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Abstract: Let’s consider a primitive strongly regular graph G and it’s adjacency matrix A. Next we consider the
Euclidean subalgebra A of the Euclidean Jordan algebra of real symmetric matrices of order n, with the Jordan
product and with the inner product of two matrices as being the usual trace of two matrices. Finally, we make a
spectral analysis of an Hadamard series of an element of A to establish some new conditions over the spectrum
and the parameters of the primitive strongly regular graph G.
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1 Introduction

For a precise description of Euclidean Jordan algebras
one must cite the monograph book, Analysis on Sym-
metric cones, of Jacques Faraut and Adam Korányi,
see [1].

The Euclidean jordan algebras become a good
theoretical environment to develop may applications
in many branches of research of mathematics, see for
instance [2–12] but our main goal is recurring to this
theory to develop some properties over the spectrum
of some discrete structures like the strongly regular
graphs and the association schemes, see for instance
[13–18].

This paper is organized as follows. In the section
2 we present some notes about Euclidean Jordan alge-
bras, namely the more relevant notions about finite di-
mensional real Euclidean Jordan algebras. In the fol-
lowing section we present some notes about strongly
regular graphs necessary for a clear exposition of this
paper. Finally, in the last section we present two new
inequalities over the parameters and the spectrum of
a primitive strongly regular graph in the environment
of Euclidean Jordan algebras. On one new inequality
we establish a new relation between the parameters
and one eigenvalue of a strongly regular graph, see
inequality (29), and in the other new inequality we es-
tablished a relation between only the parameters of a
regular graph, see the inequality (30).

2 Some Notes on Euclidean Jordan
Algebras

In this section we present the more relevant definitions
and results of the theory of Euclidean Jordan algebras
relevant for this paper.

For good monographs about Jordan algebras we
must cite the Book, “A taste of Jordan Algebras” writ-
ten by Kevin McCrimmon, see [19], and “Statistical
Applications of Jordan Algebras” written by James.
D. Malley, see [20].

A real finite dimensional Jordan algebra A is an
algebra with an operation of multiplication of vectors
? such that for any of its elements x and y we have:

x ? y = y ? x,

x2? ? (x ? y) = x ? (x2? ? y),

where x2? = x ? x. And for any natural number k the
powers of order k, are defined in the following way:

x0? = e, x1? = x,

xk? = x ? x(k−1)?, k ≥ 2.

An element e of a real finite dimensional Eu-
clidean Jordan algebra A is an unit element of A if
e ? x = x ? e = x for any element x in A.

Example 1 Let’s consider the finite dimensional al-
gebraA over R of real symmetric matrices of order n
with the usual operations of addiction of matrices and
of multiplication of a matrix by a real number. Then,
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considering the operation ?, instead of the usual op-
eration of multiplication of matrices, defined for any
x and y in A by x ? y = xy+yx

2 , then A is a Jordan
algebra. Indeed, let x and y be elements of A, then
we have the following calculations:

x ? y =
xy + yx

2
=
yx+ xy

2
= y ? x.

Firstly, we must say that for any element x of A we
have x2? = x2 where x2 represent the usual square
of a symmetric matrix of order n. Indeed, x2? =
xx+xx

2 = x2+x2

2 = x2.

Next, we will show that x2??(x?y) = x?(x2??y).
Since, we have:

x2? ? (x ? y) =
x2?(x ? y) + (x ? y)x2?

2

=
x2
(xy+yx

2

)
+
(xy+yx

2

)
x2

2

=
x2(xy + yx) + (xy + yx)x2

4

=
x2xy + x2yx+ xyx2 + yxx2

4

=
x3y + x2yx+ xyx2 + yx3

4
,

and since

x ? (x2? ? y) =
x(x2? ? y) + (x2? ? y)x

2

=
x
(
x2y+yx2

2

)
+
(
x2y+yx2

2

)
x

2

=
x(x2y + yx2) + (x2y + yx2)x

4

=
x3y + xyx2 + x2yx+ yx3

4

=
x3y + x2yx+ xyx2 + yx3

4
.

So, we have proved that x2??(x?y) = x?(x2??x).
for any x and y of A. And, therefore we conclude that
A is a Jordan real. We will denote sometimes this Eu-
clidean Jordan algebra A by the notation Sym(n,R).

A real finite dimensional Euclidean Jordan algebra is
a real finite dimensional Jordan algebra equipped with
the multiplication of vectors ?, and provided with an
inner product •|• such that for any three of it’s ele-
ments x,y, and z the equality (1) is verified.

