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Abstract: - Regression models are commonly used in prediction, but their predictive performances may be 
affected by the problem called the multicollinearity. To reduce the effect of the multicollinearity, different 
biased estimators have been proposed as alternatives to the ordinary least squares estimator. But there are still 
little analyses of the different proposed biased estimators’ predictive performances. Therefore, this paper 
focuses on discussing the predictive performance of the recently proposed “new ridge-type estimator”, namely 
the Kibria-Lukman (KL) estimator. The theoretical comparisons among the predictors of these estimators are 
done according to the prediction mean squared error criterion in the two-dimensional space and the results are 
explained by a numerical example. The regions are determined where the KL estimator gives better results than 
the other estimators. 
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1 Introduction 
The multiple linear regression model is given by 
 

m X   ,                         (1) 
 
where 𝑚 is an 𝑛 × 1 vector of dependent variable, 𝛽 
is a 1p  vector of unknown parameters, X  is an 
n p  full column rank matrix of non-stochastic 
predetermined regressors,  and   is an 1n  vector 
of 2. . .(0, )i i d   random errors.  
The Ordinary Least Squares (OLS) estimator of the 
unknown parameters in (1) is given by 
 

1ˆ ( ) .OLS X X X m                      (2) 

 
To reduce the effect of multicollinearity problem, 
Hoerl and Kennard [1] proposed the most common 
estimator which is called the ordinary ridge 
regression (ORR) estimator and is defined as 
follows: 
 

1ˆ ( )k X X k X m     ,   0k              (3) 
 
where k  is the biasing parameter.  

Then, Liu [2] proposed another alternative biased 
estimator called the Liu estimator and is defined as 
follows:  
 

1ˆ ˆ( ) ( ) , 0 1d OLSX X X X d d         (4) 
 
where d  is the biasing parameter.  
Recently, Kibria and Lukman [3] proposed a new 
one parameter ridge-type estimator called the 
Kibria-Lukman (KL) estimator and is defined as 
 

1ˆ ˆ( ) ( ) . 0KL OLSX X k X X k k          (5)   
 
Since the predictive performance of the regression 
models which are commonly used in prediction is 
affected by the multicollinearity, different biased 
estimators have been proposed as an alternative to 
the ordinary least squares estimator to reduce its 
effect. But unfortunately there are few studies about 
the predictive performances of the biased 
estimators, as [4, 5, 6, 7, 8, 9, 10, 11]. 
As a consequence, it appears reasonable to evaluate 
the predictive performance of the recently proposed 
KL estimator compared with the OLS, ORR and Liu 
estimators. The rest of this article is organized as 
follows: In section 2, we present the evaluations of 
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the prediction mean squared error (PMSE). In 
section 3, the theoretical comparison of the PMSEs 
in the two dimensional space among the above 
mentioned estimators are given. A numerical 
example (an application) is given to demonstrate the 
theoretical results in section 4. Finally, some 
concluding remarks are given in section 5. 
 
 
2 Evaluation of the Prediction Mean 

Squared Errors 
We recall the developed PMSEs of Friedman and 
Montgomery [4] for the OLS and the ORR 
estimators and the developed PMSE of the Liu 
estimator given by [5] and then obtain the PMSE of 
the recently proposed KL estimator. 
The PMSE is defined as: 
 

2 2
0 0ˆ( )J E m m Var Bias    ,           (6) 

 
where J  is the PMSE,  0m  is the value to be 

predicted, 0m̂  is the prediction of that value, ( )Var  

is the variance and 2( )Bias  is the squared bias. 
Now, the prediction error variance and bias are 
given as follows: 
 

0 0 0 0ˆ ˆ( ) ( ) ( )Var m m Var m Var m            (7) 
and 

0 0ˆ( )Bias E m m  .                (8) 
 
For convenience, the canonical form of model (1) is 
given by 

m Z   ,                        (9) 
 
where Z XD , D  . Here, D  is an 
orthogonal matrix such that 

1 2( , ,..., )pZ Z D X X D diag         . Then 
the OLS estimator of   in model (9) is 
 

1ˆ
OLS Z m    .                 (10) 

 
The PMSE of the OLS estimator is given by 
 

2
2 0

1
1

p

i
OLS OLS

i i

z
J Var 



 
   

 
 ,         (11) 

where 0z  is the orthonormalized point of the 

prediction 0m̂ . 
The ORR estimator of   is defined by Hoerl and 
Kennard (1970) as follows: 
 

