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Abstract: -In this paper, we used condition (E) to study approximation on the Banach space, demonstrating the
convergence theorem as well as an example that supports the main theorem. Iterative fixed point approximation
for nonlinear operators is a novel area of investigation. As a result, the literature contains a number of iterative
techniques for overcoming such impediments and improving the rate of convergence.
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1 Introduction
Iterative fixed point approximation for nonlinear op-
erators is a novel area of investigation (see, for exam-
ple, [1, 2, 3, 4, 5] and others). Using a Picard itera-
tive technique, the Banach contraction principle de-
termines the unique fixed point of a contraction map-
ping. On the other hand, the Picard iterative technique
does not necessarily converge to the fixed point of a
nonexpansive mapping.

LetX be a Banach space, whereas ∅ ̸= C ⊆ X, and
T : C → C. If v = Tv, an element v ∈ C is regarded
to as a fixed point for T. The set of all fixed points of
the map T is denoted by F(T). The set of all natural
numbers shall be denoted by N throughout the work.
When T is nonexpansive, that is, for all η, δ ∈ C,

∥Tη − Tδǁ ≤ ∥η − δ∥.

If X is uniformly convex and C is convex closed
bounded, then F(T) is nonempty. In 2008, Suzuki [6]
presented a new class of nonlinear mappings that is
just a generalization of the nonexpansive mappings
class. A mapping T : C → C is said to obey the
condition (C) (or Suzuki mapping) if for all η, δ ∈ C,

1

2
∥η − Tη∥ ≤ ∥η − δ∥ ⇒ ∥Tη − Tδ∥ ≤ ∥η − δ∥.

García-Falset et al. [7] extended condition (C) to the
following general formulations in 2011. A mapping
T : C → C is said to satisfy condition (Eµ) if there
exists some µ ≥ 1 such that

∥Tη− δ∥ ≤ µ∥Tδ− δ∥+ ∥η− δ∥ for all η, δ ∈ C.

A mapping T is said to satisfy condition (Eµ) (or
García-Falset mapping) when it does so for some µ ≥
1.García-Falset et al. demonstrated that every Suzuki
mapping meets condition (E) with µ = 3. It is also

worth noting that the class of Garcia-Falset mappings
includes many other classes of generalized nonexpan-
sive mappings (see [8] for details).

Agarwal iteration process introduced in [9], also
called S-iteration process, is defined as:

η0 ∈ C,

ζn = (1− ιn)ηn + ιnTηn,

ηn+1 = (1− τn)Tηn + τnTζn,

(1)

where {ιn}, {τn} are sequences in [0, 1].
Suantai and Phuengrattana [10] also introduced

one another three-step iteration process known as
SP - iteration process, defined as:

η0 ∈ C,

ζn = (1− ιn)ηn + ιnTηn,

ϑn = (1− τn)ζn + τnTζn,

ηn+1 = (1− σn)ϑn + σnTϑn,

(2)

where {ιn}, {τn}, {σn} are sequences in [0, 1].
Thakur et. al. [11] used a new iteration process, de-
fined as: 

η0 ∈ C,

ζn = (1− ιn)ηn + ιnTηn,

ϑn = T((1− τn)ηn + τnζn)

ηn+1 = Tϑn,

(3)

where {ιn}, {τn} are sequences in [0, 1].
Hussain et al. [12] also introduced theK-iteration

process, a three-step iteration procedure defined as:
η0 ∈ C,

ζn = (1− ιn)ηn + ιnTηn,

ϑn = T((1− τn)Tηn + τnTζn),

ηn+1 = Tϑn,

(4)
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Ullah et al. [13] also created theK∗-iteration process,
a three-step iteration procedure defined as:

η0 ∈ C,

ζn = (1− ιn)ηn + ιnTηn,

ϑn = T((1− τn)ζn + τnTζn),

ηn+1 = Tϑn,

(5)

where {ιn}, {τn} are sequences in [0, 1].
Ullah et al. [14] also described the AK-iteration

process, which consists of three steps:
η0 ∈ C,

ζn = T((1− ιn)ηn + ιnTηn),

ϑn = T((1− τn)ζn + τnTζn),

ηn+1 = Tϑn,

(6)

where {ιn}, {τn} are sequences in [0, 1].
In this paper, we present a novel iteration process

designated as the SP ∗-iteration process, which is for-
mally defined:

