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Abstract: - In this paper, we consider the solution of nonlinear Volterra–Fredholm integro-differential equation, 

which contains the first derivative of the function. Our method transforms the nonlinear Volterra-Fredholm 

integro-differential equations into a system of nonlinear algebraic equations. The method based on the 

application of the local polynomial splines of the fifth order of approximation is proposed.  

Theorems about the errors of the approximation of a function and its first derivative by these splines are given. 

With the help of the proposed splines, the function and the derivative are replaced by the corresponding 

approximation. Note that at the beginning, in the middle and at the end of the interval of the definition of the 

integro-differential equation, the corresponding types of splines are used: the left, the right or the middle splines 

of the fifth order of approximation. When using the spline approximations, we also obtain the corresponding 

formulas for numerical differentiation. which we also apply for the solution of integro-differential equations.  

The formulas for approximation of the function and its derivative are presented. The results of the numerical 

solution of several integro-differential equations are presented. The proposed method is shown that it can be 

applied to solve integro-differential equations containing the second derivative of the solution. 
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1 Introduction 
As is known, one of the creators of the theory of 

integral and integro-differential equations is V. 

Volterra. His works are relevant to this day. The 

theory of integro-differential equations is most fully 

discussed in the works of Volterra himself [1]. 

Volterra first began to study integral equations in 

1884 (see [2]). This work is devoted to the 

distribution of electric charge on a spherical 

segment. Volterra showed that this problem leads 

(in modern terms) to the solution of an integral 

equation of the first kind with a symmetric kernel. 

Volterra's first work on integro-differential 

equations was a work on the theory of elasticity. As 

is known, integro-differential equations connect an 

unknown function and its (private) derivatives. 

Integro-differential equations arise in various 

branches of mathematical physics. For example, 

under certain conditions, the electric or magnetic 

polarization depends not only on the 

electromagnetic field at a given moment, but also on 

the history of the electromagnetic field of the 

substance at all previous moments (hysteresis)[3]. 

Methods of solving of integral equations is 

considered in books [4], [5]. 

As noted in paper [6 ], “integral equations have been 

one of the principal tools in various areas of applied 

mathematics, physics and engineering. Scientists 

have investigated the topic of integro-differential 

equations through their work in many scientific 

applications such as heat transfer, the diffusion 

process in general, and neutron diffusion and 

biological species coexist together with increasing 

and decreasing rates of generating”. The nonlinear 

Volterra–Fredholm integro-differential equations 

arise in neurosciences. Paper [7] extends the results 

of the synaptically generated wave propagation 

through a network of connected excitatory neurons 

to a continuous model, defined by a Volterra-

Fredholm integro-differential equation, which 

includes memory effects of the past in the 

propagation. In paper [8], an effective direct method 

to determine the numerical solution of the specific 

nonlinear Volterra–Fredholm integro-differential 

equations is proposed. The method is based on new 

vector forms for the representation of triangular 

functions and its operational matrix. In paper [9], 

the new schemes are developed derived on the 

hybrid of the three-point half-sweep linear rational 

finite difference approaches with the half-sweep 

composite trapezoidal approach.In paper [10], the 
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numerical solution of periodic Fredholm–Volterra 

integro–differential equations of first-order is 

discussed in a reproducing kernel Hilbert space. A 

new O(n) time complexity numerical method for 

computing the solutions of Basset integro-

differential equations is presented in paper [11]. A 

new class of two-step collocation methods for the 

numerical solution of Volterra integro-differential 

equations is proposed in [12]. The approach, 

proposed in paper [13], is based on Galerkin 

formulation and Legendre polynomials. In paper 

[14], the Chebyshev pseudo-spectral method to 

solve the pattern nonlinear second order systems of 

Fredholm integro-differential equations is used. 

     Polynomial local splines of the fifth order of 

approximation have proven themselves well in 

solving interpolation problems, solving boundary 

value problems and solving Fredholm and Volterra 

integral equations [15]. In this paper, we will 

consider the solution of integro-differential 

equations from papers [6] and [9] using polynomial 

local splines of the fifth order of approximation. 

This method transforms the nonlinear Volterra-

Fredholm integro-differential equations into a 

system of nonlinear algebraic equations. 
 

    In this paper, we will consider the nonlenear 

integro-differential equations of the form 

𝑢′(𝑥) + 𝛼1 ∫ 𝐾1(𝑥, 𝑠)𝐹(𝑢(𝑠), 𝑢′(𝑠))𝑑𝑠  

𝑥

0

 

+𝛼2 ∫ 𝐾2(𝑥, 𝑠)𝐺(𝑢(𝑠), 𝑢′(𝑠))𝑑𝑠

1

0

 = 𝑓(𝑥), 

|𝛼1 | + |𝛼2 | ≠ 0, 𝑥 ∈ [0,1]. 