1ˆ ( ) , 0k k Z m k                    (12) 
 
and then Friedman and Montgomery [4] found the 
PMSE of the ORR estimator as follows 

22
2 20

2
1 1

1
( ) ( )

p p

i i oi i
k

i ii i

z z
J k

k k

 


  

   
     

    
  .                                          (13) 

 
The Liu estimator of   is defined by Liu [2] as 
follows: 

1ˆ ˆ( ) ( ) , 0 1d OLSd d              (14) 

and then Özbey and Kaçıranlar [5] found the PMSE 
of the Liu estimator as follows:

22 2
2 20

2
1 1

( )1 (1 )
( 1) ( 1)

p p

i i oi i
d

i ii i i

z d z
J d

 


   

   
      

    
  .                                (15) 

 
The recently proposed NRT estimator of   is 
defined by Kibria and Lukman [3] as follows: 
 

1ˆ ˆ( ) ( ) , 0.NRT OLSk k k          (16) 
 
The NRT estimator has been extended in different 
regression models, such as [12, 13, 14, 15, 16]. 
The variance of the prediction error of the NRT 
estimator is 

NRT 0 0 0 NRT 0
2

0 NRT

2 2
2 0

2
1

ˆ ˆ( ) ( ) ( )
ˆ( )

( )1 .
( )

p

i i

i i i

Var m m Var m Var m

Var z

k z

k

 




 

  

 

 
  

 


     (17) 

 
The bias of the prediction error of the NRT 
estimator is 
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NRT 0 0 0 0 NRT

1

ˆˆ( ) ( )

2
( )

p

oi i

i i

Bias E m m z z E

z
k

k

 





    





  (18) 

so, the squared bias is 
2

2 2
NRT

1
4

( )

p

oi i

i i

z
Bias k

k





 
  

 
 .             (19) 

 
By summing up the variance and the squared bias of 
the NRT estimator we obtain 
 

2
NRT NRT

2 2
2 0

2
1

2
2

1

( )1
( )

4 .
( )

NRT

p

i i

i i i

p

oi i

i i

J Var Bias

k z

k

z
k

k




 









 

 
  

 

 
  

 





            (20) 

 
 

3 Comparisons of Prediction Mean 

Squared Errors in the Two 

Dimensional Space 
We discuss here the prediction performance of the 
recently proposed KL estimator by following the 
method of [4, 5, 6, 7, 8, 9, 10, 11] such that our 
inferences are based on the predicted observations 
subspace (i.e., the ratio 2 2

02 01/z z ) and since the non-

zero values of 2
1  only increase the intercept values 

for kJ , dJ  and NRTJ  and leave the curve for OLSJ  

unchanged, we set 2
1  to zero. So, the comparisons 

of  NRTJ  with OLSJ , kJ  and dJ  will be done and 
written in the following three theorems. 
 
Theorem 1:   

 

a. If 
 2 2 2

2 22
2 2

2

( ) ( )

4

k k

k

  




  
 , then 

NRT OLSJ J 
2

202
1 22

01

( )z
f

z
 . 

b. If 
 2 2 2

2 22
2 2

2

( ) ( )

4

k k

k

  




  
 , then 

NRT OLSJ J .  
Where 
 

 

2
2 1

2
1 1 12

1 2 2 2 2 2 2
2 2

2 2
2 2 2 2

( )1
( )

( )
( ) 4
( ) ( )

k

k
f

k k

k k




  


   

   

 
 

 
 

  
  

.  (21) 

Proof: 

The NRT estimator gives better results than the OLS 
estimator due to the PMSE criterion, when 

NRT OLSJ J . That means, 
2 2 2 2

2 2 1 01 2 02
2 2

1 1 2 2

2 2 2 2 2
2 22 02 01 02

2
2 1 2

( ) ( )
( ) ( )

4 .
( )

k z k z

k k

k z z z

k

 
 

   


 

  

  
  

  

 
    

  

           (22) 

 
After rearranging the inequality in (22), we get 
 

2 2 2 2 2
2 2 2
02 2 2

2 2 2 2

2
2 2 1
01 2

1 1 1

( ) 4
( ) ( )

( )1
( )

k k
z

k k

k
z

k

   

   




  

 
  

  

 
  

 

.               (23) 

If both 
 

2 2 2 2
2 2

2 2
2 2 2

2

2

( ) 4
( ) ( )

k k

k k

  

  








 



             (24) 

and 
 

2
2 1

2
1 1 1

( )1
( )

k

k




  

 
 

 
                    (25) 

 
have the same signs, the NRT estimator gives better 
results than the OLS estimator when 