(x ? y)|z = y|(x ? z). (1)

Example 2 Let’s consider the Jordan algebra A =
Sym(n,R), equipped with the vector operation ? such

that x?y = xy+yx
2 for any x and y ofA, and provided

with the inner product •|• such that x|y = trace(x?y)
for any elements x and y ofA. ThenA is an Euclidean
Jordan algebra, before showing that we will prove that
trace(x ? y) = trace(xy) for any two of it’s elements
x and y.

Indeed, we have

trace(x ? y) = trace(
xy + yx

2
)

=
1

2
trace(xy + yx)

=
1

2
(trace(xy) + trace(yx))

=
1

2
(trace(xy) + trace(xy))

=
1

2
(2trace(xy))

= trace(xy).

Now, we consider a natural number k, and x, y and z
elements of A. The powers of order k of the element
x, xk? are defined in following way.

x0? = e,

x1? = x,

xk? = x ? x(k−1)?, k ≥ 2.

Next, we will show that (x ? y)|z = y|(x ? z). So, we
have the following calculations.

(x ? y)|z = trace
(
(x ? y)z + z(x ? y)

2

)
= trace((x ? y)z)

= trace
((

xy + yx

2

)
z

)
= trace

(
(xy)z + (yx)z

2

)
= trace

(
x(yz)

2

)
+ trace

(
(yx)z

2

)
= trace

(
(yz)x

2

)
+ trace

(
y(xz)

2

)
= trace

(
y(zx)

2

)
+ trace

(
(xz)y

2

)
= trace

(
y(zx)

2

)
+ trace

(
y(xz)

2

)
= trace

(
y(xz)

2

)
+ trace

(
y(zx)

2

)
= trace

(
y
xz + zx

2

)
= trace

((
y xz+zx2

)
+ xz+zx

2 y

2

)
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= trace
(
y ?

(
xz + zx

2

))
= trace (y ? (x ? z))
= y|(x ? z)

.

The unit of this Euclidean Euclidean Jordan algebra
is the identity matrix e of order n. Indeed, we have:

e ? x =
ex+ xe

2
=
x+ x

2
=

2x

2
= x = x ? e.

Let A be a n dimensional real Euclidean Jordan
algebra with the vector product ?, the inner product
•|• and with the unit e. ThenA is a power associative
algebra, this is for any of it’s element x the algebra
spanned by x and e is associative.

The rank of an element a in A is the least natural
number k such that {e, a1?, . . . , ak?} is a linearly de-
pendent set and we write rank(a) = k. Since for any
a ∈ A we have rank(x) ≤ n, then we define the rank
of A as being the natural number r = rank(A) =
max{rank(a) : a ∈ A}. An element a of A is reg-
ular if rank(a) = r, Let x be a regular element of
A and r = rank(x). Then, there exist real scalars
β1(x), β2(x), . . . , βr−1(x) and βr(x) such that

xr? − β1(x)xr−1? + · · ·+ (−1)rβr(x)x0? = 0, (2)

where 0 is the null vector of A. Taking into account
(2) we conclude that the polynomial

p(x, λ) = λr − β1(x)λr−1 + · · ·+ (−1)rβr(x) (3)

is the minimal polynomial of x. When x is not regular
the minimal polynomial of x has a degree less than
r. The roots of the minimal polynomial of x are the
eigenvalues of x.

An element x ∈ A is an idempotent if x2? = x.
Two idempotent a and b are orthogonal if a ? b = 0.
The set {g1, g2, . . . , gl} is a complete system of or-
thogonal idempotent if g2?i = gi, for i = 1, . . . , l, gi ?
gj = 0, if i 6= j and 1 ≤ i, j ≤ l, and

∑l
i=1 gi = e.

An idempotent is primitive if is a nonzero idempotent
ofA and cannot be written as a sum of two nonzero or-
thogonal idempotent. We say that {g1, g2, . . . , gk} is a
Jordan frame if {g1, g2, . . . , gk} is a complete system
of orthogonal idempotent such that each idempotent
is primitive.

Example 3 Let’s consider the Euclidean Jordan al-
gebra A = Sym(n,R) with the Jordan product ? such
that x ? y = xy+yx

2 ,∀x, y ∈ A and the inner product
•|• such that for any x and y elements of A we have
x|y = trace(x ? y). Let’s consider i and j be natu-
ral numbers such that 1 ≤ i, j ≤ n, the matrices Eij

of A such that the only non null entry of Eij is the
entry ij and it’s value is 1. Then, the set of matrices
B1 = {E11, E22, · · · , Enn} is a Jordan frame of A
and the set of matrices B2 = {E11 + E22,

∑n
i=3Eii}

is a complete system of orthogonal idempotent of A.

