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1 Introduction
Amensalism is an interaction in which an organism
inflicts harm to another organism without any costs
or benefits received by the other. In the past decade,
numerous works on the mutualism or commensalism
model has been published([1]-[25]). However, only
recently did scholars paid attention to the amensalism
model([26]-[36]). In 2019, Guan and Chen[26] pro-
posed the following two species amensalism model
with Beddington-DeAngelis functional response

dx1
dt

= x1
(
a1 − b1x1

− cx2
mx1 + nx1 + 1

)
,

dx2
dt

= x2
(
a2 − b2x2

)
.

(1)

The existence and stability of possible equilibria were
investigated. Under some additional assumptions, the
authors showed that there are two stable equilibria
which implies this system is not asymptotically stable.
Based on the stability analysis of equilibria, closed or-
bits and the saddle connection, they gave some com-
prehensive bifurcation and global dynamics of the
system.

It brings to our attention that the system (1) is an
autonomous ones. Model (1) is not well studied yet in
the sense that the model is with constant environmen-
t. The assumption that the environment is constant
is rarely the case in real life. Most natural environ-
ments are physically highly variable, and in response,
birth rates, death rates, and other vital rates of popu-
lations, vary greatly in time. Taking these factors into
consideration, then it is naturally to study the nonau-

tonomous case of system (1), i.e,

dx1
dt

= x1
(
a1(t)− b1(t)x1

− c(t)x2
m(t)x1 + n(t)x2 + 1

)
,

dx2
dt

= x2
(
a2(t)− b2(t)x2

)
.

(2)

It is well known that the discrete time models
governed by difference equations are more appropri-
ate than the continuous ones when the populations
have non-overlapping generations, corresponding to
system (2), we could propose the following discrete
nonautonomous amensalism model with Beddington-
DeAngelis functional response

x1(k + 1) = x1(k) exp
{
a1(k)− b1(k)x1(k)

− c(k)x2(k)

m(k)x1(k) + n(k)x2(k) + 1
},

x2(k + 1) = x2(k) exp {a2(k)− b2(k)x2(k)
}
,

(3)
where {bi(k)}, i = 1, 2, {c(k)}{m(k)}, {n(k)} are
all positive ω-periodic sequences, ω is a fixed posi-
tive integer, {ai(k)} are ω-periodic sequences, which

satisfies ai = 1
ω

ω−1∑
k=0

ai(k) > 0, i = 1, 2. Here we

assume that the coefficients of the system (3) are al-
l periodic sequences which having a common integer
period. Such an assumption seems reasonable in view
of seasonal factors, e.g., mating habits, availability
of food, weather conditions, harvesting, and hunting,
etc.

The aim of this paper is to obtain a set of sufficient
conditions which ensure the existence of positive pe-
riodic solution of system (3).
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2 Main Results
In the proof of our existence theorem below, we
will use the continuation theorem of Gaines and
Mawhin([37]).

Lemma 2.1 (Continuation Theorem) Let L be a
Fredholm mapping of index zero and let N be L-
compact on Ω̄. Suppose

(a).For each λ ∈ (0, 1), every solution x of Lx =
λNx is such that x ̸∈ ∂Ω;

(b).QNx ̸= 0 for each x ∈ ∂Ω ∩KerL and

deg{JQN,Ω ∩KerL, 0} ̸= 0.

Then the equation Lx = Nx has at least one solution
lying in DomL ∩ Ω̄.

Let Z,Z+, R and R+ denote the sets of all inte-
gers, nonnegative integers, real numbers, and nonneg-
ative real numbers, respectively. For convenience, in
the following discussion, we will use the notation be-
low throughout this paper:

Iω = {0, 1, ..., ω − 1},

g =
1

ω

ω−1∑
k=0

g(k), gu = max
k∈Iω

g(k), gl = min
k∈Iω

g(k),

where {g(k)} Ϊ is anω-periodic sequence of real num-
bers defined for k ∈ Z.

