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Abstract: - The purpose of this work is to obtain a wavelet expansion of information flows, which are 

distribution flows (in the terminology of Schwartz). The concept of completeness is introduced for a family of 

abstract functions.  Using the mentioned families, nested spaces of distribution flows are constructed. The 

projection of the enclosing space onto the nested space generates a wavelet expansion. Decomposition and 

reconstruction formulas for the above expansion   are derived. These formulas can be used for wavelet 

expansion    of the original information flow coming from the analog device.   This approach is preferable to 

the approach in which the analog flow is converted into a discrete numerical flow   using quantization and 

digitization. The fact is that quantization and digitization lead to significant loss of information and distortion. 

This paper also   considers the wavelet expansion of a discrete flow of distributions using the Haar type 

functions. 
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1 Introduction 
The processing of numerical information flows with     

classical and non-classical wavelets have been     

studied in a large number of works. Research     

wavelet decompositions for flows of a more 

complex nature (flows of matrices, p-adic numbers, 

etc.) were mainly based   on the theory of non-

classical wavelets. 

       Wavelet decomposition is one of the main 

means of the processing of numerical information 

flows. Let us give several examples of the 

application of these expansions in technology and     

medicine.  In research [1] the separate models for 

signal de-noising with different ratio signal/noise 

were    designed. The discrete   wavelet 

decompositions were used. The result was applied to 

the   computerized analysis of Lung Sound. 

       Paper [2] is devoted to the damage severity 

quantification of the brain by using a wavelet 

packet.  The proposed technique shows significant 

benefit in compressing spatio-spectral    patterns of 

multichannel signals in just a unified visual    

representation. 

   The timely and high-quality maintenance of 

electrical networks is a prerequisite for their trouble-

free operation. 

 In work [3], complex wavelets are used for creating 

an efficient algorithm for such processing. The 

proposed algorithm achieves higher accuracy with 

reduced training time in the classification of events 

than compared to the reported event classification 

methods.  To date, there are several studies on the 

theory of   wavelets, among which deserve special 

mention   works by    I. Daubechies [4], C. Chui [5],           

S. Mallat [6], Yu. N. Subbotin and Chernykh [7],     

I. Ya. Novikov, V. Yu. Protasov and M. A. Skopina 

[8].   Research    in this field also includes a series 

of   modern works.  Cubic wavelets with two zero 

moments are obtained in   work [9]. Five-diagonal 

splitting for cubic splines with six zero moments on 

the segment was obtained in [10]. Paper [11] deals 

with structural issues concerning wavelet frames 

and their dual frames. In paper  [12] the authors 

define the wavelet multiplier and  Landau-Pollak-

Slepian operators on the Hilbert space.   In  paper  

[13] the wavelet optimized finite difference B-spline  

polynomial chaos method is proposed. The method 

is applied to the  solution of stochastic partial  

differential equations.  In paper  [14] the authors  

propose a highly efficient and accurate  valuation 

method for exotic-style options based on the novel 

Shannon Wavelet Inverse Fourier Technique 

(SWIFT). 

      These studies  mainly reflect the classic 

approach to wavelets,  which is based on various 

variants of the Fourier transform,  applied to the 

multiple-scale   ratio to obtain a scaling function   

and ultimately   wavelet decomposition.   However, 

the practice of processing numeric flows   required 

expanding the framework of the classical   theory.  
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W.Sveldens constructed a lifting scheme   for an 

area  that is not invariant   relative   to the shift. The 

concept of non-stationary   wavelets, introduced by 

I.Ya. Novikov, also led to the expansion   

framework of the mentioned   theory.  The need to 

significantly speed up   computations was faced 

with great theoretical  difficulties that arose on the 

path of the development   of the classical approach 

to the  wavelet expansions  (see [15] – [27]). In 

paper [18] the authors  propose an algorithm with a 

high level of  confidentiality while maintaining high 

image quality. Paper [19]   presents a powerful, fast 

and reliable signal analysis method based on the  

massively parallel continuous wavelet transform  

algorithm.   The nonlinear wavelet estimates of the 

spectral densities for non-Gaussian linear processes 

are considered in paper [20]. The paper [21] 

presents an efficient algorithm  based on the 

Galerkin method using biorthogonal Hermite  

multiwavelets with cubic splines. The authors of 

paper [22]  propose an effective  approach to 

obtaining approximate solutions of linear and  

nonlinear two-dimensional Volterra integro-

differential equations. with usage of  two-

dimensional wavelets. In [23], to solve the problems 

of low  contrast and fuzzy boundary in the 

traditional wavelet transform,  a threshold function 

is proposed. Paper [24] presents a new structure for 

a single-pixel image using compression probing in 

shift-invariant spaces by using the  sparsity property 

of the wavelet representation. In [25] case studies of 

typical nonlinear de-noising problems  in various 

domains are conducted. Study [26] focused on the 

classification of Electroencephalography signal. The 

study aims to make a classification with fast 

response  and high-performance rate.  Paper [27] 

proposes and 

  discusses a new Electroencephalography  de-

noising technique, based on a combination of 

wavelet transforms and  conventional filters. 

