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Abstract: In this paper, we investigate the non-linear loaded two-dimensional Benjamin-Ono equation
by the functional variable method. The advantage of this method is reliability and efficiency. Using this
method we obtained exact solitary and periodic wave solutions. The solving procedure is very simple and
the traveling wave solutions of this equation are demonstrated by hyperbolic and trigonometric functions.
The graphical representations of some obtained solutions are demonstrated to better understand their
physical features.
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1 Introduction
Non-linear partial differential equations are im-
portant equations used in modeling many phe-
nomena in science and engineering applications.
One of the most important nonlinear evolution
equation is the Benjamin-Ono(BO) equation. In
1967, the general theoretical treatment of a new
class of long stationary waves with finite ampli-
tude was studied by Benjamin and Ono developed
Benjamin’s theory in which was taken a class of
non-linear evolution equations. The BO equation
describes internal waves between two stratified
homogenous fluids with different densities, where
one of the layers is infinitely deep[1, 2, 3, 4]. This
equation is expressed in the following basic form

utt + α
(
u2

)
xx

+ βuxxxx + γuyyyy = 0. (1)

where α, β and γ are non zero constants.
The literature is rich in different studies to

find special solutions of the nonlinear BO equa-
tion, such as the existence of multi-soliton solu-
tion by several authors[1, 5], existence of peri-
odic solutions by Ambrose and Wilkening[6], and
certain discrete solutions by Tutiya[7]. We can
indicate several methods that can be used to ob-
tain exact special solutions to the non-linear BO
equation, such as, numerical method[8, 9], Hirota
bilinear method[10], extended truncated expan-
sion method[11], generalization of the homoclinic
breather method[12], tanh expansion method[13],
constructive method[14] and others[15, 16, 17, 18,
19, 20, 21] are used to derive accurate solutions.

In this paper, we consider the following the
non-linear loaded two-dimensional BO equation

utt − α
(
u2

)
xx − βuxxxx − γuyyyy+

+φ(t)u(0, 0, t)uxx = 0, (2)

where u(x, y, t) is unknown function, x ∈ R, y ∈
R, t ≥ 0, α, β and γ are any constants, and φ(t)
are the given real continuous functions.

We investigate the non-linear loaded two-
dimensional BO equation by the functional
variable method(FVM). The advantage of this
method is reliability and efficiency. Using this
method we obtained exact solitary and periodic
wave solutions. The solving procedure is very
simple and the traveling wave solutions of this
equation are demonstrated by hyperbolic and
trigonometric functions. The graphical represen-
tations of some obtained solutions are demon-
strated to better understand their physical fea-
tures.

In recent years, due to the intensive study
of the problems of optimal management of the
agroecosystem for instance, the problem of long-
term forecasting and regulation of groundwater
levels and soil moisture interest in loaded equa-
tions has increased significantly. Among the
works devoted to loaded equations, one should
especially note the works of A. Kneser[22], L.
Lichtenstein[23], A. M. Nakhushev[24], and oth-
ers. A complete explanation of solutions of the
nonlinear loaded PDEs and their uses can be
found in papers[25, 26, 27, 28, 29, 30].

The article is organized as follows. In Sec-
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tion 2, we present some basic information about
the description of the functional variable method.
Section 3 is devoted to solutions of the non-linear
loaded two-dimensional BO equation. In Section
4, we present the graphical representation of the
non-linear loaded two-dimensional BO equation.
Finally, conclusions are presented in Section 5.

2 Explanation of the functional
variable method

We consider NPDE of the form

P (u, ux, uy, ut, uxx, utt, uyy, uxy, ...) = 0, (3)

where P is a polynomial in u = u(x, y, t) and its
partial derivatives.

Step 1. It is used the following transforma-
tion for a travelling wave solution of eq.3:

u(x, y, t) = u(ξ), (4)

with

∂u

∂x
= p

du

dξ
,
∂u

∂y
= q

du

dξ
,
∂u

∂t
= −k

du

dξ
, ..., (5)

where

ξ = px+ qy − kt, p = const, q = const (6)

and k is the speed of the traveling wave.
Substituting eq.4 and eq.5 into NPDE eq.3 we

get the following ODE of the form

F (u, u′, u′′, u′′′, ...) = 0, u′ =
du

dξ
(7)

here F is a polynomial in u(ξ), u′(ξ), u′′(ξ),
u′′′(ξ), ....

Step 2. Let

u′ = F (u). (8)

It follows that ∫
du

F (u)
= ξ + ξ0, (9)

we suppose ξ0 = 0 for convenience. Now we can
calculate higher order derivatives of u:

u′′ = 1
2
d(F 2(u))

du

u′′′ = 1
2
d2(F 2(u))

du2

√
F 2(u)

u′′′′ = 1
2

[
d3(F 2(u))

du3 F 2(u) + d2(F 2(u))
du2

d(F 2(u))
du

]
(10)

Step 3. Putting eq.10 into eq.7, we obtain

H(u,
dF (u)

du
,
d2F (u)

du2
,
d3F (u)

du3
, ...) = 0. (11)

The key idea of this particular form eq.11 is of
special interest because it admits analytical so-
lutions for a large class of nonlinear wave type
equations. After integration, eq.11 provides the
expression of F and this, together with eq.8, give
solutions to the original problem.