In section 2, we consider the properties of splines 

of the fifth order of approximation. In section 3, we 

consider the solution of integro-differential 

equations using splines of the fifth order of 

approximation 

 

 

2 Approximation with the Local 

Splines of the Fifth Order of 

Approximation 
The general theory of constructing local 

interpolation splines is considered in the monograph 

by prof. Yu.K. Dem’yanovich and I. G. Burova. Let 

𝑎, 𝑏 be real and 𝑛 be an integer. Let the values of 

the function 𝑢(𝑥) be known at the nodes of the grid 

{𝑡𝑖}: 𝑎 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 𝑏. Approximation 

with the local splines of the fifth order of 

approximation is built separately on each grid 

interval [𝑡𝑖, 𝑡𝑖+1]. 
Denote 𝑢𝑖 = 𝑢(𝑡𝑖). At the beginning of the interval 

[𝑎, 𝑏], we apply the approximation with the right 

splines: 

𝑈𝑅4
𝑖 (𝑥) = ∑ 𝑢𝑗𝑤𝑗(𝑥),

𝑖+4

𝑗=𝑖
 𝑥 ∊ [𝑡𝑖, 𝑡𝑖+1], 

where 𝑢𝑗, 𝑗 = 0, … , 𝑛, are the values of the function 

in nodes 𝑡𝑗 the basis splines 𝑤𝑖(𝑥) are the next: 

𝑤𝑖(𝑥)

=
(𝑥 − 𝑡𝑖+1)(𝑥 − 𝑡𝑖+2)(𝑥 − 𝑡𝑖+3)(𝑥 − 𝑡𝑖+4)

(𝑡𝑖 − 𝑡𝑖+1)(𝑡𝑖 − 𝑡𝑖+2)(𝑡𝑖 − 𝑡𝑖+3)(𝑡𝑖 − 𝑡𝑖+4)
, 

𝑤𝑖+1(𝑥)

=
(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+2)(𝑥 − 𝑡𝑖+3)(𝑥 − 𝑡𝑖+4)

(𝑡𝑖+1 − 𝑡𝑖)(𝑡𝑖+1 − 𝑡𝑖+2)(𝑡𝑖+1 − 𝑡𝑖+3)(𝑡𝑖+1 − 𝑡𝑖+4)
, 

𝑤𝑖+2(𝑥)

=
(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)(𝑥 − 𝑡𝑖+3)(𝑥 − 𝑡𝑖+4)

(𝑡𝑖+2 − 𝑡𝑖)(𝑡𝑖+2 − 𝑡𝑖+1)(𝑡𝑖+2 − 𝑡𝑖+3)(𝑡𝑖+2 − 𝑡𝑖+4)
, 

𝑤𝑖+3(𝑥)

=
(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)(𝑥 − 𝑡𝑖+2)(𝑥 − 𝑡𝑖+4)

(𝑡𝑖+3 − 𝑡𝑖)(𝑡𝑖+3 − 𝑡𝑖+1)(𝑡𝑖+3 − 𝑡𝑖+2)(𝑡𝑖+3 − 𝑡𝑖+4)
, 

𝑤𝑖+4(𝑥)

=
(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)(𝑥 − 𝑡𝑖+2)(𝑥 − 𝑡𝑖+3)

(𝑡𝑖+4 − 𝑡𝑖)(𝑡𝑖+4 − 𝑡𝑖+1)(𝑡𝑖+4 − 𝑡𝑖+2)(𝑡𝑖+4 − 𝑡𝑖+3)
. 

In the middle of the interval [𝑎, 𝑏], we apply the 

approximation with the middle splines:  

𝑈𝑆4
𝑖 (𝑥) = ∑ 𝑢𝑗𝑤𝑗

𝑠(𝑥),𝑖+2
𝑗=𝑖−2  𝑥 ∊ [𝑡𝑖, 𝑡𝑖+1], 

where 

𝑤𝑖−2
𝑠 (𝑥)

=
(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)(𝑥 − 𝑡𝑖+2)

(𝑡𝑖−2 − 𝑡𝑖−1)(𝑡𝑖−2 − 𝑡𝑖)(𝑡𝑖−2 − 𝑡𝑖+1)(𝑡𝑖−2 − 𝑡𝑖+2)
, 

𝑤𝑖−1
𝑠 (𝑥)

=
(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)(𝑥 − 𝑡𝑖+2)

(𝑡𝑖−1 − 𝑡𝑖−2)(𝑡𝑖−1 − 𝑡𝑖)(𝑡𝑖−1 − 𝑡𝑖+1)(𝑡𝑖−1 − 𝑡𝑖+2)
, 

𝑤𝑖
𝑠(𝑥)

=
(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖+1)(𝑥 − 𝑡𝑖+2)

(𝑡𝑖 − 𝑡𝑖−2)(𝑡𝑖 − 𝑡𝑖−1)(𝑡𝑖 − 𝑡𝑖+1)(𝑡𝑖 − 𝑡𝑖+2)
, 
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𝑤𝑖+1
𝑠 (𝑥)

=
(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+2)

(𝑡𝑖+1 − 𝑡𝑖−2)(𝑡𝑖+1 − 𝑡𝑖−1)(𝑡𝑖+1 − 𝑡𝑖)(𝑡𝑖 − 𝑡𝑖+2)
, 

𝑤𝑖+2
𝑠 (𝑥)

=
(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)

(𝑡𝑖+2 − 𝑡𝑖−2)(𝑡𝑖+2 − 𝑡𝑖−1)(𝑡𝑖+2 − 𝑡𝑖)(𝑡𝑖+2 − 𝑡𝑖+1)
 . 