      The listed works show the wide use of wavelets 

  in various fields of human activity. They apply  to 

physics, chemistry, biology and medicine. In most 

cases these are the results of a large number of 

measurements at some points in space and at certain 

points in time.  In fact the mentioned measurements 

are neither a point nor instantaneous.  This fact, long 

noticed, led to the theory of  Schwartz distributions. 

Along with value streams  ordinary functions should 

also be considered distribution flows.  In this regard, 

the use of distributions is more natural,   since such 

an approach reflects the idea of  a trial function.  

Mentioned flows of distributions can be continuous 

or discrete.  In this and in another case, their wavelet 

decomposition is  important,  allowing the more 

efficient use of computer and communication  

resources. 

      The purpose of this work is to study information     

flows associated with certain trajectories in      

distribution spaces. Elements of the  spaces are the 

mentioned trajectories,  whose parameters take the 

values  from a set of non-zero Lebesgue measure. 

For these trajectories  (also called the families of 

distributions) the concept of completeness is 

introduced. The complete    family is used to build      

a space of  distributions.   The criterion of      

embedding of the mentioned spaces is discussed. 

      The projection of the enclosing  space on an 

embedded space generates a wavelet decomposition. 

It is shown that from the considered continuum      

case, we can pass to a discrete case. As a result of 

the transition, we obtain spaces of the Haar-type 

functions. In this case, the mentioned embedding 

criterion becomes   calibration ratios.   

 

 

2 Generating Function 
Let 𝓜, 𝓚 be measurable sets of non-zero Lebesgue 

measure on real axis. Let 𝓚⊂𝓜⊂ Ө, where Ө is an 

open set of the real axis. Consider 

 linear space 𝐾 = 𝐾(Ө) of basic   functions (in this 

case we assume that 𝐾(Ө) is the standard linear 

space of  main functions). Thus the space 𝐾(Ө) 

consists of all   infinitely differentiable and 

compactly supported functions v(𝜃),  𝜃 𝜖Ө, i.e. such 

that  supp v ⊂ Ө. 

    The space of distributions (the space dual   to 

𝐾(Ө)) denote 𝐾′ = 𝐾′(Ө). The relevant duality is 

denoted by sharp brackets, namely, the result   

action of the distribution 𝑓0𝜖𝐾′ on the main function 

v𝜖𝐾 is denoted by < 𝑓0,v >. 

    Let 𝑐(𝑥) be a family of distributions from the 

space  𝐾′, where 𝑥 is a family parameter, 𝑥𝜖𝓜.  A 

family 𝑐 = {𝑐(𝑥) | 𝑥𝜖𝓜} of this kind  is called a 

trajectory in  𝐾′  (or an abstract function with values 

in 𝐾′).The expression 𝑐(𝑥) is called the trajectory 

component. For the record of trajectory components 

it is sometimes convenient to use square   brackets, 

setting [𝑐]𝑥 = 𝑐(𝑥).   For the main function v 𝜖𝐾, the 

expreson 𝜓𝑐,v = 𝜓𝑐,v(𝑥) =< 𝑐(𝑥), v > is an ordinary 

function of the argument 𝑥  defined on  measurable 

set 𝓜. 

    Let 𝑝 > 1, 𝑞 = 1 − 𝑝−1−1
. Consider the set  all 

trajectories 𝑐 with   property  

                             𝜓𝑐,v𝜖𝐿𝑞(𝓜)  ∀ v𝜖𝐾.                     (1) 

We denote this set by ℒ𝑞. 

     Lemma 1. The following statements are true. 

      1. The set (1) is not empty. 
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      2. There are trajectories 𝑐 = {𝑐(𝑥) | 𝑥𝜖𝓜},       

which do not lie in the set ℒ𝑞(𝓜). 

      3. The set ℒ𝑞(𝓜) is a linear  space. 

      Proof. 1. Consider the trajectory 𝑐 =
{𝑐(𝑥) | 𝑥𝜖𝓜}, where 𝑐(𝑥) = 𝛿𝑥 is the delta-function 

at the point 𝑥𝜖𝓜. In this case 𝜓𝑐,v = 𝜓𝑐,v(𝑥) =<
𝑐(𝑥), v >= v(𝑥) is   continuous function in 𝓜, so 

 𝜓𝑐,v𝜖𝐿𝑞(𝓜). So,  it is established that  the set 

ℒ𝑞(𝓜) is not empty. 

      2. Let 𝑥0 be a point of an open interval, 

contained in 𝓜. Consider the trajectory 𝑐 =
{𝑐(𝑥) | 𝑥𝜖𝓜}, where 𝑐(𝑥) = (𝑥 − 𝑥0)−𝛾𝛿𝑥, 𝛾 > 0. 

Then   𝜓𝑐,v(𝑥)  =   < 𝑐(𝑥), v >   =     (𝑥 − 𝑥0)𝛾v(x). 

Remaining in set 𝐾, choose a main function v such 

that v(𝑥0)≠ 0   and choose 𝛾 so that 𝛾𝑞 > 1.  In this 

case, the function 𝜓𝑐,v(𝑥) does not belong to  space 

𝐿𝑞(𝓜). The second part of the lemma is proved. 

