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Abstract: Few estimation methods were discussed to handle the missing data problem in the panel data models. 
However, in the panel vector autoregressive (PVAR) model, there is no estimator to handle this problem. The 
traditional treatment in the case of incomplete data is to use the generalized method of moment (GMM) 
estimation based on only available data without imputation of the missing data. Therefore, this paper introduces 
a new GMM estimation for the PVAR model in case of incomplete data based on the mean imputation. 
Moreover, we make a Monte Carlo simulation study to study the efficiency of the proposed estimator. We 
compare between two GMM estimators based on the mean squared error (MSE) and relative bias (RB) criteria. 
The first is the GMM estimation based on the list-wise (LW) and the second is the GMM estimation using the 
mean imputation (MI) at multi-missing levels. The results showed that the MI estimator provides more 
efficiency than the LW estimator. 
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1 Introduction 
The regression of panel data differs from a regular 
cross section or time series in that it has a double 
subscript on its variables i and t, where the i 
subscript represents the cross-section dimension 
while t denotes the time series dimension, see [1, 2, 
3, 4, 5]. Time series vector autoregressive (VAR) 
models were discovered in the macro-econometrics 
literature as an alternative to multivariate 
simultaneous equation models, since all the 
variables of VAR systems are treated as endogenous 
variables [6]. 
The panel vector autoregressive PVAR models 
include a lagged endogenous variable, and the first 
difference of the error term will be correlated with 
all of the explanatory variables. In this situation, the 
estimators of PVAR models will be biased. 
Yamamoto and Kunitomo [7] first derived the 
asymptotic bias for the ordinary least squares 
estimator of a multivariate autoregressive model 
with a constant term. They reduced a model without 
a constant term as a special case, and multivariate 
autoregressive time series models could be treated 
as similar to the idea of PVAR models. Missing data 
patterns have effects on most applied studies in 
economic fields. As a result, there is a wide 
literature about how to treat the problem of missing 
data. However, an efficient method to deal with 
estimation in an arbitrary generalised method of 

moment (GMM) setting with a general missing data 
pattern is not available. Therefore, there are many 
inefficient methods, such as complete-case analyses, 
that dominate the empirical literature. In a survey 
constructed by Abrevaya and Donald [8], they found 
that few of the empirical research deals with missing 
data, and in most of these cases, a complete-case 
estimator is used, i.e., all incomplete observations 
were discarded. Therefore, the main objective of 
this paper is to present a Monte Carlo simulation 
study to study the efficiency of the proposed 
estimator suggested by Rady et al. [1].   
The rest of the paper is organized as follows: section 
2 introduces the PVAR model and its assumptions. 
Section 3 provides the results of the Monte Carlo 
simulation study. Finally, section 4 offers the 
conclusions. 
 
 
2 The PVAR model   
In dynamic panel data (DPD), we assume the 
observations are on many individuals, with many 
observations on each individual, and the model of 
interest is a regression model in which the lagged 
value of the dependent variable is treated as one of 
the explanatory variables. The error term in the 
model is assumed to contain a time-invariant 
individual effect as well as random noise [9, 10, 11, 
12, 13, 14]. The basic problem faced in the 
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estimation of DPD models is that a fixed effects 
treatment tends to the within estimator (least-
squares after transformation to deviations from 
means), which has inconsistent estimators because 
the within transformation induces a correlation 
between the lagged dependent variable and the 
error, see [3, 12, 13, 14]. Holtz-Eakin et al. [15], 
expanding on the Anderson-Hsiao [16] approach, 
show how it is implemented to estimate a vector 
autoregression with time-varying parameters. 
Arellano and Bond [17] used Monte Carlo studies to 
evaluate a GMM estimator that is like [15] 
recommendation, and Kiviet [18] used the 
simulations to compare these and many other 
techniques, including the corrected least squares 
dummy variable estimator, see [3, 12, 13]. Vector 
autoregressions are now a standard part of the 
applied econometrician's toolkit. Although their 
interpretation in terms of causal relationships is 
controversial, 
Holtz-Eakin et al. [15] introduced an estimation and 
testing for the PVAR model. They used an 
estimation method as similar to that Anderson and 
Hisiao [16]. Consider PVAR data with N units 
observed for T + P consecutive time periods. Each 
unit i, we observed M outcome variables yit1, ..., yitM, 
where 𝑡 = 1 –  𝑃, … , 𝑇.  
The behaviour of Yit = (Yit1,Yit2, ..., YitM)' and it is 
described by the Pth order vector autoregression: 
𝑌𝑖𝑡 = 𝛷1𝑌𝑖𝑡−1 +𝛷2𝑌𝑖𝑡−2+. . +𝛷𝑝𝑌𝑖𝑡−𝑝 + 𝑢𝑖𝑡    (1) 