Lemma 2.2[38] Let g : Z → R be ω-periodic, i. e.,
g(k+ω) = g(k). Then for any fixed k1, k2 ∈ Iω, and
any k ∈ Z, one has

g(k) ≤ g(k1) +
ω−1∑
s=0

|g(s+ 1)− g(s)|,

g(k) ≥ g(k2)−
ω−1∑
s=0

|g(s+ 1)− g(s)|.

Lemma 2.3 Assume that

ā1 >
( c
n

)
(4)

holds, Then any solution (x∗1, x
∗
2) of the system of al-

gebraic equations

ā1 − b̄1 exp{u1}

− 1

ω

ω−1∑
k=0

c(k) exp{u2}
m(k) exp{u1}+ n(k) exp{u2}+ 1

= 0,

ā2 − b̄2 exp{u2} = 0.
(5)

satisfies

ln
ā1−
( c
n

)
b1

≤ u∗1 ≤ ln ā1
b̄1

, u∗2 = ln ā2
b̄2

, (6)

Proof. From the second equation of (5), it immedi-
ately follows that

u2 = ln ā2
b̄2

. (7)

From the first equation of system (5) we have

ā1 − b̄1 exp{u1} ≥ 0,

thus
u1 ≤ ln ā1

b̄1
. (8)

From the first equation of system (5), we also have

0 = ā1 − b̄1 exp{u1}

− 1

ω

ω−1∑
k=0

c(k) exp{u2}
m(k) exp{u1}+ n(k) exp{u2}+ 1

≥ ā1 − b̄1 exp{u1} −
1

ω

ω−1∑
k=0

c(k) exp{u2}
n(k) exp{u2}

= ā1 −
( c
n

)
− b̄1 exp{u1}.

Thus

u1 ≥ ln
ā1 −

( c
n

)
b̄1

. (9)

This ends the proof of Lemma 2.3.
We now reach the position to establish our main

result.
Theorem 2.1 Assume that (4) holds, then system (3)
admits at least one positive ω-periodic solution.

Proof. Let

xi(k) = exp{ui(k)}, i = 1, 2,

so that system (3) becomes

u1(k + 1)− u1(k)

= a1(k)− b1(k) exp{u1(k)}

−H(u1(k), u2(k)),

u2(k + 1)− u2(k)

= a2(k)− b2(k) exp{u2(k)}.

(10)
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where
H(u1(k), u2(k))

=
c(k) exp{u2(k)}

m(k) exp{u1(k)}+ n(k) exp{u2(k)}+ 1
.

(11)
Define

l2 =

{
u = {u(k)}, u(k) = (u1(k), u2(k))

T ∈ R2
}
.

For a = (a1, a2)
T ∈ R2, define |a| =

max{|a1|, |a2|}. Let lω ⊂ l2 denote the subspace of
all ω sequences equipped with the usual normal form
∥u∥ = max

k∈Iω
|u(k)|. It is not difficult to show that lω

is a finite-dimensional Banach space. Let

lω0 = {u = {u(k)} ∈ lω :
ω−1∑
k=0

u(k) = 0},

lωc = {u = {u(k)} ∈ lω : u(k) = h ∈ R2, k ∈ Z},
then lω0 and lωc are both closed linear subspace of lω,
and

lω = lω0 ⊕ lωc , dimlωc = 2.

Now let us define X = Y = lω, (Lu)(k) = u(k +
1)−u(k). It is trivial to see that L is a bounded linear
operator and

KerL = lωc , ImL = lω0 ,

dimKerL = 2 = CodimImL.

Then it follows thatL is a Fredholmmapping of index
zero. Let

N(u1, u2)
T = (N1, N2)

T := N(u, k),

where

{ N1 = a1(k)− b1(k) exp{u1(k)}

−H(u1(k), u2(k)),

N2 = a2(k)− b2(k) exp{u2(k)}.

Px =
1

ω

ω−1∑
s=0

x(s), x ∈ X, Qy =
1

ω

ω−1∑
s=0

y(s), y ∈ Y.

It is not difficult to show that P and Q are two con-
tinuous projectors such that

ImP = KerL and ImL = KerQ = Im(I−Q).