At the end of the interval [𝑎, 𝑏], we apply the 

approximation with the right splines: 

𝑈𝐿4
𝑖 (𝑥) = ∑ 𝑢𝑗𝑤𝑗(𝑡),

𝑖+1

𝑗=𝑖−3
 𝑡 ∊ [𝑡𝑖, 𝑡𝑖+1], 

where the basis splines are the following: 

𝑤𝑖−3(𝑥)

=
(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)

(𝑡𝑖−3 − 𝑡𝑖−2)(𝑡𝑖−3 − 𝑡𝑖−1)(𝑡𝑖−3 − 𝑡𝑖)(𝑡𝑖−3 − 𝑡𝑖+1)
, 

𝑤𝑖−2(𝑥)

=
(𝑥 − 𝑡𝑖−3)(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)

(𝑡𝑖−2 − 𝑡𝑖−3)(𝑡𝑖−2 − 𝑡𝑖−1)(𝑡𝑖−2 − 𝑡𝑖)(𝑡𝑖−2 − 𝑡𝑖+1)
, 

𝑤𝑖−1(𝑥)

=
(𝑥 − 𝑡𝑖−3)(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)

(𝑡𝑖−1 − 𝑡𝑖−3)(𝑡𝑖−1 − 𝑡𝑖−2)(𝑡𝑖−1 − 𝑡𝑖)(𝑡𝑖−1 − 𝑡𝑖+1)
, 

𝑤𝑖(𝑥)

=
(𝑥 − 𝑡𝑖−3)(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖+1)

(𝑡𝑖 − 𝑡𝑖−3)(𝑡𝑖 − 𝑡𝑖−2)(𝑡𝑖 − 𝑡𝑖−1)(𝑡𝑖 − 𝑡𝑖+1)
, 

𝑤𝑖+1(𝑥)

=
(𝑥 − 𝑡𝑖−3)(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖)

(𝑡𝑖+1 − 𝑡𝑖−3)(𝑡𝑖+1 − 𝑡𝑖−2)(𝑡𝑖+1 − 𝑡𝑖−1)(𝑡𝑖+1 − 𝑡𝑖)
 . 

Applying these formulas, it is possible to 

approximate the first derivatives of a function  𝑢(𝑥). 
In this case we use the same values of the function 

at the grid nodes and derivatives from the basic 

splines. On a uniform grid of nodes with step ℎ we 

construct the approximation of the first derivative of 

function 𝑢 in the form: 

(𝑈𝑅4
𝑖 (𝑥))′ = ∑ 𝑢𝑗𝑤𝑗′(𝑥),

𝑖+4

𝑗=𝑖
 𝑥 ∊ [𝑡𝑖 , 𝑡𝑖+1], 

where 𝑡 ∈ [0,1], 

𝑤′𝑗(𝑥𝑗 + 𝑡ℎ) =
2𝑡3 − 15𝑡2 + 35𝑡 − 25

12 ℎ
,  

𝑤′𝑗+1(𝑥𝑗 + 𝑡ℎ) =
27𝑡2 − 4𝑡3 − 52𝑡 + 24

6 ℎ
, 

   𝑤′𝑗+2(𝑥𝑗 + 𝑡ℎ) =
2𝑡3 − 12𝑡2 + 19𝑡 − 6

2 ℎ
, 

𝑤′𝑗+3(𝑥𝑗 + 𝑡ℎ) =
−4𝑡3 + 21𝑡2 − 28𝑡 + 8

2 ℎ
, 

𝑤′𝑗+4(𝑥𝑗 + 𝑡ℎ) =
2𝑡3 − 9𝑡2 + 11𝑡 − 3

12 ℎ
. 

First of all, we formulate and prove an 

approximation theorem, which is necessary to 

determine the error in the solution of the considered 

integro-differential equation. 

Denote 

 𝑥0 = 𝑡𝑖, 𝑥1 = 𝑡𝑖+1, 𝑥2 = 𝑡𝑖+2, 𝑥3 = 𝑡𝑖+3, 𝑥4 =
𝑡𝑖+4. 

It is known that for the fourth-degree interpolation 

polynomial 𝑃4(𝑥) constructed from the nodes 

𝑥0, 𝑥1, … , 𝑥4 the next relation is valid: 

𝑢(𝑥) − 𝑃4(𝑥) 

= 𝑢[𝑥, 𝑥0, 𝑥1, … , 𝑥4](𝑥 − 𝑥0) … (𝑥 − 𝑥4) .  (1) 

Here we use the standard notation for the fifth-order 

divided difference for the function 𝑢(𝑥).  