       3. If 𝑐 and 𝑑  are two elements of the set 

ℒ𝑞(𝓜), then by definition the functions 𝜓𝑐,v(𝑥) 

and 𝜓𝑑,v(𝑥) lie in the space 𝐿𝑞(𝓜).  We have  

𝜓𝜆𝑐+𝜇𝜖𝑑,v(𝑥) =< 𝜆𝑐 + 𝜇𝑑, v >= 𝜆 < 𝑐, v > +𝜇 <

𝑑, v >= 𝜆𝜓𝑐,v(𝑥) + 𝜓𝑑,v(𝑥).  
It follows that 𝜓𝜆𝑐+𝜇𝑑,v𝜖𝐿𝑞(𝓜).  The third part of 

the lemma is proved. 

     It is obvious that 𝐶𝑙{𝜓𝑐,v | 𝑐𝜖ℒ𝑞(𝓜), v𝜖𝐾} =

𝐿𝑞(𝓜). Therefore, for 𝑤𝜖𝐿𝑞(𝓜), 𝑐𝜖ℒ𝑞(𝓜)  we 

can discuss the integral  

                 ∫ < 𝑐(𝑥), v >
𝑥𝜖𝓜

𝑤(𝑥)𝑑𝑥.                      (2) 

   Let us introduce the notation  

              Ω∗ = ℒ𝑞(𝓜), Ω = 𝐿𝑝(𝓜),                      (3) 

              (𝑑, 𝑤)Ω = ∫ 𝑑(𝑥)
𝑥𝜖𝓜

𝑤(𝑥)𝑑𝑥                  (4)      

   ∀ 𝑑𝜖𝐿𝑞(𝓜)   ∀ 𝑤𝜖𝐿𝑝(𝓜).  

     Since for 𝑐𝜖ℒ𝑞(𝓜) and v𝜖𝐾    function 

𝜓𝑐,v (𝑥) =< 𝑐(𝑥), v >    lies in the space 𝐿𝑞(𝓜), so 

from (3) -- (4) for  expressions (2) we have 

  (< 𝑐(𝑥), v >, 𝑤)Ω = 

= ∫ < 𝑐(𝑥), v >
𝑥𝜖𝓜

𝑤(𝑥)𝑑𝑥 < +∞ ∀ v𝜖𝐾.         (5)      

        In what follows, we will sometimes use a 

shorter notation without mention of the main 

function v𝜖𝐾. For example, conditions (5) can be 

written in the form 

(𝑐(𝑥), 𝑤)Ω = ∫ 𝑐(𝑥)𝑥𝜖𝓜
𝑤(𝑥)𝑑𝑥 < +∞ .             (6)            

   Here and below, the presence of the main function 

v𝜖𝐾     is implied (see (5) -- (6)). 

   In what follows, we will need the notion of a 

complete abstract function. 

     In this connection, we first introduce the concept 

of a complete  family of mappings. 

     Definition 1. Let 𝐻 be a linear topological 

space, 𝐻∗ be the dual space, 𝑇  be a non-empty set 

of parameters 𝑡. For every fixed 𝑡𝜖𝑇 we consider   a 

mapping Г: T→H. The family of the mappings 

{Г(𝑡)}𝑡𝜖𝑇  is called complete in H  if for 𝑑𝜖𝐻∗ the 

condition < 𝑑, Г(𝑡) >≡ 0  ∀𝑡𝜖𝑇 follows the equality 

𝑑 = 0, i.e. 

< 𝑑, Г(𝑡) >≡ 0  ∀𝑡𝜖𝑇 => 𝑑 = 0. 
      In particular, if 𝑇 is a set of numbers, then Г(𝑡) 

is called  an abstract function with values in 𝐻   (or 

a trajectory in 𝐻).   In this case, if family {Г(𝑡)}𝑡𝜖𝑇 

is complete,  then it is called the complete abstract 

function in 𝐻 (or the complete trajectory in 𝐻). 

   Let 𝑇 be some set   on the real axis, 𝑇 ⊂ ℝ1.  
   Consider the complete trajectory {𝜔(𝑡)}𝑡𝜖𝑇 

 in the space 𝐿𝑝(𝓜). In this way 𝜔(𝑡) =

{𝜔(𝑥)(𝑡)| 𝑥𝜖 𝓜} and 

   1) for every fixed 𝑡𝜖𝑇  the function 𝜔(𝑥)(𝑡) of 

argument 𝑥𝜖 𝓜  is an element of space 𝐿𝑝(𝓜), 

𝜔(𝑥)(∙)𝜖𝐿𝑝(𝓜), 

   2) the relation  

(𝑑, 𝜔(𝑡))Ω ≡ 0 ∀𝑡𝜖𝑇, 𝑑𝜖𝐿𝑞(𝓜)  => 𝑑 = 0.    (7) 

        An example of a complete trajectory in 𝐿𝑝(𝓜) 

for the case   when 𝓜=(0,1), 𝑇={0,1,2,…} is  the 

family 𝜔(𝑥)(𝑡) = 𝑥𝑡. 