Where ; 1,..., , 1,...,T,it i itu i N t    

𝑌𝑖𝑡−𝑝 = 𝐿
𝑃𝑌𝑖𝑡; 𝑃

𝑡ℎ lag order of 𝑌𝑖𝑡,𝛷𝑝 is 𝑀 ×𝑀, 𝑢𝑖𝑡 
M-dimensional error term.𝜐𝑖𝑡 = (𝜐𝑖𝑡1, . . . , 𝜐𝑖𝑡𝑀)′, 
and 𝛼𝑖 = (𝛼𝑖1, . . . , 𝛼𝑖𝑀)′ is a fixed effects in the 
model.  
 
2.1 Proposed Estimator Assumption  
In general, the assumptions of the PVAR model are: 
Assumption 1 (Condition of stationarity):  The 
roots of the given determinant: 

𝑑𝑒𝑡( 𝐼𝑀−𝛷1𝑧 −⋯−𝛷𝑝𝑧
𝑝
) = 0         (2) 

This assumption refers that the process of vector 
autoregressive is stable. 
Assumption 2 (Regularity conditions): The υit has 
finite eight-order moments and, as N →∞    

1

𝑁
∑ ‖𝛼𝑖‖

2𝑂(1),𝑁
𝑖=1  1

𝑁
∑ ‖𝑌𝑖1−𝑝‖

2
= 𝑂(1),𝑁

𝑖=1  
Where 𝑝 =  1, . . . , 𝑃. The conditions about the 
moment in this assumption make sure that the 
regular asymptotic behaviour of the least squares 
estimator is standard [1]. 
Assumption 3 (The errors): The υit are independent 
and identically distributed across i and t: 

E[υit] = 0,    E[υitυ'it] = Ω          (3)  

Where Ω is positive definite matrix and the 
independence across time can allow for dependence 
between υit and υit-P through their higher-order 
moments. For simplicity, we can say this 
assumption as, the error vectors are independent and 
identically distributed (iid). 
Assumption 4 The time dimension of panel is finite 
with T > 𝑃 and the available observations are (Yi0, 
Yi1, ..., YiT). 
 
2.2 The Proposed Estimator   

This section explains the proposed estimator was 
introduced by Rady et al. [1]. Consider the standard 
linear PVAR (1) model as discussed in (1) 

𝑌𝑖𝑡 = 𝛷0𝑌𝑖𝑡−1 + 𝑢𝑖𝑡 .                    (4) 
Where Yi is a (possibly missing) scalar, Yi is a K-
vector of all lagged dependent variable. The first 
element of Yi is 1; that is, the model is assumed to 
contain an intercept. We assume the residuals only 
satisfies the conditions in (3) to be a linear 
projection, specifically 

𝐸(𝑢𝑖𝑡|𝑦𝑖,𝑡−1, . . . , 𝑦𝑖0, 𝑚𝑖) = 0             (5) 
The variable mi indicates whether or not Yi is 
missing for observational unit i: 

𝑚𝑖 = {
1 𝑖𝑓 𝑌𝑖   𝑚𝑖𝑠𝑠𝑖𝑛𝑔
0 𝑖𝑓 𝑌𝑖  𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

 

The proposed weighted GMM estimator can be 
introduced as  

𝛷̂ = (𝑉 ′𝑍𝑊̂𝑍′𝑉)−1(𝑉 ′𝑍𝑊̂𝑍′ 𝑌)               (6) 
 
Where the GMM estimator can be implemented 
using instrumental variables methods. We can 
define the instrumental-variable matrix Zi as 

𝑍𝑖 =

(

 
 
𝑚𝑖1𝑚𝑖1𝑌𝑖

′ 0 ⋯ 0

0 𝑚𝑖2𝑚𝑖2𝑌𝑖
′ 0 ⋮

⋮ ⋮ ⋱ 0
0 ⋯ 0 𝑚𝑖𝑡𝑚𝑖𝑡𝑌𝑖

′

)

 
 

 

Which corresponds to (𝑌𝑖′  0) using as instruments in 
each time for which yit is observed. For the 
statistical properties of this estimator, see [1]. 
 

 

3 Monte Carlo Simulation 
A Monte Carlo simulation is a type of simulation 
that relies on repeated random sampling and 
statistical analysis to compute the results. This 
method of simulation is very closely related to 
random experiments, in which the specific result is 
unknown in advance. 
 