η0 ∈ C,

ζn = T((1− ιn)ηn + ιnTηn),

ϑn = T((1− τn)ζn + τnTζn),

ηn+1 = T((1− σn)ϑn + σnTϑn),

(7)

where {ιn}, {τn}, {σn} are sequences in [0, 1] such
that 0 < a ≤ ιn, τn, σn ≤ b < 1 for all n ≥ 1.

2 Preliminaries
LetC be a nonempty closed convex subset of a Banach
spaceX, and let {ηn} be a bounded sequence inX. For
ρ ∈ X, we set r(ρ, {ηn}) = lim supn→∞ ∥ηn − ρ∥.
The asymptotic radius of {ηn} relative to C is given
by r(C, {ηn}) = inf{r(ρ, {ηn}) : ρ ∈ C} and the
asymptotic center of {ηn} relative to C is the set

A(C, {ηn}) = {ρ ∈ C : r(ρ, {ηn}) = r(C, {ηn})}.

It is known that, in a uniformly convex Banach space,
A(C, {ηn}) consists of exactly one point.

We say that a Banach space X has Opial property
[15] if and only if for all {ηn} in Cwhich weakly con-
verges to ρ ∈ X and

Lemma 2.1. [7] Let T be a mapping on a subset C of
a Banach spaceX having the Opial property. Assume
that T satisfies the condition (E). If {ηn} converges
weakly to ω and limn→∞ ∥Tηn − ηn∥ = 0, then ω ∈
F(T).

Lemma 2.2. [7] Let T be a mapping on a subset C of
a Banach space X. If T satisfies condition (E), then
for all v ∈ F(T) and ρ ∈ C, we have

∥Tρ− v∥ ≤ ∥ρ− v∥.

Lemma 2.3. [7] Let T be a mapping on a subset C of
a Banach space X. If T satisfies condition (C), then
T also satisfies condition (Eµ) with µ = 3.

Lemma 2.4. [16] Let X be a uniformly convex Ba-
nach space and 0 < a ≤ σn ≤ b < 1 for all n ≥ 1.
If {ηn} and {δn} are two sequences in X such that
lim supn→∞ ∥ηn∥ ≤ λ, lim supn → ∞∥δn∥ ≤ λ,
and limn→∞ ∥σnηn + (1 − σn)δn∥ = λ for some
λ ≥ 0, then limn→∞ ∥ηn − δn∥ = 0.

3 Main results
Lemma 3.1. Let C be a nonempty closed convex sub-
set of X, which is a uniformly convex Banach space,
and T : C → C be a mapping obeying condition (E)
with F(T) ̸= ∅. For all n ≥ 1, η0 ∈ C. Autho-
rize the sequence {ηn} to be produced by (7), then
the limn→∞ ∥ηn − v∥ exists for any v ∈ F(T).
Proof. Let v ∈ F(T) and ηn, ζn, ϑn ∈ C. Because T
is a mapping satisfying condition (E), we obtain

∥Tηn − v∥ ≤ µ∥Tv − v∥+ ∥ηn − v∥,
∥Tζn − v∥ ≤ µ∥Tv − v∥+ ∥ζn − v∥,
∥Tϑn − v∥ ≤ µ∥Tv − v∥+ ∥ϑn − v∥.

(8)

So,

∥ζn − v∥
= ∥T((1− ιn)ηn + ιnTηn)− v∥
≤ ∥(1− ιn)ηn + ιnTηn − v∥
≤ (1− ιn)∥ηn − v∥+ ιn∥Tηn − v∥
≤ (1− ιn)∥ηn − v∥+ ιn[µ∥Tv − v∥+ ∥ηn − v∥]
= (1− ιn)∥ηn − v∥+ ιn∥ηn − v∥
= ∥ηn − v∥. (9)