Furthermore, the generalized inverse (to L) Kp:
ImL →KerP∩DomL exists and is given by

Kp(z) =
k−1∑
s=0

z(s)− 1

ω

ω−1∑
s=0

(ω − s)z(s).

Thus

QNx =
1

ω

ω−1∑
k=0

N(x, k),

Kp(I −Q)Nx =
k−1∑
s=0

N(x, s) +
1

ω

ω−1∑
s=0

sN(x, s)

−
( k
ω
+

ω − 1

2ω

) ω−1∑
s=0

N(x, s).

Obviously, QN andKp(I −Q)N are continuous. S-
ince X is a finite-dimensional Banach space, it is not
difficult to show thatKp(I −Q)N(Ω) is compact for
any open bounded set Ω ⊂ X . Moreover, QN(Ω) is
bounded. Thus, N is L-compact on any open bound-
ed setΩ ⊂ X . The isomorphism J of ImQ onto KerL
can be the identity mapping, since ImQ=KerL.

Now we are at the point to search for an appropri-
ate open, bounded subsetΩ inX for the application of
the continuation theorem. Corresponding to the oper-
ator equation Lx = λNx, λ ∈ (0, 1), we have

u1(k + 1)− u1(k)

= λ
[
a1(k)− b1(k) exp{u1(k)}

−H(u1(k), u2(k))
]
,

u2(k + 1)− u2(k)

= λ[a2(k)− b2(k) exp{u2(k)}].

(12)

where H(u1(k), u2(k)) is defined by (11). Suppose
that u = (u1(k), u2(k))

T ∈ X is an arbitrary solution
of system (12) for a certain λ ∈ (0, 1). Summing on
both sides of (12) from 0 to ω − 1 with respect to k,
we reach

ω−1∑
k=0

[
a1(k)− b1(k) exp{u1(k)}

−H(u1(k), u2(k))
]
= 0,

ω−1∑
k=0

[a2(k)− b2(k) exp{u2(k)}] = 0.

That is,
ω−1∑
k=0

(
b1(k) exp{u1(k)}

+H(u1(k), u2(k))

)
= ā1ω,

(13)

ω−1∑
k=0

b2(k) exp{u2(k)} = ā2ω. (14)
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From (13) and (14), we have
ω−1∑
k=0

|u1(k + 1)− u1(k)|

= λ
ω−1∑
k=0

∣∣∣a1(k)− b1(k) exp{u1(k)}

−H(u1(k), u2(k))
∣∣∣

≤
ω−1∑
k=0

|a1(k)|+
ω−1∑
k=0

(
b1(k) exp{u1(k)}

+H(u1(k), u2(k))
)

=
ω−1∑
k=0

|a1(k)|+ ā1ω

= (Ā1 + ā1)ω,

(15)

ω−1∑
k=0

|u2(k + 1)− u2(k)|

= λ
ω−1∑
k=0

∣∣∣a2(k)− b2(k) exp{u2(k)}
∣∣∣

≤ (Ā2 + ā2)ω.

(16)

where Ā1 =
1
ω

ω−1∑
k=0

|a1(k)|, Ā2 =
1
ω

ω−1∑
k=0

|a2(k)|.

Since {u(k)} = {(u1(k), u2(k))T } ∈ X , there
exist ηi, δi, i = 1, 2 such that

ui(ηi) = min
k∈Iω

ui(k), ui(δi) = max
k∈Iω

ui(k). (17)

By (14), we have

exp{u2(η2)}
ω−1∑
k=0

b2(k) ≤ ā2ω.