3.1 Design of the Simulation 

The simulated dataset represents the generation of 
different cross sections 𝑛 = 5, 10, 20, 30, 40 as a 
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complete case, and it is assumed that the number of 
endogenous variables is three (𝑀 = 3) so, the 𝛷  
matrix is of order 3×3 and it consists of nine 
coefficients to be estimated. The values of the 
endogenous variable Y were generated as 
independent normally distributed random variables. 
The disturbances were generated as independent 
normally distributed random variants, with mean 
zero and standard deviation equal one. The 
disturbances were allowed to differ for each cross-
sectional unit on a given Monte Carlo trial and were 
allowed to differ between trials. The value of time T 
was chosen to be fixed is equal nine. Moreover, it 
was used the R codes employed by Muris [19] in 
PVAR models and the paper considered by 
Abonazel [20] that shows a new algorithm that 
provides researchers with basics and advanced skills 
about how to create their R-codes and then achieve 
the simulation study for estimating the missing 
observations and imputation in all percentages of 
missingness and then estimate make simulation 
using sample sizes (cross sections are 5, 10, 20, 30 
and 40). The first step of this simulation is 
examining the optimal lag of the PVAR model for 
this data and the optimal lag length found to be 
PVAR (1). After determining the optimal lag of the 
model, now it said to be sure that the data generated 
in a complete case is of order 1 so the 𝛷 matrix is of 
order 3×3. Then it made new four datasets from the 
complete dataset corresponding to four percentages 
of missingness (10%, 20%, 30% and 40%). Then it 
is estimated the PVAR model using (6). This 
estimation using LW deletion and the proposed two-
step GMM estimator based on MI method to make a 
comparison and these estimations are based on 
many samples of size: 5, 10, 20, 30 and 40 then it is 
estimated the MSE at each percentage of 
missingness for each estimator, also, the MSE and 
RB were calculated as:  
 

𝑀𝑆𝐸 =
1

r
∑(Φ̑− Φ)2                  (7) 

𝑅𝐵 =
𝛷̂−𝛷

𝛷
× 100            (8) 

 

This RB is used to evaluate the percentage of the 
bias for the missingness level, and MSE and RB are 
used as criteria to determine the perfect usage of the 
MI method, with which one of missingness is more 
efficient at different sample sizes where chosen. 
For each of the experimental settings, 500 Monte 
Carlo trials (r = 500) were used in this simulation 
because each trial takes the used package in the R 
program and results were recorded and all 
simulation results were conducted (see the 
appendix) and the settings of the model and results 
of the simulation study are discussed below. 
 
3.2 Simulation Results for Different Sample Size  

In this section, the basic objective is to study the 
relationship between sample size and each of MSE 
and RB under several percentages of missing 
observations. These are made to evaluate the LW 
imputation and MI method.  
 
 The MSE for missingness at multi percentage 

levels    
The following section presents the MSE at multi-
levels as discussed before. Figure 1 introduces the 
MSE for the estimator 𝛷̂with GMM estimation of 
PVAR with 10%, 20%, 30%, and 40% missing 
observations, and the estimation provides a 
comparison between LW imputation and MI among 
the different sample sizes of 5, 10, 20, 30, and 40. It 
was found that when the sample size increases, the 
MSE decreases in both imputation methods, LW 
and MI. Moreover, overall, the graph shows that MI 
is more efficient than LW starting from sample size 
5. It means when the sample size increases, the 
MSE for the MI method becomes smaller than LW. 
In the case of 20% of the missing observations It 
was found that when the sample size increases, the 
MSE decreases in both imputation methods, LW 
and MI. Moreover, overall, the graph shows that MI 
is more efficient than LW, which means when the 
sample size increases, the MSE for the MI method 
becomes 
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Fig. 1: MSE of 𝛷̂ missingness at multi percentage levels 

 
smaller than the LW method and more efficient. 
With 30% missing, starting from a sample of size 
10, when the sample size increases, the MSE 
decreases in both imputation methods, LW and MI. 
Furthermore, the graph shows that MI is more 
efficient than LW at the largest of all sample sizes, 
which means if the sample size increases, the MSE 
for the MI method becomes smaller than the LW 
method, but LW is not efficient at very small 
samples (5) when the missingness is at level 
30%. When the missing observations are 40%, It 
was seen when the sample size increased, then the 
MSE decreased in both imputation methods LW and 
MI except sample size of 30, and the graph shows 
that MI is more efficient than LW at the most 
sample sizes which means if the sample size 
increase, the MSE for MI method becomes more 
efficient than LW method when the missing 
observations are 40%. 
 