Theorem 1 ( [1], p. 43). Let V be a real Eu-
clidean Jordan algebra. Then for x in V there exist
unique real numbers λ1, λ2, . . . , λk, all distinct, and
a unique complete system of orthogonal idempotent
{g1, g2, . . . , gk} such that

x = λ1g1 + λ2g2 + · · ·+ λkgk. (4)

The numbers λj’s of (4) are the eigenvalues of x and
the decomposition (4) is the first spectral decomposi-
tion of x.

Theorem 2 ( [1], p. 44). Let V be a real Euclidean
Jordan algebra with rank(V) = r. Then for each x
in V there exists a Jordan frame {g1, g2, · · · , gr} and
real numbers λ1, · · · , λr−1 and λr such that

x = λ1g1 + λ2g2 + · · ·+ λrgr. (5)

The decomposition (5) is called the second spectral
decomposition of x.

3 Some results about strongly regu-
lar graphs

Along this paper we consider only non empty, simple
and non complete graphs. By simple graphs we mean
graphs without loops and parallel edges. Strongly reg-
ular graphs were firstly introduced by R. C. Bose in
the paper [21].

One says that G is the complement of the graph
G if it has the same set o vertices asG and if any of its
two distinct vertices are adjacent vertices in G if and
only if are non adjacent vertices in G.

A non null and non complete graph G, whose
order is greater or equal than 3 is called a strongly
regular graph with parameters (n, k;λ, µ) if G is
k−regular graph such that any pair of adjacent ver-
tices have λ common neighbor vertices and any pair
of non adjacent vertices have µ common neighbor ver-
tices.

If G is a (n, k;λ, µ) strongly regular graph then
the complement graph of G,G is a (n, n− k− 1;n−
2k + µ− 2, n− 2k + λ) strongly regular graph.

Let’s consider a graph G. We call a set of edges
and vertices a walk of vertices in G to every sequence
v0e1v1e2 . . . el−1vl−1elvl such that v1, v2, . . . , vl−1
and vl are vertices and e1, e2 . . . , el−1, el are edges of
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G and each edge ei has extreme vertices vi−1 and ver-
tice vi for i = 1, · · · , l. The walk is closed if v0 = vl
and is open otherwise. One says that a walk in G is a
path if all the vertices vis are distinct with the excep-
tion of the initial vertex v0 and the final vertex vl.

One says that a path is a closed path or a cycle if
the initial vertex and final vertex of the path are the
same.

A graph G is connected if for any pair of distinct
vertices exists a path that joins them. A (n, k;λ, µ)
strongly regular graph G is primitive if and only if G
and G are connected. Otherwise one says that G is
disconnected.

A primitive strongly regular graph (n, k;λ, µ) is a
non primitive strongly regular graph if and only if µ =
k or µ = 0. In the following text we only consider
primitive strongly regular graphs.

From now we only consider primitive strongly
regular graphs.

Let G be a (n, k;λ, µ) strongly regular graph.
The adjacency matrix of G, A = [aij ], is a binary ma-
trix of order n such that aij = 1, if the vertex i is adja-
cent to j and 0 otherwise. The adjacency matrix of G
satisfies the equationA2 = kIn+λA+µ(Jn−A−In),
where Jn is the all ones matrix of order n. It is
well known (see, for instance, [22]) that the eigen-
values of A are k, θ and τ , where θ and τ are given
by θ = (λ − µ +

√
(λ− µ)2 + 4(k − µ))/2 and

τ = (λ − µ −
√

(λ− µ)2 + 4(k − µ))/2,(see [22]).
One defines the eigenvalues of G as being the eigen-
values of A. And, we also know that the multiplicities
fθ and fτ of the eigenvalues θ of τ are given respec-
tively by the relations (6) and (7).

fθ =
1

2

(
n− 1 +

2k + (n− 1)(λ− µ)
τ − θ

)
, (6)

fτ =
1

2

(
n− 1− 2k + (n− 1)(λ− µ)

τ − θ

)
. (7)

Since fθ and fτ are integer positive numbers, then the
conditions present on (8) and on (9) are known as in-
tegrability conditions

fθ ∈ N, (8)
fτ ∈ N. (9)