The divided difference 𝑢[𝑥, 𝑥0, 𝑥1, … , 𝑥4] has the 

form:  

𝑢[𝑥, 𝑥0, 𝑥1, … , 𝑥4] =

= ∫ ∫ … ∫ 𝑢(5)[

𝑧3

0

𝑧0

0

1

0

𝑥0 + (𝑥1 − 𝑥0)𝑧0 

+ ⋯ + (𝑥4 − 𝑥3)𝑧3 

+(𝑥 − 𝑥4)𝑧4]𝑧4𝑑𝑧0 … 𝑑𝑧3𝑑𝑧4  . (2) 

Next, consider the question of estimating the 

difference of derivatives   𝑢′(𝑥) − 𝑃′
4(𝑥). 

Theorem 1. The next inequality is valid: 

|𝑢′(𝑥) − 𝑃′
4(𝑥)| ≤ {2 |(𝑥 − 𝑥0) … (𝑥 − 𝑥4)| 

+ |{(𝑥 − 𝑥0) … (𝑥 − 𝑥4)}′|} max
𝜏∈[𝑥0,𝑥4]

|𝑢(5)(𝜏)|/5! (3) 
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Proof. Differentiating identity (1) we have the 

relation: 

𝑢′[𝑥, 𝑥0, 𝑥1, … , 𝑥4] =

= ∫ ∫ … ∫ 𝑢(6)[

𝑧3

0

𝑧0

0

1

0

𝑥0 + (𝑥1 − 𝑥0)𝑧0

+ ⋯ + (𝑥4 − 𝑥3)𝑧3 

+(𝑥 − 𝑥4)𝑧4]𝑧4𝑑𝑧0 … 𝑑𝑧3𝑑𝑧4  .        (4) 

Since the absolute value of the integral does not 

exceed the integral of the absolute value of the 

integrand, we obtain the inequality: 

|𝑢′[𝑥, 𝑥0, 𝑥1, … , 𝑥4]| ≤ max
𝜏∈𝐿{𝑥,𝑥0,…,𝑥4}

|𝑢(6)(𝜏)| .  (5) 

Here 𝐿{𝑥, 𝑥0, … 𝑥4} means the smallest segment 

containing the points 𝑥, 𝑥0, … 𝑥4. Let us calculate the 

integral on the right side of relation (4) over 𝑧3. 

Assuming to integrate by parts, we first write down 

the obvious equality 

𝐽4 = ∫ 𝑢(6)

𝑧3

0

[𝑥0 + (𝑥1 − 𝑥0)𝑧0 + 

…+(𝑥4 − 𝑥3)𝑧3 + (𝑥 − 𝑥4)𝑧4]𝑧4𝑑𝑧4 

= ∫ 𝑧4𝑑𝑢(5)

𝑧3

0

[𝑥0 + (𝑥1 − 𝑥0)𝑧0 + ⋯ 

(𝑥4 − 𝑥3)𝑧3 + (𝑥 − 𝑥4)𝑧4](𝑥 − 𝑥4)−1 . (6) 

By integrating in parts, we get the equality 

𝐽4 = {𝑧3𝑢(5)[𝑥0 + (𝑥1 − 𝑥0)𝑧0 + 

…+(𝑥4 − 𝑥3)𝑧3 + (𝑥 − 𝑥4)𝑧4] |
𝑧4 = 𝑧3

𝑧4 = 0  

− ∫ 𝑢(5)

𝑧3

0

[𝑥0 + (𝑥1 − 𝑥0)𝑧0 + 

…+(𝑥4 − 𝑥3)𝑧3 + (𝑥 − 𝑥4)𝑧4]𝑑𝑧4}(𝑥 − 𝑥4)−1 

= {𝑧3𝑢(5)[𝑥0 + (𝑥1 − 𝑥0)𝑧0 + ⋯ + (𝑥 − 𝑥3)𝑧3] − 

− ∫ 𝑢(5)

𝑧3

0

[𝑥0 + (𝑥1 − 𝑥0)𝑧0 + ⋯ 

+(𝑥 − 𝑥4)𝑧4]𝑑𝑧4}(𝑥 − 𝑥4)−1 . (7) 

 By relations (4) and (7) we deduce the formula 

 𝑢′[𝑥, 𝑥0, 𝑥1, … , 𝑥4]= 

{∫ ∫ … ∫ 𝑧3 𝑢(5)[

𝑧2

0

𝑧0

0

1

0

𝑥0 + (𝑥1 − 𝑥0)𝑧0 + 

…+(𝑥 − 𝑥3)𝑧3]𝑑𝑧0 … 𝑑𝑧3      

− ∫ ∫ … ∫  𝑢(5)[

𝑧3

0

𝑧0

0

1

0

𝑥0 + (𝑥1 − 𝑥0)𝑧0 + 

+(𝑥 − 𝑥4)𝑧4]𝑑𝑧0 … 𝑑𝑧4}(𝑥 − 𝑥4)−1.   (8) 

We assume that the nodes are ordered: 