Using (9), we obtain

∥ϑn − v∥
= ∥T((1− τn)ζn + τnTζn)− v∥
≤ ∥(1− τn)ζn + τnTζn − v∥
≤ (1− τn)∥ζn − v∥+ τn∥Tζn − v∥
≤ (1− τn)∥ζn − v∥+ τn[µ∥Tv − v∥+ ∥ζn − v∥]
= ∥ζn − v∥
≤ ∥ηn − v∥. (10)

Similarly, using (10), we obtain

∥ηn+1 − v∥
= ∥T((1− σn)ϑn + σnTϑn)− v∥
≤ ∥(1− σn)ϑn + σnTϑn − v∥
≤ (1− σn)∥ϑn − v∥+ σn∥Tϑn − v∥
≤ (1− σn)∥ϑn − v∥+ σn[µ∥Tv − v∥+ ∥ϑn − v∥]
= ∥ϑn − v∥
≤ ∥ηn − v∥. (11)
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This means that for all v ∈ F(T), {∥ηn − v∥}
is bounded and non-increasing. As a
result,limn→∞ ∥ηn − v∥ exists, as necessary.

Theorem 3.2. Let C be a nonempty closed convex
subset of X, which is a uniformly convex Banach
space, and T : C → C be a mapping obeying
condition (E).For all n ≥ 1, η0 ∈ C. Autho-
rize the sequence {ηn} to be produced by (7), where
{ιn}, {τn}, {σn} are sequences in [0, 1] such that
0 < a ≤ ιn, τn, σn ≤ b < 1. Then F(T) ̸= ∅ if
and only if limn→∞ ∥Tηn − ηn∥ = 0.

Proof. Suppoes F(T) ̸= ∅ and let v ∈ F(T). Then,
by Lemma 3.1, limn→∞ ∥ηn − v∥ exists and {ηn} is
bounded. Put

lim
n→∞

∥ηn − v∥ = λ ≥ 0. (12)

From (9) and (12), we obtain

lim sup
n→∞

∥ζn − v∥ ≤ lim sup
n→∞

∥ηn − v∥ = λ. (13)

From (8), we obtain

lim sup
n→∞

∥Tηn − v∥

≤ lim sup
n→∞

µ∥Tv − v∥+ lim sup
n→∞

∥ηn − v∥

= lim sup
n→∞

∥ηn − v∥ = λ. (14)

From (10) and (12), we obtain

lim sup
n→∞

∥ϑn − v∥ ≤ lim sup
n→∞

∥ηn − v∥ = λ. (15)

From (8), we obtain

lim sup
n→∞

∥Tϑn − v∥

≤ lim sup
n→∞

µ∥Tv − v∥+ lim sup
n→∞

∥ϑn − v∥

= lim sup
n→∞

∥ηn − v∥ = λ. (16)

From (11), we obtain

∥ηn+1 − v∥ ≤ ∥ϑn − v∥

Therefore,

λ ≤ lim inf
n→∞

∥ϑn − v∥. (17)

Using (15) and (17), we have

λ = lim
n→∞

∥ϑn − v∥. (18)

From (10), we obtain

∥ϑn − v∥ ≤ ∥ζn − v∥.

So,

λ ≤ lim inf
n→∞

∥ζn − v∥. (19)

From (13) and (19), we have

λ = lim
n→∞

∥ζn − v∥. (20)

Using (20), (12) and (14), we obtain

λ = lim
n→∞

∥ζn − v∥

= lim
n→∞

∥T((1− ιn)ηn + ιnTηn)− v∥

≤ lim
n→∞

∥(1− ιn)ηn + ιnTηn − v∥

≤ (1− ιn) lim
n→∞

∥ηn − v∥+ ιn lim
n→∞

∥Tηn − v∥

= λ.

Therefore,

λ = lim
n→∞

∥T((1− ιn)ηn + ιnTηn)− v∥. (21)

Applying Lemma 2.4, we have

lim
n→∞

∥Tηn − ηn∥ = 0. (22)

Conversely, suppose that {ηn} is bounded and
limn→∞ ∥Tηn − ηn∥ = 0. Let A(C, {ηn}). By (8),
we have

r(Tv, {ηn}) = lim sup
n→∞

∥ηn − Tv∥

≤ lim sup
n→∞

(µ∥Tηn − ηn∥+ ∥ηn − v∥)

≤ lim sup
n→∞

∥ηn − v∥

= r(v, {ηn}).