 The RB for missingness at multi percentage 

levels 

The following section it is present the RB at multi-
levels of missing observations was discussed as 
MSE before in the previous section. Figure 2 
represents the RB for the estimator 𝛷̂ with GMM 
estimation of PVAR with missing observations at 

multiple levels, and the estimation provides a 
comparison between LW imputation and MI among 
sample sizes of 5, 10, 20, 30, and 40 shown in the 
graph. It was found that when the sample size 
increases, the RB decreases in both imputation 
methods, LW and MI. Moreover, the graph shows 
that the MI method provides RB less than LW, so it 
could be said that MI is more efficient than LW at 
all sample sizes, which means when the sample size 
increases, the RB for the MI method becomes 
smaller than the LW method when 10% of 
observations are missing. 
With respect to 20% of the missing observations It 
was found in the graph that MI is more efficient 
than LW at sample sizes (5, 10, 20, 30, and 40), 
which means the RB for the MI method becomes 
smaller than the LW method at all samples with 
20% missing observations, and it means that MI is 
still more efficient than LW. With the view of 
missing observations at 30%, it is observed that 
when the sample size increases, the RB decreases in 
both imputation methods, LW and MI. The graph 
shows that MI is more efficient than LW at all 
samples, which means if the sample size increases, 
the RB for the MI method becomes smaller than the 
LW method by a percentage of 30%.  
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Fig. 2: RB of missingness at multi percentage levels 

 
With respect to 40% missing observations, it was 
found in the graph that MI is more efficient than 
LW, which means the RB for the MI method 
becomes smaller than the LW method at all samples 
for the estimator with 40% missing observations. 
This means that MI is more efficient than LW. 
 
3.3 Simulation results for different percentage of 

missingness fixed sample size  

In the next section, the main purpose is to study the 
relation between the missing observations 
percentage through calculating MSE and RB in each 
estimation and compare the LW imputation and MI 
method for each sample size of sizes (5, 10, 20, 30 
and 40) individually. 
 
 The MSE for each sample size  

The following section is present the MSE at each 
sample as discussed later.  
Regarding Figure 3, it represents MSE for the 
estimator 𝛷̂with GMM estimation of PVAR with a 
sample size of 5, 10, 20, 30, and 40. The estimation 
provides a comparison between LW imputation and 

MI through the missing observation levels of 10%, 
20%, 30%, and 40%. For a sample size of 5, it was 
found that the MSE of the MI method is more 
efficient than the LW imputation method at missing 
observation levels of 10%, 20%, and 40%. Overall, 
the graph shows that MI is more efficient than LW 
at the most of all missing observation levels except 
level 30%. It is shown that the difference in MSE 
between LW and MI is very small, so, at this level, 
the MSE is roughly similar, which means the MSE 
for the MI method becomes smaller than the LW 
method and more efficient. With respect to sample 
size 10, it was seen that the MSE of the MI method 
is more efficient than the LW imputation method at 
all missing observation levels. Overall, the graph 
shows that the MSE for the MI method becomes 
smaller than the LW method and more efficient at 
the start of the missing level. When the missing 
level increases, the MSE in both LW and MI is 
decreased, which means they are still better. By 
viewing a sample of size 20 and the estimation 
providing comparison between LW imputation and 
MI through the missing observations of 10%, 20%, 
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30%, and 40%, it was found that the MSE of the MI 
method is more efficient than the LW imputation 
method at all missing observation levels.  
The graph shows that the MSE for the MI method is 
still smaller than the LW method and more efficient, 
and starting at a missing level of 20%, the MSE of 
MI is decreased, but inversely, the MSE of LW is 
increased, which means MI is efficient by increasing 
the percentage of missing observations at sample 
size of 20. Regarding a sample of size 30, and the 
estimation provides a comparison between LW 
imputation and MI through the missing observations 
of 10%, 20%, 30%, and 40%, it was found that the 
MSE of the MI method is more efficient than the 
LW imputation method at missing observations of 
10%, 30%, and 40%. Overall, the graph shows that 
MI is more efficient than LW at the most of all 
missing observation levels except level 20%. It is 
shown that the difference in MSE between LW and 
MI is small, so the MSE for the MI method is still 
smaller than the LW method and more efficient at 
the most of all percentage levels of missing 
observations.  
Moreover, when the missing percentage increases, 
the MSE of LW increases but the MSE of MI 
decreases, and the MI is still efficient when a large 
missing observation level exists (30% and 40%). 
For sample of size 40, the MI method is more 
efficient than the LW imputation method at majority 
of all missing observations levels except level 20%. 
It is shown that the difference in MSE between LW 
and MI is small, so the MSE for the MI method is 
still smaller than the LW method and more efficient 
at the most of all percentage levels of missing 
observations. Also, as the percentage of missing 
observations goes up, so does the MSE of LW. But 
starting at level 20%, the MSE of MI goes down, 
and MI still works well when a lot of observations 
are missing, like 30% or 40%. 
 