    Consider the linear space Ʋ defined by the 

relation  

Ʋ = {υ | υ = υ(t) = (𝑐, 𝜔(𝑡))Ω =

= ∫ 𝑐(𝑥)

𝑥𝜖𝓜

 𝜔(𝑥)(𝑡)𝑑𝑥 ∀𝑐𝜖Ω∗, 𝑡𝜖𝑇}.                    (8) 

Note that  according to the accepted   notation, the 

formula (𝑐, 𝜔(𝑡))Ω  contains   the main function 

implicitly, so that the mentioned formula is 

equivalent to formula (< 𝑐, v >, 𝜔(𝑡))Ω.  Thus the 

space Ʋ  consists of distributions. 

    Lemma 2. For any element 𝜐 of the  space Ʋ  

there is a unique family  distributions 𝑐, 𝑐𝜖ℒ𝑞(𝓜), 

such that 𝜐(𝑡) = (𝑐, 𝜔(𝑡))Ω  ∀𝑡𝜖𝑇. 

    Proof. We will prove by contradiction.     

Suppose there is an element 𝜐, 𝜐𝜖Ʋ, which has two 

representations 

𝜐(𝑡) = (𝑐̅, 𝜔(𝑡))Ω = (𝑐̅̅, 𝜔(𝑡))Ω  ∀𝑡𝜖𝑇,                  (9) 

 where 𝑐̅ and 𝑐̅̅ are  two families from the space 

ℒ𝑞(𝓜).  By (9) the identity   follows 

    (< 𝑐̅ − 𝑐̅̅  , v >, 𝜔(𝑡))Ω = 0  ∀𝑡𝜖𝑇.                  (10)                   

   Introducing the notation 𝑑(𝑥) =< 𝑐(̅𝑥) − 𝑐̅(̅𝑥), v >  

from (10) we get   relation (7), so that 𝑑 = 0. So the 

families 𝑐̅ and 𝑐̅̅ are the same. 

     The resulting contradiction proves the assertion. 

This concludes the proof. 

 

 

3 Embedded Space 
Here we consider an analog of previous construction 

with replacement of the set 𝓜 by the set 𝓚, 
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𝓚⊂𝓜⊂ Ө. In particular, Ω̃ =𝐿𝑝(𝓚), Ω̃∗ = ℒ𝑞(𝓚), 

(𝑑̃, 𝑤 ̃ )Ω̃ =

  ∫ 𝑑̃(𝑦)
𝑦𝜖𝓚

𝑤̃(𝑦)𝑑𝑦 ∀𝑑̃ 𝜖𝐿𝑞(𝓚), ∀𝑤̃ 𝜖𝐿𝑝(𝓚).   (11) 

     Let ℜ be a linear operation from 𝐿𝑝(𝓜) to 

𝐿𝑝(𝓚).  For a distribution 𝑎̃𝜖ℒ𝑞(𝓚)      taking into 

account the previous agreement for 𝜓𝑎̃,v (𝑦) = 

< 𝑎̃(𝑦), v > ∀v𝜖𝐾     we have 𝜓𝑎̃,v  𝜖𝐿𝑞(𝓚). 

      Using (11), for 𝑤𝜖𝐿𝑝(𝓜) we have 

(𝜓𝑎̃,v , ℜw)Ω̃ = (ℜ∗𝜓𝑎̃,v , 𝑤)Ω <=>    

 (< 𝑎̃(𝑦), v >, ℜw)Ω̃ = (ℜ∗ < 𝑎̃(𝑦), v >, 𝑤)Ω     (12)   

       Formulas of the form (12) will sometimes be 

written in the form 

                  (𝑎̃, ℜw)Ω̃ = (ℜ∗𝑎̃, 𝑤)Ω .                    (13) 

       Suppose 𝜔̃(𝑡) = {𝜔̃(𝑦)(𝑡) | 𝑦𝜖𝓚}, 𝑡𝜖𝑇} 

is a complete family in 𝐿𝑝(𝓚).   Consider the linear 

space Ʋ̃ defined by the relation 

Ʋ̃ = {υ̃ | υ̃ = υ̃(t) = (𝑎̃, 𝜔̃(𝑡))Ω̃ =   

= ∫ 𝑎̃(𝑦)

𝑦𝜖𝓚

 𝜔̃(𝑦)(𝑡)𝑑𝑦 ∀𝑎̃𝜖Ω̃∗, 𝑡𝜖𝑇}.                  (14) 

   Note  that according to the accepted   notation, the 

formula (𝑎̃, 𝜔̃(𝑡))Ω̃ contains  the main function 

implicitly, so that the mentioned formula is 

equivalent to   formula (< 𝑎̃, v >, 𝜔̃(𝑡))Ω̃,  v𝜖𝐾.    

Thus the space Ʋ̃ consists  of distributions. 