2 2 2
02 01 1 2/ ( )z z f   holds where 

 


































2

2

2
2

2
2

2

2
22

2
2

2

2
11

2
1

1

2

2
21

)(
4

)(
)(

)(
)(1

)(






















k

k

k

k

k

k

f .   (26) 

 
Also, if (24) and (25) have opposite signs, the NRT 
estimator always gives better results than the OLS 
estimator where 2

1 2( )f   is negative and 
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2 2 2
02 01 1 2/ ( )z z f   always holds. Consequently, at 

that region the NRT estimator is better than the OLS 
estimator.  
The positiveness condition of (24) is given by 
 

 2 2 2
2 22

2 2
2

( ) ( )

4

k k

k

  




  
                (27) 

 
and equation (25) is always positive. 
The hyperbola 2

1 2( )f   vertical asymptote is at the 
point 

 2 2 2
2 22

2 2
2

( ) ( )
.

4
k k

k

  




  
                (28) 

 Theorem 2: 

a. If 
 

2
2

2
2

2
2

2
2
2 3

)(
k

k







 , then kNRT JJ  

)( 2
222

01

2
02 f

z

z
 . 

b. If 
 

2
2

2
2

2
2

2
2
2 3

)(
k

k







 , then kNRT JJ  . 

Where  
 








































2
2

2
2

2

2
2

2
2

2
2

2
2

2

2
22

2
2

2

2
11

2
1

2
1

12

2
22

)()()(
4

)(
)(

)(
)(

)(
)(

k

k

kk

k

k

k

k

k

k
f


























 .                          (29) 

Proof: 

The NRT estimator gives better results than the 
ORR estimator due to the PMSE criterion, when 

kNRT JJ  . That means, 
 

 
 
 
 

2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 21 01 2 02 2 02 1 01 2 02 2 02

2 2 2 2 2 2
1 1 2 2 2 1 2 2

( ) ( ) 4 .
( ) ( ) ( ) ( ) ( ) ( )

k z k z k z z z k z

k k k k k k

     
   

       

    
        

              (30) 

After rearranging the inequality in (30), we get 
 

 

.
)(

)(
)()()()(

4
)(
)(

2
11

2
1

2
1

122
012

2

2
2

2

2
2

2
2

2
2

2
2

2

2
22

2
2

2
2
02 






































k

k

k
z

k

k

kk

k

k

k
z

























   (31) 

 
If both 

 






















2

2

2
2

2

2
2

2
2

2
2

2
2

2

2
22

2
2

2

)()()(
4

)(
)(

k

k

kk

k

k

k
















                              (32) 

 
and 















 2
11

2
1

2
1

12

)(
)(

)( k

k

k 






                (33) 

have the same signs, the NRT estimator gives better 
results than the ORR estimator when 

)(/ 2
22

2
01

2
02 fzz   holds where  








































2
2

2
2

2

2
2

2
2

2
2

2
2

2

2
22

2
2

2

2
11

2
1

2
1

12

2
22

)()()(
4

)(
)(

)(
)(

)(
)(

k

k

kk

k

k

k

k

k

k
f


























 .                       (34) 

 
Also, if (32) and (33) have opposite signs, the NRT 
estimator always gives better results than the ORR 

estimator where )( 2
22 f  is negative and 
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)(/ 2
22

2
01

2
02 fzz   always holds. Consequently, at 

that region the NRT estimator is better than the 
ORR estimator.  
The positiveness condition of (32) is given by 
 

 
2

2

2
2

2
2

2
2
2 3

)(
k

k







                       (35) 

 
and the equation (33) is always positive. 

The hyperbola )( 2
22 f  vertical asymptote is at the 

point 
 2 2 2

2 22
2 2

2

( )
.

3
k

k

  




 
          (36) 

 

Theorem 3: 

a. If 
 

2
22

22
22

2

2
2

2
2

2
2

2
2

2
2
2 )()1()1(4

)()1()()(
kdk

kkd











then  
- dNRT JJ   for 

2
1

2
1

2
1

2
1 )()1()()( kkd   , 

- dNRT JJ   )( 2
232

01

2
02 f

z

z
  for 

2
1

2
1

2
1

2
1 )()1()()( kkd   . 

 
b. If 

 
2

22
22

22
2

2
2

2
2

2
2

2
2

2
2
2 )()1()1(4

)()1()()(
kdk

kkd











then  
- dNRT JJ   for 

2
1

2
1

2
1

2
1 )()1()()( kkd   , 

- dNRT JJ   )( 2
232

01

2
02 f

z

z
  for 

2
1

2
1

2
1

2
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Proof: 