 The RB for each sample size  

The following section is showing the RB at each 
sample size as previously discussed. With respect to 
figure 4, it is to introduce the RB for the 
estimator𝛷̂with GMM. The estimation compares 
LW imputation and MI using missing observation 
levels of 10%, 20%, 30%, and 40%. It was found 
that the RB of the MI method is more efficient than 
the LW imputation method for most levels of 
missing observations, except for level 20%, where 
the RB in both methods is about the same. This 
means that the RB for the MI method gets smaller 
and more efficient at level 20%. At a sample size of 
10, it was found that the RB of the MI method is 
more efficient than the LW imputation method at 

missing observations of 10%, 30%, and 40%. 
Overall, the graph shows that MI is more efficient 
than LW at the most of all missing observations 
levels except level 20%. It is shown that the 
difference in RB between LW and MI is so small 
that at this level, the RB in LW and MI is roughly 
approximately equal, which means the RB for the 
MI method is still smaller than the LW method and 
more efficient.  
The estimation provides a sample size of 20, and the 
estimation provides a comparison between LW 
imputation and MI through the missing observations 
of 10%, 20%, 30%, and 40%. The RB of the MI 
method was found to be more efficient than the LW 
imputation method at all missing observation levels. 
The graph shows that the RB for the MI method is 
still smaller than the LW method and more 
efficient.  
Regarding a sample of size 30, it was found that the 
RB of the MI method is more efficient than the LW 
imputation method at all missing observation 
percentages, over all the graph shows that the RB 
for MI method still smaller than LW method so the 
MI is more efficient at all conditions about 
missingness proportions at sample of size 30.  
For a sample of size 40, the RB of MI method is 
more efficient than LW imputation method at all 
missing observation percentages, over all the graph 
shows that the RB for MI method smaller than LW 
method so, it could say that MI is more efficient at 
all cases of missingness proportions at large sample 
size as 40. 
 
 
4 Conclusions 
This paper presented a Monte Carlo simulation 
study to study the two GMM estimators for the 
PVAR models with missing observations. In our 
simulation study, we used various sample sizes 
(small, medium, and large). Furthermore, we ran 
GMM estimation in the full model using full data 
and then we eliminated some observations at multi-
missing levels. We used LW imputation based on 
elimination, and we again ran GMM estimation 
based on the MI at multi-missing levels. We 
compare the proposed estimator with the LW 
estimator based on the MSE and RB criteria. We 
can summarize the final remarks as follows: 
1- It was found that the small samples have a large 
MSE while the large samples has small MSE in 
each of LW and MI methods so, they are lead to the 
negative relation between MSE and sample size 
moreover, over all the results shows that MI method 
provides more efficiency than LW at all sample 
sizes which means when the sample size increase, 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.79

Mohamed R. Abonazel, 
Mohamed Abdallah, El-Housainy A. Rady

E-ISSN: 2224-2880 676 Volume 21, 2022



the MSE for MI method becomes smaller than LW 
method when the observations are missing so our 
conclusion is the MI method in our estimator is 
more efficient than the LW. 

 
 
 

Fig. 3: MSE of 𝛷̂ at various sample size 
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Fig. 4: RB of 𝛷̂ at various sample size 

 
2- When we evaluate the RB among the various 
sample sizes, It was found that when the sample size 
increase, the value of RB decrease in both 
imputation methods LW and MI moreover, the 
results are show that MI method progress RB less 
than LW method so, we can says that the MI is more 
optimal than LW at all sample sizes which means 