    Consider the linear operation Ƥ, which acts from 

space Ω  into the space Ω̃, 

Ƥ: Ω  →   Ω̃   <=>    Ƥ𝑐 = 𝑐̃    ∀𝑐𝜖Ω,   𝑐̃  𝜖 Ω̃.    (15) 
       Let's suppose that 

                          𝜔̃(𝑡) = Ƥ𝜔(𝑡)    ∀𝑡𝜖𝑇 .                 (16)  
   Theorem 1. If the relations (15) --  (16) are right, 

then the space (14) is contained in the space  (8), 

                                               Ʋ̃⸦ Ʋ.                     (17)  
   Proof. According to formula (14), for the element 

    υ̃𝜖Ʋ̃ a fair   representation  is   

    υ̃(𝑡) = (𝑎̃, 𝜔̃(𝑡))Ω̃ <=>   < υ̃(𝑡), v >= 

= (< 𝑎̃(∙), v >, 𝜔̃(∙)(𝑡))Ω̃    ∀v𝜖𝐾   ∀𝑎̃𝜖Ω̃∗.      (18) 

         Using representation (16) in (18), we have 

  < 𝜐̃, v >= (< 𝑎̃(∙), v >, Ƥ𝜔(∙)(𝑡))Ω̃  = 

= (Ƥ∗ < 𝑎̃(∙), v >, 𝜔(∙)(𝑡))Ω   ∀v𝜖𝐾.                     
   In view of the obvious relationship 

Ƥ∗:  𝐿𝑞(𝓜)   ←    𝐿𝑞(𝓚) 

we get 

   < 𝜐̃, v >= (< 𝑐(∙), v >, 𝜔(∙)(𝑡))Ω   ∀v𝜖𝐾.     (19) 

where   < 𝑐, v > = Ƥ∗ < 𝑎̃(∙), v > belongs to the 

space 𝐿𝑞(𝓜). 

   From the definition (8) of the space Ʋ it is clear   

that the distribution (19) is an element of this   

space, 𝜐̃ 𝜖Ʋ. Formula (17) has been established. 

   This completes the proof. 

 

 

4 Wavelet Decomposition 
   Let condition (16) be satisfied. According to 

Theorem 1 the space Ʋ̃ is  embedded in the space Ʋ, 

i.e. relation (17) holds. 

    Consider the projection operation 𝑃0 of the space 

Ʋ onto the space Ʋ̃, 

   𝑃0:     Ʋ  → Ʋ̃.                                                    (20)  

   According to Lemma 2, for the element 𝜐𝜖Ʋ   

there are unique elements 𝑐𝜖Ω∗ and  𝑎̃𝜖Ω̃∗ such that 

the next representations hold 

υ(t) = (𝑐, 𝜔(𝑡))Ω, υ̃(t) = (𝑎̃, 𝜔̃(𝑡))Ω̃, 
 𝑃0υ = 𝑃0[(𝑐, 𝜔(∙))Ω] = (𝑎̃, 𝜔̃(∙))Ω̃ .                    (21) 

    Thus the element 𝑎̃𝜖Ω̃∗ is uniquely defined by the 

element 𝑐𝜖Ω∗. Appropriate map  𝑐 → 𝑎̃    is denoted 

by 𝓠, 

            𝑎̃ = 𝓠𝑐.                                                          (22) 

       It is easy to see that 𝓠 is the linear operation 

acting from the space Ω∗ into the space  Ω̃∗, 

𝓠:   Ω∗  →  Ω̃∗. 

       From (21) -- (22) it follows, that   operation 𝓠  

is defined by the operation 𝑃0 according to the 

formula 

𝑃0[(𝑐, 𝜔(∙))Ω](t) ≡  
≡ (𝓠𝑐, 𝜔̃(𝑡))Ω̃  ∀𝑐 𝜖Ω∗ ∀𝑡 𝜖𝑇.                           (23) 

        Theorem 2. For any element 𝜐𝜖Ʋ,  𝜐 = 𝜐(𝑡) = 

(𝑐, 𝜔(𝑡))Ω  ∀𝑡 𝜖𝑇, 𝑐 𝜖Ω∗,    the ratio 

𝑃0𝜐(𝑡) = (Ƥ∗𝓠𝑐, 𝜔(𝑡))Ω, <=> < 𝑃0𝜐(𝑡), 𝑣 > 

                  = (Ƥ∗ < 𝓠𝑐, 𝑣 >, 𝜔(𝑡))Ω                     
(24) 

is right. 

  Proof. Since formula (23) is equivalent to  formula 

𝑃0[(< 𝑐, v >, 𝜔(∙))Ω](t) ≡ (< 𝑄𝑐, v >, 𝜔̃(𝑡))Ω̃   
∀𝑐 𝜖Ω∗ ∀𝑡 𝜖𝑇   ∀v 𝜖𝐾,                                              (25) 

then, taking into account relation (16), from (25) we 

find 

𝑃0[(< 𝑐, v >, 𝜔(∙))Ω](t) ≡ (< 𝑄𝑐, v >, 𝜔̃(𝑡))Ω̃   
≡ (< 𝑄𝑐, v >, Ƥ𝜔(𝑡) )Ω̃   ≡ (Ƥ∗ < 𝑄𝑐, v >, 𝜔(𝑡) )Ω 

∀𝑐 𝜖Ω∗ ∀𝑡 𝜖𝑇   ∀v 𝜖𝐾.                                             (26) 

Using the notation adopted in (13) -- (14),  we see 

that relation (26) leads to equality (24). 

   This completes the proof. 

    Let us introduce the operation 𝑄0 = ℐ − 𝑃0, 

where ℐ  is the identity  operation in Ʋ. As a result 

of projection  (20) we obtain the direct sum  

Ʋ = Ʋ̃ + 𝑊, 
 where Ʋ̃ = 𝑃0Ʋ,  𝑊 = 𝑄0Ʋ. 