.
In the context of strongly regular graphs one

of the problems to analyse is to know if given
the real numbers n, k, λ and µ if there exists a
(n, k;λ, µ) strongly regular graph. The more refer-
enced admissibility conditions for the existence of a
(n, k;λ, µ) strongly regular graph are the inequalities
(10),(11),(12),(12),(13), and (14).

k(k − 1− a) = (n− k − 1)µ, (10)

(τ + 1)(k + τ + 2θτ) ≤ (k + τ)(θ + 1)2,(11)
(θ + 1)(k + θ + 2θτ) ≤ (k + θ)(τ + 1)2,(12)

n ≤ 1

2
fθ(fθ + 3), (13)

n ≤ 1

2
fτ (fτ + 3), (14)

The inequalities (11) and (12) are known as the
Krein conditions of the strongly regular graph G, and
the inequalities (13) and (14) are known as the abso-
lute bounds. In the next section we establish some
new inequalities over the spectrum of a strongly regu-
lar graph and it’s parameters, over certain conditions,
but relating only the parameters of a strongly regular
graph or only one eigenvalue of the strongly regular
graph and it’s parameters.

4 Some new inequalities over the
parameters of a strongly regular
graph

Let’s G be a primitive (n, k;λ, µ) strongly regular
such that 0 < µ < k − 1, k < n

2 , λ > µ, and ε a posi-
tive real number such that λk + |τ |3 + ε > (k − µ) +
(λ−µ)λ+µk and such that λK+|τ |3+ε > (λ−µ)µ+
µk, A it’s adjacency matrix and finally let’s consider
the 3-dimension Euclidean subalgebraA of rank three
of the Euclidean Jordan algebra Sym(n,R) spanned
by In and the natural powers ofA.Next, let’s consider
the unique Jordan frame B = {G1, G2, G3} where we
have: G1 = 1

nIn + 1
nA + 1

n(Jn − A − In) = Jn
n ,

G2 =
|τ |n+τ−k
n(θ−τ) In +

n+τ−k
n(θ−τ)A+ τ−k

n(θ−τ)(Jn −A− In,
G3 =

θn+k−θ
n(θ−τ) In+

−n+k−θ
n(θ−τ) A+ k−θ

n(θ−τ)(Jn−A− In).
Now, we know thatA2 = kIn+λA+µ(Jn−A−In)
where Jn is the matrix where each of it’s entries is the
real number 1. And so after some algebraic manipula-
tion we conclude that (15) is verified.

A2 = (k − µ)In + (λ− µ)A+ µJn (15)

and therefore we conclude (16)

A3 = (k − µ)A+ (λ− µ)A2 + µkJn). (16)

And, noting that

A2 = kIn + λA+ µ(Jn −A− In
we deduce the equalityA3 = (k−µ)A+(λ−µ)(kIn+
λA+ µ(Jn −A− In)) +µkJn

Hence, we can write the inequality (17)

A3 + |τ |3In = (λk + |τ |3)In +
+ ((k − µ) + (λ− µ)λ+ µk)A+

+ ((λ− µ)µ+ µk)(Jn −A− In). (17)
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Now, since λk+|τ |3+ε > (k−µ)+(λ−µ)λ+µk
and λK+|τ |3+ε > (λ−µ)µ+µk then, let’s consider

the Hadammard series S =
∑+∞

k=0

(
A3+|τ |3In
λk+|τ |3+ε

)k◦
.

Considering the notation

α1 = λk + |τ |3,
α2 = (k − µ) + (λ− µ)λ+ µk,

α3 = (λ− µ)µ+ µk,

α0 = λk + |τ |3 + ε

we can write S = 1
1−α1

α0

In + 1
1−α2

α0

A +

+ 1
1−α3

α0

(Jn−A−In).Next, let’s consider the element

G3 ◦ S of A. So we conclude that (18) is verified.

G3 ◦ S =
θn+ k − θ
n(θ − τ)

1

1− α1
α0

In +

+
−n+ k − θ
n(θ − τ)

1

1− α2
α0

A+

+
k − θ

n(θ − τ)
1

1− α3
α0

(Jn −A− In) (18)

Now, we consider the spectral decomposition q3◦S =
q31G1 + q32G2 + q33G3. We deduce that

q31 =
θn+ k − θ
n(θ − τ)

1

1− α1
α0

+
−n+ k − θ
n(θ − τ)

1

1− α2
α0

k +

+
k − θ

n(θ − τ)
1

1− α3
α0

(n− k − 1). (19)

Since θn+k−θ
n(θ−τ) + −n+k−θ

n(θ−τ) k +
k−θ

n(θ−τ)(n− k − 1) = 0,
from (19) we conclude that:

q31 =
θn+ k − θ
n(θ − τ)

(
1

1− α1
α0

− 1

1− α3
α0

)
+

+
−n+ k − θ
n(θ − τ)

(
1

1− α2
α0

− 1

1− α3
α0

)
k

Now, from a spectral analysis of S3 ◦ S we conclude
that q3i ≥ 0, for i = 1, · · · , 3, and therefore since
q31 ≥ 0 so we can write inequality (20).