3 Solutions of the non-linear
loaded two-dimensional
Benjamin-Ono equation

We will find the exact solution of the non-linear
loaded two-dimensional BO equation by the func-
tional variable method. For doing this, in eq.2,
let use the following transformation.

u(x, y, t) = u(ξ), ξ = px+ qy − kt. (12)

where p = const, q = const and k is the speed of
the traveling wave.

It is easy to show that after transformation
(12), the nonlinear partial differential eq.2 can be
transformed into an ordinary differential equation
of the form

u′′ =
k2 + φ(t)u(0, 0, t)p2

βp4 + γq4
u− αp2

βp4 + γq4
u2. (13)

According to (10), eq.13 can be written as follows
1
2
d(F 2(u))

du = k2+φ(t)u(0,0,t)p2

βp4+γq4 u−

− αp2

βp4 + γq4
u2. (14)

Integrating eq.14 and after simple simplification,
we get

F (u) = u
√
µ(t)− ηu. (15)

where µ(t) = k2+φ(t)u(0,0,t)p2

βp4+γq4 , η = 2αp2

3(βp4+γq4) .

From eq.8 and eq.15 we deduce that

du

u
√
µ(t)− ηu

= dξ. (16)

After integrating eq.16, we have

u(x, y, t) = −6(k2+φ(t)u(0,0,t)p2)
αp2 ×

×


e

√
k2+φ(t)u(0,0,t)p2

βp4+γq4
(px+qy−kt)1− e

√
k2+φ(t)u(0,0,t)p2

βp4+γq4
(px+qy−kt)

2


. (17)

The function u(0, 0, t) can be easily obtained
based on expression eq.17.
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We get two types of solutions of the non-linear
loaded two-dimensional BO equation eq.2 as fol-
lows:

1) When k2+φ(t)u(0,0,t)p2

βp4+γq4 > 0, we get the soli-

tary solution

u(x, y, t) = −6(k2+φ(t)u(0,0,t)p2)
αp2 ×

×
(
cth2

(√
µ(t)

px+ qy − kt

2

)
− 1

)
. (18)

where µ(t) = k2+φ(t)u(0,0,t)p2

βp4+γq4 .

2) When k2+φ(t)u(0,0,t)p2

βp4+γq4 < 0, we get the peri-

odic solution
u(x, y, t) = 6(k2+φ(t)u(0,0,t)p2)

αp2 ×

×
(
ctg2

(√
µ(t)

px+ qy − kt

2

)
+ 1

)
. (19)

where µ(t) = k2+φ(t)u(0,0,t)p2

βp4+γq4 .

The graphs of solutions of the non-linear
loaded two-dimensional BO equation by using
distinct values of random parameter will be
demonstrated.

If k = −1, α = −6, β = 1, γ = 1, φ(t) = t,
p = 1, q = 1 then we have

u(x, y, t) = (1 + tu(0, 0, t))×

×

cth2

√
1 + tu(0, 0, t)

2

x+ y + t

2

− 1

 .

(20)
If k = −1, α = 6, β = −1, γ = −1, φ(t) =

t2, p = 1, q = 1, then we have
u(x, y, t) =

(
1 + t2u(0, 0, t)

)
×

×

ctg2

√
(1 + t2u(0, 0, t))

2

x+ y + t

2

+ 1

 .

(21)

4 Graphical representation of
the non-linear loaded
two-dimensional
Benjamin-Ono equation

After visualizing the graphs of the soliton solu-
tions (Figure 1) and the periodic wave solutions
(Figure 2), the use of distinct values of random
parameters is demonstrated to better understand
their physical features. It is known that the pa-
rameters included in the solutions have a deep
connection with the amplitudes and velocities. A
soliton or solitary wave in the concept of mathe-
matical physics defined as a self-reinforcing wave

package that retains its shape. It propagates at a
constant amplitude and velocity. Solitons are so-
lutions of a common class of nonlinearly partially
differential equations with weak linearity describ-
ing physical systems. The existence of periodic
travelling waves usually depends on the parame-
ter values in a mathematical equation. If there is
a periodic travelling wave solution, then there is
typically a family of such solutions, with different
wave speeds. In this regard, we can explore some
of the non-linear phenomena that take place in
physics, applied mathematics and technology.

Figure 1: Solitary wave solution of the non-linear
loaded two-dimensional BO equation for k = −1,
α = −6, β = 1, γ = 1, φ(t) = t, p = 1, q = 1.

Figure 2: Periodic wave solution of the non-linear
loaded two-dimensional BO equation for k = −1,
α = 6, β = −1, γ = −1, φ(t) = t2, p = 1,
q = 1.

5 Conclusion
The functional variable method has been success-
fully used to obtain the soliton solutions and the
periodic solutions of the non-linear loaded two-
dimensional BO equation. We have shown that
this method can provide a useful way to efficiently
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find the exact structures of solutions to a variety
of non-linear wave equations. After visualizing
the graphs of the soliton solutions and the peri-
odic wave solutions, the use of distinct values of
random parameters is demonstrated to better un-
derstand their physical features. It is known that
the parameters included in the solutions have a
deep connection with the amplitudes and veloci-
ties. In this regard, we can explore some of the
non-linear phenomena that take place in physics,
applied mathematics and technology. We con-
clude that when revealing the internal mecha-
nisms of physical phenomena, it will be necessary
to find an exact solution to the problem.
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