    Consider 𝑐 𝜖Ω∗. Let's put 

𝑏 = 𝑐 − Ƥ∗𝓠𝑐 <=> < 𝑏, v > −Ƥ∗ < 𝑄𝑐, v > (27) 

  ∀v𝜖𝐾. 

Theorem 3. For 𝜐𝜖Ʋ relations 

       𝑄0𝜐 = 𝜐 − 𝑃0𝜐 = (𝑏, 𝜔)Ω ,                           (28)  

                    𝑐 = Ƥ∗𝑎̃ + 𝑏                                       (29) 

are fulfilled.   Here 𝑎̃ = 𝓠𝑐. 
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  Proof.   From (24) -- (27) we have 

< 𝑄0υ, v >=< 𝜐, 𝑣 > −< 𝑃0υ, v >= 

(< 𝑐, v >, 𝜔)Ω − (Ƥ∗ < 𝓠υ, v >, 𝜔)Ω = (b, 𝜔)Ω. 
    Thus, relation (28) is valid. From formulas (22) 

and (27) we obtain relation (29). 

    This concludes the proof. 

    The element 𝑐𝜖Ω is the initial flow, the element  𝑎̃ 

is the main flow  and the element 𝑏 is    the  wavelet 

flow. Formulas (22), (27) are  called    

decomposition formulas, and formulas (29) is called    

reconstruction formulas. 

    We introduce a linear operation 

                       𝓠̂ ∶  𝐿𝑞 (𝓜) → 𝐿𝑞 (𝓚) 

 by  formula 

                   𝓠̂ < 𝑐, v >≡< 𝓠𝑐, v >.                    (30) 

 

   Theorem 4. For the operation  defined by formula 

(23) to be the  projection  operation 𝑃0 of the space 

 Ʋ  onto the space Ʋ̃ it is necessary and sufficient to 

have 

                             𝓠̂Ƥ∗ = 𝐼.                                  

(31) 

Here 𝐼 is the identical operation in the 

space 𝐿𝑞 (𝓜). 

   Proof. Necessity. Let 𝑃0 be a projection operation 

 onto the space Ʋ̃. Then  the idempotency condition 

is satisfied: 𝑃0
2 = 𝑃0. In other  words, on elements 

of the space Ʋ̃  the  operation 𝑃0 acts as the identical 

operation, 

𝑃0[(< 𝑎̃, v >, 𝜔(∙))Ω] ≡ (< 𝑎̃, v >, 𝜔̃)Ω̃     (32) 

   ∀v𝜖𝐾   ∀𝑎̃𝜖Ω̃
∗
.  

   On the other hand, by the definition of the 

operation 𝑃0   we have 

𝑃0[(< 𝑐, v >, 𝜔(∙))Ω] ≡ (< 𝑄𝑐, v >, 𝜔̃)Ω̃         (33) 

∀v𝜖𝐾   ∀𝑐𝜖Ω∗. 
   Using the definition of the operation 𝓠̂ (see  

formula   (30)) from (33) we obtain 

𝑃0[(< 𝑐, v >, 𝜔(∙))Ω] ≡ (𝓠̂ < 𝑐, v >, 𝜔̃)Ω̃       (34) 

∀v𝜖𝐾   ∀𝑐𝜖Ω∗. 
    Setting < 𝑐, v >= Ƥ∗ < 𝑎̃, v >,   by (34) we find 

𝑃0[(Ƥ∗ < 𝑎̃, v >, 𝜔(∙))Ω] ≡ 

≡ (𝓠̂Ƥ∗ < 𝑎̃, v >, 𝜔̃)Ω̃  ∀v𝜖𝐾   ∀𝑎̃𝜖Ω̃∗ .             (35) 
    The obvious transformation of the left side of 

relation (35)    gives us the formula 

𝑃0[(< 𝑎̃, v >, 𝜔̃(∙))Ω̃] ≡ 

≡ (𝓠̂Ƥ∗ < 𝑎̃, v >, 𝜔̃)Ω̃  ∀v𝜖𝐾   ∀𝑎̃𝜖Ω̃∗.              (36) 
    Using property (16) on the left side of formula 

(36),   we get the equality of the left sides of    

relations (32) and (36). Therefore   identity 

(< 𝑎̃, v >, 𝜔̃)Ω̃  ≡ 

≡ (𝓠̂Ƥ∗ < 𝑎̃, v >, 𝜔̃)Ω̃  ∀v𝜖𝐾   ∀𝑎̃𝜖Ω̃∗              (37) 
is right.     In view of the completeness of the family 

𝜔̃(𝑡)   we derive relation (31) by formula (37). 

    The necessity has been proven. 

   Sufficiency. Assume that relation (31) holds.  The 

definition of the 𝑃0 operation given by formula (23),    

shows that for an element υ𝜖Ʋ   we have 𝑃0υ𝜖Ʋ̃. 

Notice, that  in view of the notation (30), formula 

(23) is equivalent to   formula (34). 