when the sample size increase, the RB for MI 
method becomes smaller than LW method even 
though the missing observations at very small 
samples. 
3- From  studying the results of  MSE for the 
estimator 𝛷̂ with GMM estimation of PVAR among 
the various missing percentages as a comparison 
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between LW imputation and MI through the missing 
observations 10%, 20%, 30%, and 40% with 
different sample sizes,  it was found that the MSE of  
MI method is more efficient than LW imputation 
method at all missing observation levels except very 
few cases whose studied , over all the results 
supports  that the MSE for MI method  
4- Becomes still smaller than LW method and so 
we can say that the MI more efficient than LW 
particularly starting of missing level 20%, the MSE 
in MI is more efficient. 
5- By evaluating the results of the RB in our study 
using GMM estimation of PVAR model with 
several sample of sizes and the estimation provides 
comparison between LW imputation and MI 
through the missing observations 10%, 20%, 30%, 
and 40%, it was found that the RB of MI method is 
less than LW imputation method at most of all 
missing observation percentages, over all those 
results are introduce the MI as optimal method for 
handling the missing observations in PVAR models. 
6- Finally, we can conclude that the MI method is 
more efficient than LW method in PVAR models if 
the data set contains missing pattern and these 
results are compatible with the estimator was 
presented in of Rady et al. [1].  
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Appendix  

Table A.1 The MSE for the estimator 𝜙̑with GMM estimation of PVAR with levels of missing observations 
and comparison between LW and MI at n=5 

Missing% 10% 20% 30% 40% 
Estimate LW MI LW MI LW MI LW MI 
𝜙̑11 8.4189 6.3545 8.5974 7.3949 7.0723 7.0002 6.8345 6.1951 
𝜙̑12 14.6600 15.1800 13.3700 10.8200 9.7000 9.0800 6.1100 5.2800 
𝜙̑13 12.1800 12.0200 9.2700 7.1800 6.0630 5.7200 5.0340 3.9100 
𝜙̑21 20.4200 19.6000 12.9300 12.8400 10.5800 11.0400 10.1000 9.8100 
𝜙̑22 36.0100 32.0500 26.5200 26.8200 27.9500 28.5600 37.3700 27.5300 
𝜙̑23 32.0800 27.3500 34.4800 30.3800 32.7900 30.4900 35.6900 25.8100 
𝜙̑31 39.7700 37.4300 28.4900 26.3900 30.3700 28.7600 25.1500 25.0200 
𝜙̑32 27.8300 22.6400 19.7500 15.1400 15.9100 14.5800 29.3900 28.1200 
𝜙̑33 19.2300 11.3800 31.1500 6.4500 26.6600 35.2000 17.8800 13.4400 

 

Table A.2 The RB for the estimator 𝜙̑with GMM estimation of PVAR with levels of missing observations and 
comparison between LW and MI at n=5 

Missing% 10% 20% 30% 40% 
Estimate LW MI LW MI LW MI LW MI 
𝜙̑11 214.28 189.06 204.80 179.43 204.65 201.42 181.43 176.26 
𝜙̑12 77.61 81.14 88.62 82.75 93.44 91.80 96.23 85.31 
𝜙̑13 122.29 107.16 129.58 114.34 124.10 111.90 119.67 116.71 
𝜙̑21 166.19 180.66 179.81 196.75 175.50 173.73 137.11 187.54 
𝜙̑22 84.43 83.12 88.53 87.03 98.61 97.33 96.51 90.27 

𝜙̑23 123.47 103.73 134.51 123.84 144.14 143.53 127.26 100.44 

𝜙̑31 114.02 95.87 109.99 109.06 107.76 102.21 125.82 126.07 

𝜙̑32 257.79 165.39 251.49 189.14 211.17 133.66 195.40 139.55 
𝜙̑33 238.52 122.17 222.95 199.13 223.42 206.63 418.23 331.00 

 

  

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.79

Mohamed R. Abonazel, 
Mohamed Abdallah, El-Housainy A. Rady

E-ISSN: 2224-2880 680 Volume 21, 2022

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US


Table A.3 The MSE for the estimator 𝜙̑with GMM estimation of PVAR with levels of missing observations 
and comparison between LW and MI at n=10 

Missing% 10% 20% 30% 40% 
Estimate LW MI LW MI LW MI LW MI 
𝜙̑11 2.5870 2.3250 8.2870 8.0700 7.2450 6.5421 5.9550 2.0210 
𝜙̑12 11.1900 9.7400 8.9790 7.0000 6.0621 3.9600 3.4800 2.9800 
𝜙̑13 10.5300 10.1700 8.9700 8.6500 5.2400 5.0710 4.8010 3.2300 
𝜙̑21 15.7300 13.4600 12.0100 11.9000 9.9230 8.9000 8.0460 7.6600 
𝜙̑22 30.0000 21.1200 25.8400 23.1000 22.2100 15.5400 25.0600 19.7400 
𝜙̑23 17.8000 8.7400 28.5400 20.2700 29.8000 22.2600 21.3800 16.2100 
𝜙̑31 27.5000 27.8500 22.4700 21.7900 22.8800 22.2200 24.2200 19.7100 
𝜙̑32 26.0400 21.4700 15.8100 11.0700 15.7700 10.0400 26.6400 11.3100 
𝜙̑33 12.1000 10.6800 30.6600 21.1500 22.4800 21.0700 15.2600 12.0100 