θn+ k − θ
n− k + θ

(
1

1− α1
α0

− 1

1− α3
α0

)
≥

≥

(
1

1− α2
α0

− 1

1− α3
α0

)
k. (20)

From an algebraic manipulation of (20) we deduce the
inequality (21).

θn+ k − θ
n− k + θ

(
1

α0 − α1
− 1

α0 − α3

)
≥

≥
(

1

α0 − α2
− 1

α0 − α3

)
k. (21)

So, from (21) we deduce the inequality (22).

θn+ k − θ
n− k + θ

(
α1 − α3

(α0 − α1)(α0 − α3)

)
≥

(
α2 − α3

(α0 − α2)(α0 − α3)

)
k.

(22)

By, rewriting the inequality (22) we obtain the in-
equality (23).

θn+ k − θ
n− k + θ

(
α1 − α3

α0 − α1

)
≥

≥
(
α2 − α3

α0 − α2

)
k. (23)

After, some calculations from (23), and noting that
α0 − α1 = ε and α0 − α2 = (λ− µ)(k − λ)− (k −
µ) + |τ |3 + ε, considering α4 = (λ − µ)(k − λ) −
(k − µ) + |τ |3, we deduce (24).

θn+ k − θ
n− k + θ

(α1 − α3) ≥
ε

α4 + ε
(α2 − α3)k. (24)

Hence, we conclude that

θn+ k − θ
n− k + θ

(α1 − α3) ≥ (α2 − α3)k. (25)

But, since α2−α3 = (k−µ)+(λ−µ)2 and α1−α3 =
(λ−µ)(k−µ)+ |τ |3 then from (25) we deduce (26).

θn+ k − θ
n− k + θ

((λ− µ)(k − µ) + |τ |3)

≥ ((k − µ) + (λ− µ)2)k. (26)

Next, we suppose that k < n
2 , then in this case we

conclude that θn+k− θ ≤ 2θ+1
2 and 1

n−k+θ ≤
2
n and

therefore from (26) we conclude that the inequality
(27) is verified.

(2θ + 1)((λ− µ)(k − µ) + |τ |3)
≥ ((k − µ) + (λ− µ)2)k. (27)

Next, since |τ | < k−µ
λ−µ we obtain (28).

(2θ + 1)((λ− µ)4(k − µ) + (k − µ)3)
≥ ((k − µ)(λ− µ)3 + (λ− µ)5)k. (28)

Then, we have establish the Theorem 3.
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Theorem 3 Let G be a primitive (n, k;λ, µ) strongly
regular graph such that 0 < µ < k−1, λ > µ, k < n

2
then we have the inequality (29).

(2θ + 1)((λ− µ)4(k − µ) + (k − µ)3)
≥ (k − µ)(λ− µ)3 + (λ− µ)5. (29)

Making a similar spectral analysis of the element
G3 ◦ S and analyzing the eigenvalue q33 of G3 ◦ S
we deduce the inequality (30) presented on Theorem
4.

Theorem 4 Let G be a primitive (n, k;λ, µ) strongly
regular graph such that 0 < µ < k−1, λ > µ, k < n

2
then we have the inequality (30).

(((λ− µ)4(k − µ) + (k − µ)3))

≥ 1

3
((k − µ)(λ− µ)3 + (λ− µ)5). (30)

5 Conclusion
The research of this paper allow us to establish some
new inequalities over the parameters of a primitive
strongly regular graph and it’s spectrum, but estab-
lishing relations over only the parameters of a primi-
tive strongly regular graph or over the parameters of a
primitive strongly regular and one of it’s eigenvalues.
In future research we will establish relations but relax-
ing the conditions over the parameters of a primitive
strongly regular graph. To achieve that we will use
spectral analysis of the Hadamard power series of the
power of order n of the adjacency matrix of a primitive
strongly regular graph with an asymptotic algebraic
approach or with others spectral analysis methods.
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