This means that Tv ∈ A(C, {ηn}). Because X is uni-
formly convex, is a singleton set and hence we have
Tv = v. Thus, F(T) ̸= ∅.

Theorem 3.3. Let C be a nonempty closed convex
subset of X, which is a uniformly convex Banach
space with the Opial property, and T : C → C be a
mapping obeying condition (E). For all n ≥ 1, η0 ∈
C. Authorize the sequence {ηn} to be produced by
(7), where {ιn}, {τn}, {σn} are sequences in [0, 1]
such that 0 < a ≤ ιn, τn, σn ≤ b < 1. Then {ηn}
converges weakly to a fixed point of T.

Proof. Let F(T) ̸= ∅ implies that {ηn} is bounded
and limn→∞ ∥Tηn − ηn∥ = 0. Because X is uni-
formly convex, it is reflexive. According to Eberlin’s
theorem, there exists a subsequence of {ηnj

} of {ηn}
which thus converges weakly to some ω ∈ X. Be-
cause C is closed and convex, Mazur’s theorem states
that ω ∈ C. And ω ∈ F(T), that according Lemma
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2.1. We also show that {ηn} weakly converges to
ω. If this is not the circumstance, then there must be
a subsequence {ηnk

} of {ηn} such that {ηnk
} con-

verges weakly toϖ ∈ C and ω ̸= ϖ. By Lemma 2.1,
ϖ ∈ F(T). Because limn→∞ ∥ηn − v∥ exists for ev-
ery v ∈ F(T). By Lemma 3.1 and Opial property, we
have

lim
n→∞

∥ηn − ω∥ = lim
j→∞

∥xnj
− ω∥ ≤ lim

j→∞
∥ηnj

−ϖ∥

= lim
n→∞

∥ηn −ϖ∥ = lim
k→∞

∥ηnk
−ϖ∥

< lim
k→∞

∥ηnk
− ω∥ = lim

n→∞
∥ηn − ω∥,

which is a contradiction. So ω = ϖ. This means that
{ηn} converges weakly to a fixed point of T.

Next we prove the strong convergence theorem.

Theorem 3.4. Let C be a nonempty closed convex
subset of X, which is a uniformly convex Banach
space, and T : C → C be a mapping obeying
condition (E). For all n ≥ 1, η0 ∈ C. Autho-
rize the sequence {ηn} to be produced by (7), where
{ιn}, {τn}, {σn} are sequences in [0, 1] such that
0 < a ≤ ιn, τn, σn ≤ b < 1. Then {ηn} converges
strongly to a fixed point of T.

Proof. We know that F(T) ̸= ∅ according to Lemma
2.1, and that limn→∞ ∥Tηn − ηn∥ = 0 owing to The-
orem 3.2. Because C is compact, there exists a sub-
sequence {ηnk

} of {ηn} such that {ηnk
} converges

strongly to v for some v ∈ C. Because T satisfies
condition (E), we have

∥ηnk
−Tv∥ ≤ µ∥Tηnk

−v∥+∥ηnk
−v∥, for all n ≥ 1.

Taking k → ∞, we obtain Tv = v i.e., v ∈ F(T).
By Lemma 3.1, limn→∞ ∥ηn−v∥ exists for every v ∈
F(T) and so {ηn} converge strongly to v.

Senter and Dotson [19] suggested the concept of
a mapping obeying the condition (I), which will be
defined as: If there exists a nondecreasing function
f : [0,∞) → [0,∞) with f(0) = 0 and f(u) > 0 for
all u > 0 such that ∥ρ − Tρ∥ ≥ f(dist(F(T)) for all
ρ ∈ C, where dist(ρ,F(T)) = infv∈F(T) ∥ρ− v∥, and
T : C → C.

We now use condition (I) to show the strong con-
vergence theorem.