So
u2(η2) ≤ ln ā2

b̄2
. (18)

It follows from Lemma 2.2, (16) and (18) that

u2(k) ≤ u2(η2) +
ω−1∑
k=0

|u2(k + 1)− u2(k)|

≤ ln ā2
b̄2

+ (Ā2 + ā2)ω
def
= K1,

(19)
From (14) we also have

exp{u2(δ2)}
ω−1∑
k=0

b2(k) ≥ ā2ω,

and so
u2(δ2) ≥ ln ā2

b̄2
. (20)

It follows from Lemma 2.2, (16) and (20) that

u2(k) ≥ u2(δ2)−
ω−1∑
k=0

|u2(k + 1)− u2(k)|

≥ ln ā2
b̄2

− (Ā2 + ā2)ω
def
= K2,

(21)
which together with (19) leads to

|u2(k)| ≤ max
{
|K1|, |K2|

}
def
= H2. (22)

It follows from (13) that
ω−1∑
k=0

b1(k) exp{u1(η1)}

≤ ā1ω −
ω−1∑
k=0

H(u1(k), u2(k))

≤ ā1ω,

and so,
u1(η1) ≤ ln ā1

b1
. (23)

It follows from Lemma 2.2, (15) and (23) that

u1(k) ≤ u1(η1) +
ω−1∑
k=0

|u1(k + 1)− u1(k)|

≤ ln ā1

b1
+ (Ā1 + ā1)ω

def
= M1.

(24)
It follows from (13) that

ω−1∑
k=0

b1(k) exp{u1(δ1)}

= ā1ω −
ω−1∑
k=0

H(u1(k), u2(k))

≥ ā1ω −
ω−1∑
k=0

c(k)

n(k)

≥ ā1ω − (
c

n
)ω,

where ( c
n
) = 1

ω

ω−1∑
k=0

c(k)

n(k)
. And so,

u1(δ1) ≥ ln
ā1 − (

c

n
)

b1
, (25)

It follows from Lemma 2.2, (15) and (25) that

u1(k) ≥ u1(δ1)−
ω−1∑
k=0

|u1(k + 1)− u1(k)|

≥ ln
ā1 − (

c

n
)

b1
− (Ā1 + ā1)ω

def
= M2.

(26)
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It follows from (24) and (26) that

|u1(k)| ≤ max
{
|M1|, |M2|

}
def
= H1. (27)

Clearly, H1 and H2 are independent on the choice of
λ.

It follows from (4) and Lemma 2.3 that any solu-
tion (x∗1, x∗2) of the system of algebraic equations

ā1 − b̄1 exp{u1}

− 1

ω

ω−1∑
k=0

c(k) exp{u2}
m(k) exp{u1}+ n(k) exp{u2}+ 1

= 0,

ā2 − b̄2 exp{u2} = 0

satisfies

ln
ā1−
( c
n

)
b1

≤ u∗1 ≤ ln ā1
b̄1

, u∗2 = ln ā2
b̄2

, (28)

Let H = H1 +H2 +H3, where H3 > 0 is taken
sufficiently enough large such that

H3 >

∣∣∣∣ln ā2
b̄2

∣∣∣∣+ ∣∣∣∣ln ā1
b̄1

∣∣∣∣+
∣∣∣∣∣∣∣ln

ā1 −
( c
n

)
b1

∣∣∣∣∣∣∣ .
Let H = H1 +H2 +H3, and define

Ω =
{
u(k) = (u1(k), u2(k))

T ∈ X : ∥u∥ < H
}
.

It is clear that Ω verifies requirement (a) in Lemma
2.1. When u ∈ ∂Ω∩KerL = ∂Ω∩R2, u is constant
vector in R2 with ||u|| = B. Then

QNu

=

 ā1 − b̄1 exp{u1} −∆1

ā2 − b̄2 exp{u2}


̸= 0.

where

∆1 =
1

ω

ω−1∑
k=0

c(k) exp{u2}
m(k) exp{u1}+ n(k) exp{u2}+ 1

.

In order to compute the Brouwer degree, let us con-
sider the homotopy

Hµu = µQNu+ (1− µ)Gu, (29)

where
Gu =

(
ā1 − b̄1 exp{u1}
ā2 − b̄2 exp{u2}

)
.