 

Table A.4 The RB for the estimator 𝜙̑with GMM estimation of PVAR with levels of missing observations and 
comparison between LW and MI at n=10 

Missing% 10% 20% 30% 40% 
Estimate LW MI LW MI LW MI LW MI 
𝜙̑11 137.11 96.37 124.62 118.08 192.70 145.66 166.44 108.49 
𝜙̑12 66.06 60.04 77.89 69.56 80.85 77.48 94.38 81.25 
𝜙̑13 130.56 98.54 113.73 102.53 114.09 104.35 120.73 98.45 
𝜙̑21 127.51 124.30 177.02 98.78 153.39 110.82 134.51 82.56 
𝜙̑22 73.48 60.20 78.38 74.40 93.84 83.99 77.62 63.37 
𝜙̑23 99.93 94.41 132.95 90.24 125.25 103.07 122.39 92.52 
𝜙̑31 87.45 86.51 98.86 79.01 97.34 84.30 105.96 102.68 
𝜙̑32 105.20 96.86 118.36 109.68 150.49 99.05 127.40 124.48 
𝜙̑33 203.18 114.38 179.09 165.22 219.91 138.13 298.33 216.06 

 

Table A.5 The MSE for the estimator 𝜙̑with GMM estimation of PVAR with levels of missing observations 
and comparison between LW and MI at n=20 

Missing% 10% 20% 30% 40% 
Estimate LW MI LW MI LW MI LW MI 
𝜙̑11 0.2374 0.1421 0.3274 0.1183 0.4327 0.0809 0.8377 0.0752 

𝜙̑12 0.1354 0.1170 0.1833 0.1304 0.2552 0.1150 0.6729 0.1125 

𝜙̑13 0.0362 0.0307 0.1503 0.0316 0.9296 0.0326 4.2738 0.0331 

𝜙̑21 0.2474 0.1532 0.3429 0.1433 0.4521 0.1044 0.8321 0.1092 

𝜙̑22 0.1749 0.1669 0.1967 0.1608 0.2804 0.1549 0.9990 0.1550 

𝜙̑23 0.0398 0.0367 0.1623 0.0384 1.0208 0.0396 4.5601 0.0402 

𝜙̑31 8.1621 5.1458 9.5889 5.3978 11.2147 4.3870 15.0301 5.1165 

𝜙̑32 3.4784 2.9226 4.3058 2.8593 6.2234 2.0904 13.5185 2.6569 

𝜙̑33 0.9914 0.4992 5.2104 0.4346 12.8616 0.4309 14.7841 0.3520 
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Table A.6 The RB for the estimator 𝜙̑with GMM estimation of PVAR with levels of missing observations and 
comparison between LW and MI at n=20 

Missing% 10% 20% 30% 40% 
Estimate LW MI LW MI LW MI LW MI 
𝜙̑11 127.47 87.65 111.39 102.17 135.52 112.80 96.56 89.07 
𝜙̑12 43.37 38.38 68.56 61.24 66.70 66.17 70.65 62.66 
𝜙̑13 75.95 87.24 108.78 90.89 109.42 92.13 95.35 93.64 
𝜙̑21 101.59 77.20 115.33 75.52 126.99 66.33 116.82 67.26 
𝜙̑22 67.10 54.63 78.55 74.72 88.63 77.76 76.29 59.54 
𝜙̑23 77.90 90.24 116.58 84.71 101.99 96.63 98.06 97.42 

𝜙̑31 86.44 85.06 79.86 76.46 82.49 79.31 104.37 100.67 
𝜙̑32 79.58 62.79 94.03 80.97 94.20 90.35 107.34 104.43 
𝜙̑33 139.83 108.75 122.44 114.42 177.34 111.59 259.59 102.81 

 

Table A.7 The MSE for the estimator 𝜙̑with GMM estimation of PVAR with levels of missing observations 
and comparison between LW and MI at n=30 