The NRT estimator gives better results than the Liu 
estimator due to the PMSE criterion, when 
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After rearranging the inequality in (38), we get 
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have the same signs; so the NRT estimator gives 
better results than the Liu estimator when 
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Also, if (40) and (41) have opposite signs, the NRT 
estimator always gives better results than the Liu 
estimator where )( 2

23 f  is negative and 

)(/ 2
23

2
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02 fzz   always holds. Consequently, at  

that region the NRT estimator is better than the Liu 
estimator.  
The positiveness condition of (40) is given by 
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and the positiveness condition of (41) is given by 
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Of course, the opposite conditions are needed for 
the negativeness of (40) and (41). The hyperbola 
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The biasing parameters ( k , d ) estimation is 
significant for the multiple regression model suffers 
from the multicollinearity problem. So, we have not 
here made any attempt to estimate them. However, 
we refer the readers to some of these studies, for 
example [1, 2, 3, 17, 18, 19]. 
Several biased estimators are developed in different 
regression models for solving the multicollinearity, 
such as [20, 21, 22, 23, 24, 25, 26]. 
 
 
4 Application 
In this section, we explain the theoretical results of 
this study using the example given by [4] (i.e., 

12  , 1.0k , 95.11   and 05.02  ) and 
[5] (i.e., 9.0d ).  
Firstly, considering the NRT and the OLS 
estimators’ predictive performances. From (21), we 
get 

10
05354.0)( 2
2

2
21





f ,                     (46) 

which is a hyperbola with the vertical asymptote at 
102

2  .                           (47) 
 

We are here interested only in the points lie in the 
first quadrant because of both 2

01
2
02 / zz  and 2

2  are 
positive. 
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Fig. 1: )( 2

21 f  versus 2
2  values 

 
Figure 1 shows that when 2

2  values are smaller 
than 10, the NRT estimator gives better results than 
the OLS estimator and when 2

2  values are greater 
than 10, there is a trade-off between the NRT and 
the OLS estimators such that if the ratio 
value 2

01
2
02 / zz  is smaller than the )( 2

21 f  value, 
then the NRT estimator gives better results than the 
OLS estimator, otherwise the OLS estimator is 
better. 

 
Secondly, considering the NRT and the ORR 
estimators’ predictive performances. From (29), we 
get 
 

2
2

2
22

03478.0)(


 f ,                     (48) 

 
which is a hyperbola with a vertical asymptote at 

02
2  .                      (49) 

 

 
Fig. 2: )( 2

22 f  versus 2
2  values  

 
Figure 2 shows that when 2

2  values are greater 
than zero,  there is a trade-off between the NRT and 
the ORR estimators such that if the ratio 
value 2

01
2
02 / zz  is smaller than the )( 2

22 f  value, 
then the NRT estimator gives better results than the 

ORR estimator, otherwise the ORR estimator is 
better. 
Finally, considering the NRT and Liu estimators 
predictive performances. From (37), we get 
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which is a hyperbola with a vertical asymptote at 

82
2  .                         (51) 

 

 
Fig. 3: )( 2

23 f  versus 2
2  values  

 
Figure 1 shows that when 2

2  values are smaller 
than 8, the NRT estimator gives better results than 
the Liu estimator and when 2

2  values are greater 
than 8, there is a trade-off between the NRT and the 
Liu estimators such that if the ratio value 2

01
2
02 / zz

 is smaller than the )( 2
23 f  value, then the NRT 

estimator gives better results than the Liu estimator, 
otherwise the Liu estimator is better. 
 
 
5 Conclusion 
We consider and examine the predictive 
performance of the recently proposed NRT 
estimator and is compared with the OLS, the 
ORR and the Liu estimators according to the 
PMSE criterion at a specific point in the two-
dimensional space. The PMSE of the NRT 
estimator is obtained and three theorems are 
given. The theoretical results are explained by a 
numerical example and the regions are assigned 
where the NRT estimator gives better results 
than the other mentioned estimators. For some 

2
2  values, there are trade-offs among the above 

mentioned estimators. The OLS estimator is 
good only when the value of 2

2  is very large 
compared to the NRT estimator. These 
techniques effectiveness is also affected by the 

prediction point location. In the numerical 
example, a region is established where the NRT 
estimator gives better results than the other 
mentioned estimators. So, it is theoretically 
possible to determine such a region. 
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