From the definition ofH , it follows that 0 /∈ Hµ(∂Ω∩
KerL) forµ ∈ [0, 1]. In addition, one can easily show
that the algebraic equation Gu = 0 has a unique so-
lution in R2. Note that J = I since ImQ = KerL,
by the invariance property of homotopy, direct calcu-
lation produces

deg(JQN,Ω ∩KerL, 0)

= deg(QN,Ω ∩KerL, 0)

= deg(G,Ω ∩KerL, 0) = sgn
(
Γ
)
= 1 ̸= 0,

where

Γ = b̄1b̄2 exp{u∗1} exp{u∗2}

and deg(., ., .) is the Brouwer degree. By now
we have proved that Ω verifies all requirements in
Lemma 2.1. Hence (4) has at least one solution
(u∗1(k), u

∗
2(k))

T in DomL ∩ Ω̄. And so, system (3)
admits a positive periodic solution (x∗1(k), x

∗
2(k))

T ,
where x∗i (k) = exp{u∗i (k)}, i = 1, 2, This completes
the proof of the claim.

3 Numeric simulations

Now let us consider the following two examples.
Example 3.1.

x1(k + 1) = x1(k) exp
{
1.5− x1(k)

− (2 + sin(πk))x2(k)
1 + x2(k) + 0.1x1(k)

}
,

x2(k + 1) = x2(k) exp
{
1.5

−(3 + cos(πk + π
3 ))x2(k)

}
.

(30)
Corresponding to system (3), here we choose a1(k) =
1.5, b1(k) = 1, c(k) = 2 + sin(πk),m(k) =
0.1, n(k) = 1, a2(k) = 1.5, b2(k) = 3+cos(πk+ π

3 ).
One could easily check that the condition of Theo-
rem 2.1 holds, and consequently, system (30) admits
at least one positive 2-period solution. Numeric sim-
ulations (Fig.1, Fig. 2 ) also support this assertion.
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time n
0 2 4 6 8 10 12 14 16 18 20

so
lut

ion
 x1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 1: Dynamic behaviors of the first compo-
nent x1 in system (30) with the initial condition
(x(0), y(0)) = (0.5, 0.5), (1, 1), (1.5, 1.5) and
(2, 2), respectively.

time n
0 2 4 6 8 10 12 14 16 18 20

so
lut

ion
 x2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 2: Dynamic behaviors of the second com-
ponent x2 in system (30) with the initial condi-
tion (x(0), y(0)) = (0.5, 0.5), (1, 1), (1.5, 1.5)
and (2, 2), respectively.

Example 3.2.

x1(k + 1) = x1(k) exp
{
3− x1(k)

− (2 + sin(πk))x2(k)
1 + x2(k) + 0.1x1(k)

}
,

x2(k + 1) = x2(k) exp
{
3

−(3 + cos(πk + π
3 ))x2(k)

}
,

(31)
Corresponding to system (3), here we change
a1(k), a2(k) to 3, other coefficients are the same as
system (30). Numeric simulations (Fig.3, Fig. 4 )
show that system (31) admits one positive periodic so-
lution. However, the other solutions need more time
to approach to the periodic solution.

time n
0 5 10 15 20 25 30 35 40 45 50

so
lut

ion
 x1

0

1

2

3

4

5

6

7

8

9

10

Figure 3: Dynamic behaviors of the first compo-
nent x1 in system (31) with the initial condition
(x(0), y(0)) = (0.5, 0.5), (1, 1), (1.5, 1.5) and
(2, 2), respectively.

time n
0 5 10 15 20 25 30 35 40 45 50

so
lut

ion
 x2

0

1

2

3

4

5

6

7

8

9

10

Figure 4: Dynamic behaviors of the second com-
ponent x2 in system (31) with the initial condi-
tion (x(0), y(0)) = (0.5, 0.5), (1, 1), (1.5, 1.5)
and (2, 2), respectively.

4 Discussion

In this paper, we proposed a discrete amensilismmod-
el with with Beddington-DeAngelis functional re-
sponse, by using the coincidence degree theory, suf-
ficient conditions which ensure the existence of posi-
tive periodic sequences solution are established. Nu-
meric simulations are carried out to show the feasibil-
ity of the main result.

We mention here that we did not investigate the
stability property of the system, however, numeric
simulations (Fig.1, 2, 3 and 4) showed that the pe-
riodic solution is unique and globally asymptotically
stable in system (30) and (31). We leave this for future
investigation.
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