𝑥0  <  𝑥1  <  𝑥0  < . . . < 𝑥4, 𝑥 ∈  [𝑥0, 𝑥4). (9) 

Note that the following equality is true 

∫ ∫ … ∫ 𝑧3𝑑𝑧0 … 𝑑𝑧3 =

𝑧2

0

𝑧0

0

1

0

 

= ∫ ∫ … ∫ 𝑑𝑧0 … 𝑑𝑧3𝑑𝑧4 = 1/5!
𝑧3

0

𝑧0

0

1

0
 (10) 

Let us estimate the first term of relation (8). We take 

out the maximum of the absolute value of the 

function 𝑢(5)(𝜏) from the expression under the 

integrals and then use equality (10). As a result, we 

get the inequality: 

| ∫ ∫ … ∫ 𝑧3 𝑢(5)[

𝑧2

0

𝑧0

0

1

0

𝑥0 + (𝑥1 − 𝑥0)𝑧0 + 

…+(𝑥 − 𝑥3)𝑧3]𝑑𝑧0 … 𝑑𝑧3|≤ 1/5! max
𝜏∈[𝑥0,𝑥4]

|𝑢(5)(𝜏)|. 

A similar estimate is obtained for the second term in 

(8).  

| ∫ ∫ … ∫  𝑢(5)[

𝑧3

0

𝑧0

0

1

0

𝑥0 + (𝑥1 − 𝑥0)𝑧0 + 

+(𝑥 − 𝑥4)𝑧4]𝑑𝑧0 … 𝑑𝑧4| ≤ 1/5! max
𝜏∈[𝑥0,𝑥4]

|𝑢(5)(𝜏)|. 

Finally, we deduce the next inequality from formula 

(8) using condition (9): 
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|𝑢′[𝑥, 𝑥0, 𝑥1, … , 𝑥4]| 

≤ 2/5! max
𝜏∈[𝑥0,𝑥4]

|𝑢(5)(𝜏)||(𝑥 − 𝑥4)−1 |. (11) 

After differentiating (1), we have the next equality: 

𝑢′(𝑥) − 𝑃′
4(𝑥) = 

= 𝑢′[𝑥, 𝑥0, 𝑥1, … , 𝑥4](𝑥 − 𝑥0) … (𝑥 − 𝑥4)    

+𝑢[𝑥, 𝑥0, 𝑥1, … , 𝑥4]{(𝑥 − 𝑥0) … (𝑥 − 𝑥4)}′. (12)  

Now let us take into account the well-known 

relation. Namely, for some point ξ ∈ [𝑥0, 𝑥4], the 

next equality is valid: 

𝑢[𝑥, 𝑥0, 𝑥1, … , 𝑥4] = 1/5! 𝑢(5)(𝜏) ,  𝜏 ∈ [𝑥0, 𝑥4]. 

Since by assumption 𝑥 ∈ [𝑥0, 𝑥4], this implies the 

inequality: 

|𝑢[𝑥, 𝑥0, 𝑥1, … , 𝑥4]| ≤ 1/5! max
𝜏∈[𝑥0,𝑥4]

|𝑢(5)(𝜏)| .  (13) 

From formula (12) with the help of relations (11) 

and (13) we obtain the estimate:  

|𝑢′(𝑥) − 𝑃′
4(𝑥)| ≤ 

≤ |𝑢′[𝑥, 𝑥0, 𝑥1, … , 𝑥4]||(𝑥 − 𝑥0) … (𝑥 − 𝑥4)|    

+|𝑢[𝑥, 𝑥0, 𝑥1, … , 𝑥4]||{(𝑥 − 𝑥0) … (𝑥 − 𝑥4)}′| ≤ 

≤ 2/5! max
𝜏∈[𝑥0,𝑥4]

|𝑢(5)(𝜏)| |{(𝑥 − 𝑥0) … (𝑥 − 𝑥4)}| 

+1/5! ×  

× max
𝜏∈[𝑥0,𝑥4]

|𝑢(5)(𝜏)| |{(𝑥 − 𝑥0) … (𝑥 − 𝑥4)}′|  (14). 

From inequality (14) we have relation (3). 

The proof of Theorem 2 is complete. 

Remark. Theorem 2 is proved when there is a non-

uniform grid of nodes. 

 

On a more detailed note, we have  

𝑢(𝑥) − 𝑃4(𝑥) = 

= 𝑢[𝑥, 𝑥0, 𝑥1, … , 𝑥4](𝑥 − 𝑥0) … (𝑥 − 𝑥4). 

Differentiating this equality, we get 

𝑢′(𝑥) − (𝑃4(𝑥))′ 

= 𝑢′[𝑥, 𝑥0, 𝑥1, … , 𝑥4](𝑥 − 𝑥0) … 

(𝑥 − 𝑥4)+ 𝑢[𝑥, 𝑥0, 𝑥1, … , 𝑥4]𝑄(𝑥) , 

𝑄(𝑥)  = (𝑥 − 𝑥1) … (𝑥 − 𝑥4) + 

(𝑥 − 𝑥0)(𝑥 − 𝑥2) … (𝑥 − 𝑥4) + 

(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥3)(𝑥 − 𝑥4) + 

(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥4) 

+(𝑥 − 𝑥0) … (𝑥 − 𝑥3). 