    Let υ̃ be an arbitrary element of the  space Ʋ̃.  In 

(30) we take < 𝑐, v >= Ƥ∗ < 𝑎̃, v >.    As a result, 

we get 

𝑃0[(Ƥ∗ < 𝑎̃, v >, 𝜔(∙))Ω] ≡ 

≡ (𝓠̂Ƥ∗ < 𝑎̃, v >, 𝜔̃)Ω̃  ∀v𝜖𝐾   ∀𝑎̃𝜖Ω̃∗.              (38) 
   In view of assumption (31), from relation (38) we 

easily find 

𝑃0[(< 𝑎̃, v >, 𝜔̃(∙))Ω̃] ≡ 

≡ (𝓠̂Ƥ∗ < 𝑎̃, v >, 𝜔̃)Ω̃  ∀v𝜖𝐾   ∀𝑎̃𝜖Ω̃∗.              (39) 
   It follows from (39) that the operation 𝑃0 is 

idempotent. The sufficiency of relation (31) has 

been established. 

    This concludes the proof. 

 

 

5 Integral Operation Case 
Here we give an illustration of the previous   

situations where Ƥ  is an integral operation. 

    Let 𝑈(𝑦, 𝑥) be a function of two arguments   

𝑥𝜖𝓜, 𝑦𝜖𝓚  such that the integral operation  Ƥ  with 

kernel 𝑈(𝑦, 𝑥), 

    Ƥ: 𝑔(𝑦) = ∫ 𝑈(𝑦, 𝑥)𝑤(𝑥)𝑑𝑥
𝑥𝜖𝓜

,                   (40) 

maps the space 𝐿𝑝 (𝓜) to the space 𝐿𝑝 (𝓚), 

Ƥ: 𝐿𝑝 (𝓜) → 𝐿𝑝 (𝓚), Ƥ∗: 𝐿𝑞 (𝓜) ← 𝐿𝑞(𝓚). (41) 

Consider two abstract functions 

  𝜔(𝑡) ={𝜔(𝑥)(𝑡) | 𝑥𝜖𝓜}, 𝜔̃(𝑡) ={𝜔̃(𝑦)(𝑡) |  𝑦𝜖𝓚}, 

which are complete in the  spaces 𝐿𝑝 (𝓜) and 

𝐿𝑝 (𝓚), respectively. 

     Let's suppose that 

                 𝜔̃(𝑡) = Ƥ𝜔(𝑡)                                        (42) 
    Theorem 5. If relation (42) holds, then  

                                          Ʋ̃⸦Ʋ.                           (43)  

    Proof. According to formula (14), for the element 

    υ̃𝜖Ʋ̃ the representation is true 

    υ̃ = (𝑎̃, 𝜔̃)Ω̃<=>< υ̃, v >= (<  𝑎̃(∙), v >, 𝜔̃(∙))Ω̃ 

                                  ∀v𝜖𝐾   ∀𝑎̃𝜖Ω̃
∗
.                  (44) 

 Relation (44) is equivalent to the formula 

< υ̃(𝑡), v >= ∫ < 𝑎̃(𝑦), v >
𝑦𝜖𝓚

𝜔̃(𝑦)(𝑡)𝑑𝑦         (45) 

∀v𝜖𝐾,   𝑎̃𝜖Ω̃
∗
. 

   In view of formula (40), condition (42) can be 

rewritten as 

𝜔̃(𝑦)(𝑡) = ∫ 𝑈(𝑦, 𝑥)
𝑥𝜖𝓜

𝜔(𝑥)(𝑡)𝑑𝑥.                   (46) 

   Using representation (46) in relation (45), we have 

< υ̃(𝑡), v >= 
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= ∫ < 𝑎̃(𝑦), v >
𝑦𝜖𝓚

∫ 𝑈(𝑦, 𝑥)
𝑥𝜖𝓜

𝜔(𝑥)(𝑡)𝑑𝑥𝑑𝑦  (47) 

∀v𝜖𝐾,   𝑎̃𝜖Ω̃
∗
. 

    Rearranging the order of integration in (47) leads 

to the formula 

< υ̃(𝑡), v >= 

= ∫ [∫ 𝑈(𝑦, 𝑥) < 𝑎̃(𝑦), v >     𝑑𝑦
𝑦𝜖𝓚

]
𝑥𝜖𝓜

𝜔(𝑥)(𝑡)𝑑𝑥 

∀v𝜖𝐾,   𝑎̃𝜖Ω̃
∗
.                                                     (48) 

According to condition (41), the expression in 

square brackets is  an element of the space 𝐿𝑞 (𝓜). 
Thus, in accordance with formula (8)   relation (48) 

is a representation for element of the space Ʋ. 
 This completes the proof. 

 

 

6 Space of the Haar Type 
Let 𝓜 = Ө be an interval (𝛼, 𝛽). Consider a grid 

𝑋: … < 𝑥−1 < 𝑥0 < 𝑥1 < 𝑥2 < ⋯          (49) 

    lim
𝑗→−∞

𝑥𝑗 = 𝛼,    lim
𝑗→−∞

𝑥𝑗 = 𝛽.                       (50) 

    Let's put  𝜔(𝑡) = {𝜔(𝑥)(𝑡) | 𝑥𝜖𝓜},  where 

𝜔(𝑥)(𝑡) is defined by grid (49)  -- (50), 

𝜔(𝑥)(𝑡) = {

1

𝑥𝑗+1−𝑥𝑗
  𝑓𝑜𝑟 𝑥, 𝑡𝜖[𝑥𝑗, 𝑥𝑗+1)

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
         (51)      

    If 𝑡  is fixed in the interval Ө, then there is 𝑗𝜖ℤ 

 so that 𝑡𝜖[𝑥𝑗, 𝑥𝑗+1). When so fixed 𝑡 the expression 

𝜔(𝑥)(𝑡) is   piecewise constant function of the 

argument 𝑥𝜖𝓜. This   the function is equal to the 

constant (𝑥𝑗+1 − 𝑥𝑗)−1    for 𝑥𝜖[𝑥𝑗, 𝑥𝑗+1)    and 

equals zero for 𝑥𝜖𝓜\[𝑥𝑗, 𝑥𝑗+1). 

