, 

Α = (α', β, β'). 

 

If, for simplicity, we put  

 κ: =  α', α',  λ: =  α', β',  

μ: = (β', β, β"),  ν: = (α', β, β") + (β', β, α"), 

ρ: = (α', β, α"), 

 

then we obtain the following relations  

q = t2 + 2λt + κ,  p = μt2 + νt + ρ. 

 

Furthermore, the Gaussian curvature K of S is given 

by 

K = 
2

2

q

A
 . 

Since S does not contain parabolic points, therefore 

Α  0, sJ. 

The Beltrami operator with respect to the second 

fundamental form can be expressed as follows  

 

ΔII = 























tA

p

tA

p

tsA

q
t

2

22

2 ,              (7) 

 

where pt: =
t

p



 . 

Applying (7) for the position vector x we find  

    









 ββ

2

21

A

qp
'

A

q

q

tII
=x                              (8) 

Let (x1, x2, x3) be the component functions of x. 

Then it is well-known that 

 

ΔIIx = (ΔIIx1, Δ
IIx2, Δ

IIx3).                          (9) 

Let (α1, α2, α3) and (β1, β2, β3) be the coordinate 

functions of the vectors α, β respectively. From (8) 

we have 

 

ΔIIxi = 







 i

t

i β
A

qp
β

A

q

q
2

'
21 , i = 1, 2, 3 

Denote by λij the entries of the matrix , i, j = 1, 2, 

3, where all entries are real numbers. By using (6), 

and (8) condition (5) is found to be equivalent to the 

following system 

i

t

i β
A

pq
β

A

q
2

'
2

  = (λi1α1 + λi2α2 + λi3α3) 

+ (λi1β1 + λi2β2 + λi3β3)t,                                  (10) 

 i = 1, 2, 3. 

We put 

Χi: = λi1α1 + λi2α2 + λi3α3, i = 1, 2, 3, 

Yi: = λi1β1 + λi2β2 + λi3β3, i = 1, 2, 3. 

Then equations (10) reduce to 

i

t

i β
A

pq
β

A

q
2

'
2

 = Χi + tYi 

We raise the last ratio to the square and we get 

 

q(4
22

2t ti
i i i2 4 3

p pβ '
+ β 4 β 'β

A A A
 ) = Χi

2 + 2tΧiYi + t2Yi
2, 

i = 1, 2, 3. 

or 

4Α2(t2 + 2λt +κ)βi'2 + (t2 + 2λt +κ)(4μ2t2 + 

2μνt +ν2)βi
2 – 4Α(t2 + 2λt +κ)(2μt + ν)βiβi' = 

= Α4(Χi
2 + 2tΧiYi + t2Yi

2), 

i = 1, 2, 3, 

which can be written analytically as  

 

4μ2βi
2t4 + (2μνβi

2 + 8λμ2βi
2 – 8Αμβiβi')t3 

+ (4Α2βi'2 + ν2βi
2 + 4κμ2βi

2 + 4λμνβi
2 – 4Ανβiβi'  

– 16Αλμβiβi'– Α4Yi
2)t2 +  

(8Α2λβi'2 + 2λν2βi
2 + 2κμνβi

2 – 

 8Ακμβiβi'– 8λνAβiβi' – 2Α4ΧiYi )t  

     + 4A2κβi'2 + κν2βi
2 – 4Ακνβiβi' – Α4Χi

2 = 0,     (11) 

i = 1, 2, 3. 

 

It’s easily verified that (11) are polynomials in t 

with functions in s as coefficients for i = 1, 2, 3. 

This means that the coefficients of the powers of t in 

(11) must be zeros, and so we have the following 

equations 

 

4μ2βi
2 = 0,                                       (12)   

                                                                                       

2μνβi
2 + 8λμ2βi

2 – 8Αμβiβi' = 0,                     (13) 

                                                  

4Α2βi'2 + ν2βi
2 + 4κμ2βi

2 + 4λμνβi
2 – 4Ανβiβi' 

– 16Αλμβiβi' – Α4Yi
2= 0,                       (14) 

 

8Α2λβi'2 + 2λν2βi
2 + 2κμνβi

2 – 8Ακμβiβi' – 8λνAβiβi' 

– 2Α4ΧiYi = 0,                              (15) 

 

4A2κβi'2 + κν2βi
2 – 4Ακνβiβi' – Α4Χi

2 = 0,         (16)                                          

 i = 1, 2, 3. 

Since (12) holds true for each i = 1, 2, 3 we 

conclude 

μ = (β', β, β") = 0. 

This means that β', β, β"are linearly dependent 

vectors, so there exist two functions  

1 = 1(s) and 2 = 2(s) such that 

 

 β" = σ1β + σ2β'.                        (17) 

 

Differentiating the relation  β', β' = 1, we get 

 

  β', β" = 0.                            (18) 

 

From (17) and (18) we obtain 
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β" = σ1β. 

 

Hence ν = (β', β, α"). Relations (14), (15) and (16) 

become 

 

4Α2βi'2 + ν2βi
2– 4Ανβiβi'– Α4Yi

2= 0,                 (20)  

                                          

8Α2λβi'2 + 2λν2βi
2 – 8λνAβiβi' – 2Α4ΧiYi = 0,       (21)                         

4A2κβi'2 + κν2βi
2 – 4Ακνβiβi' – Α4Χi

2 = 0,   

i = 1, 2, 3. 

Multiplying (20) by 2λ, and from (21) one finds 

Xi = Yi, i = 1, 2, 3. 

Or in vector notation 

X = Y 

Which can be written α = β. Now we have the 

following two cases: 

Case I.  is the zero matrix. Then from (8) and 

taking into account pt = ν, it can be easily verified 

that 2Aβ' - νβ = 0, which is a contradiction since it 

yields that A = 0. 

Case II. α = β. Differentiating this equation with 

respect to s we find 

α' = 'β + β' 

Taking the inner product of both sides of the above 

equation with respect to β we find that  ' = 0, that 

is, is constant. Hence we will get α' = β' and this 

leads us to that A = 0 a case which has been 

excluded. Thus we have proved the following 

 

Theorem 2. There are no ruled surfaces in the 

Euclidean 3-space that satisfy the relation (5). 

 

 

4 Conclusion 
Firstly, we introduce the class of ruled surfaces 

in the Euclidean 3-space. Then, we define a 

formula for the Laplace operator regarding the 

second fundamental form II. Finally, we 

classify the ruled surfaces satisfying the relation 

ΔIIx = x, for a real square matrix  of order 3. 

We proved that there are no ruled surfaces in the 

Euclidean 3-space that satisfy the relation ΔIIx = x. 

An interesting research one can follow, if this 

type of study can be applied to other families of 

surfaces that have not been investigated yet 

such as quadric surfaces, tubular surfaces, or 

spiral surfaces. 
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