Missing% 10% 20% 30% 40% 
Estimate LW MI LW MI LW MI LW MI 
𝜙̑11 0.0367 0.0181 0.0672 0.2124 0.3860 0.2480 0.1045 0.2550 
𝜙̑12 0.0483 0.0312 0.0868 0.0925 0.1231 0.0956 0.1494 0.1005 
𝜙̑13 0.0007 0.0004 0.0028 0.0005 0.0084 0.0006 0.0185 0.0006 
𝜙̑21 0.0356 0.1701 0.0639 0.0583 0.0908 0.0803 0.1101 0.2046 
𝜙̑22 0.0395 0.0661 0.0701 0.0626 0.1031 0.0566 0.1263 0.0550 
𝜙̑23 0.0008 0.0008 0.0028 0.0010 0.0080 0.0012 0.0207 0.0012 

𝜙̑31 0.9028 1.0659 1.5729 2.1551 2.2108 2.0048 2.9942 2.0549 
𝜙̑32 1.6281 1.0806 1.8222 1.5683 1.9443 1.7593 2.0253 0.2317 
𝜙̑33 0.0262 0.0096 0.0722 0.0131 0.1518 0.0188 0.3511 0.0225 

 

Table A.8 The RB for the estimator 𝜙̑with GMM estimation of PVAR with levels of missing observations and 
comparison between LW and MI at n=30 

Missing% 10% 20% 30% 40% 
Estimate LW MI LW MI LW MI LW MI 
𝜙̑11 25.44 22.31 34.51 23.05 37.69 26.66 41.01 38.60 
𝜙̑12 35.98 34.95 48.35 42.42 57.08 53.79 60.93 55.33 
𝜙̑13 68.02 81.90 102.39 83.99 92.21 61.94 66.58 65.93 
𝜙̑21 53.85 50.36 73.11 74.80 84.86 48.83 92.58 50.67 
𝜙̑22 67.01 54.30 77.30 72.37 64.43 63.48 66.15 58.22 

𝜙̑23 66.11 66.08 105.73 74.48 98.12 82.31 94.39 81.23 

𝜙̑31 53.80 44.49 44.88 42.53 53.11 57.62 60.70 62.41 

𝜙̑32 30.67 28.65 39.03 40.49 45.64 43.34 65.22 60.97 
𝜙̑33 123.89 98.61 106.69 95.64 161.66 96.22 184.57 87.48 
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Table A.9 The MSE for the estimator 𝜙̑with GMM estimation of PVAR with levels of missing observations 
and comparison between LW and MI at n=40 

Missing% 10% 20% 30% 40% 
Estimate LW MI LW MI LW MI LW MI 
𝜙̑11 0.0920 0.0900 0.0300 0.1300 0.1500 0.1200 0.1700 0.1300 
𝜙̑12 0.0300 0.0211 0.0410 0.0400 0.0700 0.0333 0.1000 0.0400 
𝜙̑13 0.0058 0.0001 0.0025 0.0018 0.0020 0.0011 0.0012 0.0008 
𝜙̑21 0.0200 0.0126 0.1000 0.0900 0.0813 0.0800 0.0900 0.0813 
𝜙̑22 0.0200 0.0300 0.0300 0.0200 0.0400 0.0211 0.0800 0.0200 

𝜙̑23 0.0008 0.0007 0.0008 0.0007 0.0006 0.0005 0.0006 0.0002 

𝜙̑31 0.3800 0.1900 0.7700 0.7090 1.0900 0.8500 1.7100 1.0000 

𝜙̑32 0.1600 0.0330 0.3500 0.5100 0.9540 0.7400 0.8600 0.0382 
𝜙̑33 0.0100 0.0091 0.0200 0.0100 0.0300 0.0200 0.0700 0.0300 

 

Table A.10 The RB for the estimator 𝜙̑with GMM estimation of PVAR with levels of missing observations and 
comparison between LW and MI at n=400 

Missing% 10% 20% 30% 40% 
Estimate LW MI LW MI LW MI LW MI 
𝜙̑11 25.41 19.33 28.92 22.12 37.01 22.81 47.20 35.24 
𝜙̑12 34.97 22.98 43.02 41.08 57.57 45.96 68.16 45.74 
𝜙̑13 59.63 54.69 51.40 24.62 81.08 57.09 59.15 58.51 
𝜙̑21 52.47 48.87 72.72 60.98 71.32 45.18 90.67 47.01 
𝜙̑22 48.96 45.48 77.32 67.07 56.65 46.66 59.26 40.93 
𝜙̑23 65.79 62.68 99.34 71.31 96.76 73.71 89.17 73.92 

𝜙̑31 24.94 22.94 37.44 36.30 44.69 37.34 56.14 40.81 
𝜙̑32 36.01 22.83 34.63 29.73 39.71 34.99 39.61 37.64 
𝜙̑33 40.51 33.67 58.67 50.07 76.52 60.12 109.84 72.81 
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