Now, consider the approximation by right splines on 

a uniform grid of knots. In the case of a uniform 

grid, we have 𝑥𝑘 = 𝑥0 + 𝑘ℎ. Replacing 𝑥 = 𝑥0 +
𝑡ℎ, 𝑡 ∈ [0,1], in the expression 𝑄 we have: 

𝑄(𝑥) = ℎ4(5𝑡4 − 40𝑡3 + 105𝑡2 − 100𝑡 + 24) . 

Now it is easy to obtain error estimates for the right 

splines when 𝑥 ∊ [𝑡𝑖 , 𝑡𝑖+1]: 

|𝑢(𝑥) − 𝑈𝑅4
𝑖 (𝑥)| ≤ 3.63

ℎ5

5!
max

𝜏∈[𝑡𝑖,𝑡𝑖+4]
|𝑢(5)(𝜏)|  , 

|𝑢′(𝑥) − (𝑈𝑅4
𝑖 )′(𝑥)| ≤ 24

ℎ4

5!
max

𝜏∈[𝑡𝑖,𝑡𝑖+4]
|𝑢(5)(𝜏)|  . 

Similarly, we can obtain error estimates for the 

middle splines. Now it is easy to obtain error 

estimates for the middle splines: 

|𝑢(𝑥) − 𝑈𝑆4
𝑖 (𝑥)| ≤ 1.42 

ℎ5

5!
max

𝜏∈[𝑡𝑖−2,𝑡𝑖+2]
|𝑢(5)(𝜏)|  , 

|𝑢′(𝑥) − (𝑈𝑆4
𝑖 )′(𝑥)| ≤ 6 

ℎ4

5!
max

𝜏∈[𝑡𝑖−2,𝑡𝑖+2]
|𝑢(5)(𝜏)| . 

Note that the inequalities turn into equalities on 

function 𝑢 = 𝑥5. 

   Table 1 shows the actual errors of approximation 

of functions and the first derivative of the functions 

when ℎ = 0.1, [𝑎, 𝑏] = [0,1]. Table 2 shows the 

theoretical errors of approximation of functions and 

the first derivative of the functions when ℎ = 0.1, 

[𝑎, 𝑏] = [0,1]. 
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The data presented in the Tables are consistent with 

the theoretical results formulated in the Theorems. 

Table 1. The Actual Errors of Approximations 

𝒖(𝒙) 

Right splines Middle splines 

 

Errors of 

appr.of 

func. 

Errors 

of 

appr.of 

deriv. 

func. 

Errors 

of 

appr. 

of 

func. 

Errors of 

appr. of 

deriv. 

func. 

𝑥5 0.363
∙ 10−4 

0.240
∙ 10−2 

0.142
∙ 10−4 

0.590
∙ 10−3 

sin(𝑥) 0.291
∙ 10−6 

0.193
∙ 10−4 

0.117
∙ 10−6 

0.488
∙ 10−5 

cos(𝑥)
− sin(𝑥) 

0.427
∙ 10−6 

0.282
∙ 10−4 

0.1669
∙ 10−6 

0.694
∙ 10−5 

 

Table 2. The Theoretical Errors of Approximations 

𝒖(𝒙) 

Right splines Middle splines 

Errors of 

appr.of 

func. 

Errors 

of appr. 

of 

deriv. 

Errors 

of 

appr. 

of 

func. 

Errors of 

appr. of 

func. 

𝑥5 0.363
∙ 10−4 

0.240
∙ 10−2 

0.142
∙ 10−4 

0.590
∙ 10−3 

sin(𝑥) 0.3025
∙ 10−6 

0.20
∙ 10−4 

0.1183
∙ 10−6 

0.50
∙ 10−5 

cos(𝑥)
− sin(𝑥) 

0.428
∙ 10−6 

0.283
∙ 10−4 

0.1673
∙ 10−6 

0.707
∙ 10−5 

 

When solving the integro-differential equation  

𝑢′(𝑥) + 𝛼1 ∫ 𝐹(𝑢(𝑠), 𝑢′(𝑠))𝑑𝑠  

𝑥

0

 

+𝛼2 ∫ 𝐺(𝑢(𝑠), 𝑢′(𝑠))𝑑𝑠

1

0

 = 𝑓(𝑥), 

we replace the function 𝑢(𝑥) and its first derivative 

𝑢′(𝑥) with approximations constructed with the 

splines of the fifth order of approximation. Next, we 

present the results of solving several integro-

differential equations. The value of the first 

derivative at the node we approximate with the 

formulas of numerical differentiation obtained with 

the help of the splines of the fifth order of 

approximation. 