Theorem 3.5. Let C be a nonempty closed convex
subset of X, which is a uniformly convex Banach
space, and T : C → C be a mapping obeying
condition (E). For all n ≥ 1, η0 ∈ C. Autho-
rize the sequence {ηn} to be produced by (7), where
{ιn}, {τn}, {σn} are sequences in [0, 1] such that

0 < a ≤ ιn, τn, σn ≤ b < 1 with F(T) ̸= ∅. If T
satisfies condition (I), then {ηn} converges strongly
to a fixed point of T.

Proof. By Lemma 3.1, limn→∞ ∥ηn − v∥ exists for
every v ∈ F(T) and limn→∞ d(ηn,F(T)) exists. As-
sume that limn→∞ ∥ηn−v∥ for some u ≥ 0. If u = 0
then the result follows. Suppose u > 0. From the hy-
pothesis and condition (I),

f(dist(ηn,F(T))) ≤ |Tηn − ηn∥. (23)

Because F(T) ̸= ∅, by Theorem 3.2, we have
limn→∞ ∥Tηn − ηn∥ = 0. So (23) implies that

lim
n→∞

f(dist(ηn,F(T))) = 0. (24)

Because f is nondecreasing function, as a result of
(24), we have limn→∞ dist(ηn,F(T)) = 0. Thus, we
have a subsequence {ηnk

} of {ηn} and a sequence
{ϑn} such that

∥ηnk
− ϑk∥ ≤ 1

2k
for all k ∈ N.

So, using (11), we get

∥ηnk+1
− ϑk∥ ≤ ∥ϑnk

− ϑk∥ ≤ 1

2k
.

Hence

∥ϑnk+1
− ϑk∥ ≤ ∥ϑnk+1

− ηnk+1
∥+ ∥ηnk+1

− ϑk∥

≤ 1

2k+1
+

1

2k

<
1

2k−1
→ 0 as k → ∞.

This shows that {ϑn} is Cauchy sequence inF(T) and
so it converges to a point v. Because F(T) is closed,
v ∈ F(T) and then {ηnk

} converges strongly to v.
Because limn→∞ ∥ηn− v∥ exists, we have that ηn →
v ∈ F(T).

4 Numerical Example
Let E = (−∞,∞) with usual norm and C = [1, 10].
Define T on C satisfying condition (E) with µ = 3 as
follow:

Tη =
2η + 5

3
.

We will show that

|Tη − δ| ≤ 3|Tδ − δ|+ |η − δ| for all η, δ ∈ C.
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In fact,

|Tη − δ| ≤ |δ − Tδ|+ |Tδ − Tη|

≤ |δ − Tδ|+
∣∣∣∣2δ + 5

3
− 2η + 5

3

∣∣∣∣
= |δ − Tδ|+ 2

3
|η − δ|

≤ 3|Tδ − δ|+ |η − δ| .
Now, we conclude that T satisfies condition (E). Us-
ing the initial value η1 = 8.5 and letting the stop-
ping criteria |ηn − 5| < 10−6, reckoning the iter-
ative values of K∗-iteration process, AK-iteration
process and SP ∗-iteration process for choose ιn =
8n

9n+1 , τn = 9n
10n+1 , and σn = 7n

8n+1 as show in Table
1 and Figure 1.

Table 1: Comparative sequence
Iter. K∗ AK SP ∗

1 8.500000 8.500000 8.500000
2 5.829630 5.553086 5.446939
3 5.189445 5.084198 5.053214
4 5.042681 5.012646 5.006173
5 5.009549 5.001886 5.000706
6 5.002127 5.000280 5.000080
7 5.000473 5.000041 5.000009
8 5.000105 5.000006 5.000001
9 5.000023 5.000006 5.000000
10 5.000005 5.000000 5.000000
11 5.000001 5.000000 5.000000
12 5.000000 5.000000 5.000000

Figure 1: The plotting of comparative sequence in Ta-
ble 1

5 Conclusion
In this study, we proposed a new modified fixed point
algorithms to approximate the solution of fixed points

problem of a nonexpansivemapping in the framework
of Banach space. We performed convergence analy-
sis of the proposed algorithm and hence proved some
convergence theorems. Also, we provided some il-
lustrative numerical examples to show the efficiency
of the proposed algorithm.
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