 

3 Problem Solution 
Below are the results of the numerical solution of 

several integro-differential equations. To solve the 

equations, a uniform grid of nodes was constructed 

with step of ℎ = 0.1. After replacing the unknown 

function with a fifth-order approximation with some 

coefficients, we have to solve a system of nonlinear 

equations. Then we can visualize the solution by 

connecting the obtained points with splines of the 

fifth order of approximation. In addition, it is 

possible to obtain a piecewise given expression not 

only for the desired function, but also for the first 

derivative of the desired function. In the figures, the 

numbers of grid nodes are marked along the 

abscissa axis. 

 

Example 1 (Example 4.1. from paper [6]). Consider 

the nonlinear Volterra–Fredholm integro-differential 

equation, as follows: 

𝑢′(𝑥) + 𝑢(𝑥) 

+
1

2
∫ 𝑥𝑢2(𝑠)𝑑𝑠 −

1

4
∫ 𝑠𝑢3(𝑠)𝑑𝑠 =

1

0

𝑥

0

𝑓(𝑥) , 

where 

𝑓(𝑥) = 2𝑥 + 𝑥2 + 𝑥6 −
1

32
, 𝑢(0) = 0. 

The exact solution is 𝑢(𝑥) = 𝑥2. 
 

Table 3 presents the results of calculations. The first 

column represents the grid nodes with step ℎ = 0.1. 
The second column presents the values of the 

solution at the grid nodes, obtained using splines of 

the fifth order of approximation. The third column 

gives the solution presented in paper [6] (at 𝑛 =
8, 𝑚 = 8). The fourth column contains the solution 

from paper [8]. 

Table 3. The results of calculations (Example 1) 

𝒕𝒊 

Example 1 

Splines of the 

fifth order of 

approximation 

Paper [6] 

𝒏 = 𝟖, 
𝒎 = 𝟖 

Paper [8] 

𝒎 = 𝟏𝟔 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 

0.010 

0.040 

0.090 

0.160 

0.250 

0.360 

0.490 

0.64 

0.81 

1.0 

0. 

0.010031 

0.040075 

0.0901 

0.160094 

0.250228 

0.360502 

0.490583 

0.640374 

0.810047 

0.999986 

0 

0.010978 

0.040702 

0.090736 

0.161077 

0.250164 

0.361120 

0.490819 

0.640819 

0.811118 

1.000149 

 

Figure 1 shows the errors in the solution of problem 

1, found using splines of the fifth order of 

approximation. Figure 2 shows the errors of 

problem 1 found in paper [6]. Figure 3 shows the 

solutions to problem 1 found using paper [8]’s . 
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Fig. 1: The plot of the errors in the solution of 

problem 1, found using splines of the fifth order of 

approximation 

 

 
Fig. 2: The plot of the errors in the solution of 

problem 1, found in paper [6] 

 
Fig. 3: The plot of the errors in the solution of 

problem 1, found in paper [8] 
 

Figures 4 and 5 show the graphs of the solution and 

the graph of the first derivative of the solution 

restored using splines of the fifth order of 

approximation. 

 

 
Fig. 4: The plot of the solution of problem 1, found 

using splines of the fifth order of approximation 

 

 

Fig. 5: The plot of the errors of the first derivative of 

the solution of problem 1, found using splines of the 

fifth order of approximation 

 

Example 2 (Example 4.2. from paper [6]). Consider 

the nonlinear Volterra integro-differential equation, 

as follows: 

𝑢′(𝑥) − ∫ cos(𝑥 − 𝑠) 𝑢2

𝑥

0

(𝑠)𝑑𝑠

= −2 sin(𝑥) −
1

3
cos(𝑥)

−
2

3
cos(2𝑥), 

 and the exact solution 𝑢(𝑥) = 𝑐𝑜𝑠(𝑥) − 𝑠𝑖𝑛(𝑥). 

 

Table 4 presents the results of calculations. The first 

column represents the grid nodes with step ℎ = 0.1. 
The second column presents the values of the 

solution at the grid nodes, obtained using splines of 

the fifth order of approximation. The third column 

gives the solution presented in paper [6] (at 𝑛 =
8, 𝑚 = 8). 

 Table 4.  The results of calculations (Example 2) 

𝒕𝒊 

Example 2 

Splines of the 

fifth order of 

approximation 

Paper [6] 

𝒏 = 𝟖, 
𝒎 = 𝟖 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

1 

0.895169 

0.781394 

0.659813 

0.531639 

0.398153 

0.260688 

0.120619 

-0.020655 

-0.161719 

-0.301186 

0.999999 

0.895186 

0.781653 

0.659732 

0.530699 

0.398169 

0.260969 

0.120671 

-0.020638 

-0.161638 

-0.301983 

 

Figure 6 shows the errors in absolute values of the 

solution of problem 2, found using splines of the 

fifth order of approximation. Figure 7 shows the 

errors of problem 2 found in paper [6]. 

 

 
Fig. 6: The plot of the errors in the solution of 

problem 2, found using splines of the fifth order of 

approximation 
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Fig. 7: The plot of the errors in the solution of 

problem 2, found in paper [6] 
 

Figures 8 and 9 show the graphs of the solution and 

the graph of the first derivative of the solution, 

restored using splines of the fifth order of 

approximation. 

 

 
Fig. 8: The plot of the solution of problem 2, found 

using splines of the fifth order of approximation 
 

 
Fig. 9: The plot of the first derivative of the solution 

of problem 2, found using splines of the fifth order 

of approximation 

 

Example 3 (Example 4.3. from paper [6]). Consider 

the nonlinear Volterra–Fredholm integro-differential 

equation, as follows: 

𝑢′(𝑥) + 𝑥2𝑢(𝑥) − ∫(𝑥 − 𝑠)𝑢2(𝑠)𝑑𝑠

𝑥

0

+ ∫ 𝑒𝑠𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥)

1

0

 

𝑓(𝑥) = 1 + 𝑒 +
𝑥2

2
+

2𝑥3

3
−

𝑥4

12
 

where  𝑢(0) = 1. The exact solution is   𝑢(𝑥) =
(𝑥 + 1). 

Table 5 presents the results of calculations. The first 

column represents the grid nodes with step ℎ = 0.1. 
The second column presents the values of the 

solution at the grid nodes, obtained using splines of 

the fifth order of approximation. The third column 

gives the solution presented in paper [6] (at 𝑛 =
8, 𝑚 = 8). 

Table 5. The results of calculations (Example 3) 

𝒕𝒊 

Example 3 

Splines of the 

fifth order of 

approximation 

Paper [6] 

𝒏 = 𝟖, 
𝒎 = 𝟖 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

1 

1.100001 

1.200001 

1.300002 

1.400003 

1.500003 

1.600004 

1.700005 

1.800008 

1.900036 

1.999757 

0.999999 

1.100625 

1.200373 

1.300626 

1.400681 

1.500599 

1.601830 

1.702132 

1.806721 

1.913578 

2.009838 

 

Figure 10 shows the errors of the solution obtained 

using splines of the fifth order of approximation, 

Figure 11 shows the errors obtained using the 

method of paper [6]. In these two figures, along the 

abscissa axis, grid nodes from the interval [0,1] are 

marked. 

 
Fig. 10: The plot of the errors in the solution of 

problem 3, found using splines of the fifth order of 

approximation 

 

 
Fig. 11: The plot of the errors in the solution of 

problem 3, found in paper [6] 

Example 4. Finally, consider an integro-differential 

equation containing a second derivative (see [9]). 

𝑢′′(𝑥) = 32𝑥 + ∫(1 − 𝑥𝑠)𝑢(𝑠)𝑑𝑠,

1

−1

 

−1 ≤ 𝑥 ≤ 1, 𝑢(−1) = −
5

2
, 𝑢(1) = 15/2. 
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The exact solution to this problem is the next: 

𝑢(𝑥) = 5𝑥3 +
3

2
𝑥2 + 1. 

For the approximation of the second derivative, we 

obtain the formula in the same way, namely by 

twice differentiating the spline approximation of the 

function. 

In paper [9] with the number of nodes 32, the error 

of the solution was approximately 10−4. In our case, 

with 8 nodes in the interval −1 ≤ 𝑥 ≤ 1, the error 

was 10−18. Fig. 12 shows a plot of the solution 

error obtained with splines of the 5th order of 

approximation. The node numbers are plotted along 

the abscissa axis. 

 

 
Fig. 12: The plot of the errors in the solution of 

Problem 4 obtained with splines of the 5th order of 

approximation.  

 

Such a high accuracy of the solution is explained by 

the fact that spline approximations are exact on 

polynomials up to the fourth degree. In other words, 

the approximation error is zero for polynomials up 

to the fourth degree. 

 

 

4 Conclusion 
This paper considers the solution of nonlinear 

integro-differential equations with the first 

derivative of the unknown function using a method 

based on the application of local polynomial splines 

of the fifth order of approximation. As a result of 

solving the system of nonlinear equations, we obtain 

the values of the solution at the grid nodes. Further, 

applying these splines of the fifth order of 

approximation, we can connect the solution values 

at the grid nodes with the line. In addition, we can 

find and visualize the first derivative of the solution 

on a given interval.  

Thus, with the help of splines of the fifth order of 

approximation, we are able to obtain a solution at 

any point in the interval, as well as the derivative of 

the solution. Theorems about the errors of 

approximations of functions and the first derivative 

with the local polynomial splines of the fifth order 

of approximation are given. 

One example of solution of the integro-differential 

equation with the second derivative of the unknown 

is given. 

Note that it is assumed that the integral of the 

product of the kernel and the basis function is 

calculated without error. In this case, to obtain a 

solution, it is required that the solution be five times 

continuously differentiable and the kernel a 

continuous function. Otherwise, the corresponding 

quadrature formulas can be used to calculate the 

integral from the product of the kernel and the basis 

functions. 

Next, we will consider in details the solutions of 

integro-differential equations containing the second 

derivative. In addition, cases of using a non-

uniform grid, as well as non-polynomial 

approximations, will be considered. 
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