    Thus, for every fixed 𝑡𝜖 Ө it is obvious that 

implication 𝜔(∙)(𝑡)𝜖𝐿𝑞 (𝓜)    is correct. 

    Let 𝐶−1(𝑋) be the space of piecewise constant 

functions, which are constants on each interval 

[𝑥𝑗, 𝑥𝑗+1),  𝑗𝜖ℤ. For  functions 𝑢̅, 𝑔̅ from the space 

𝐶−1(𝑋)    we introduce the notation  ||𝑢̅||𝑝 =

(∑ | 𝑢̅(𝑥𝑗)𝑗𝜖ℤ |𝑝)1/𝑝,   ||𝑔̅||𝑞 = (∑ | 𝑔̅(𝑥𝑗)𝑗𝜖ℤ |𝑞)1/𝑞 . 

  Consider dual spaces  𝑙𝑝̅ =

{𝑢̅ | 𝑢̅𝜖𝐶−1(𝑋), ||𝑢̅||𝑝 < +∞}  and 𝑙𝑞̅ =

{𝑔̅  | 𝑔̅𝜖𝐶−1(𝑋), ||𝑔̅||𝑞 < +∞}. 

 Relevant  duality can be defined by the formula         

< 𝑔̅, 𝑢̅ > = ∑  𝑔̅(𝑥𝑗) 𝑢̅(𝑥𝑗)𝑗𝜖ℤ  ∀𝑔̅ 𝜖  𝑙𝑞̅    ∀𝑢̅ 𝜖  𝑙𝑝̅. 

     It is easy to check that 𝜔(𝑥)(𝑡) is a complete 

trajectory in  𝑙𝑝̅.    We introduce the notation 

𝜔𝑗(𝑡) = 𝜔(𝑥)(𝑡)     for 𝑥𝜖[𝑥𝑗, 𝑥𝑗+1). From (51) we 

get  

𝜔𝑗(𝑡) = {

1

𝑥𝑗+1 − 𝑥𝑗
  𝑓𝑜𝑟 𝑡𝜖[𝑥𝑗, 𝑥𝑗+1)

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      (52) 

  By definition we put Ω = 𝑙𝑝̅, Ω∗ = ℒ𝑞(𝓜). 

  For 𝑐𝜖Ω∗ we have 

(< 𝑐, v >, 𝜔(𝑡))Ω = 

= ∫ < 𝑐(𝑥), v >
𝑥𝜖𝓜

𝜔(𝑥)(𝑡)𝑑𝑥 ∀v𝜖𝐾.   (53) 

  By  (53) we reduce 

(< 𝑐, v >, 𝜔(𝑡))Ω = ∫  < 𝑐(𝑥), v > 𝜔(𝑥)(𝑡)
𝛽

𝛼
𝑑𝑥 = 

=∑ ∫  < 𝑐(𝑥), v > 𝜔(𝑥)(𝑡)
𝑥𝑗+1

𝑥𝑗
𝑑𝑥 =𝑗𝜖ℤ   

=∑ < 𝑐𝑗, v > 𝜔𝑗(𝑡)𝑗𝜖ℤ    ∀v𝜖𝐾,                            (54) 

where 

< 𝑐𝑗, v >= ∫ < 𝑐(𝑥), v >
𝑥𝑗+1

𝑥𝑗

𝑑𝑥, 𝑐𝜖ℒ𝑞(𝓜).  (55) 

      The convergence of the series and integrals 

appearing here is obvious. 

      Consider the linear space Ʋ of trajectories in the 

distribution space 𝐾′  by setting 

Ʋ = {υ |υ =  υ(𝑡) = (𝑐, 𝜔(𝑡))Ω   ∀𝑐𝜖Ω∗}.      (56) 
      In view of formulas (54) -- (56) we have 

Ʋ = {υ |υ =  υ(𝑡), < 𝜐(𝑡), v >= 

= ∑ < 𝑐𝑗, v > 𝜔𝑗(𝑡)

𝑗𝜖ℤ

   ∀𝑐𝑗𝜖𝐾′}.                     (57) 

      Denote by 𝑆 the linear space of locally 

summable 

functions, 

𝑆 = {𝑤 | 𝑤 =w(t)=∑   𝑐𝑗  𝜔𝑗(𝑡)𝑗𝜖ℤ   ∀𝑐𝜖𝑙𝑞 }.      (58)  

       Let us assume that the condition 

         𝑠𝑢𝑝𝑗𝜖ℤ(𝑥𝑗+1 − 𝑥𝑗) = 𝑀 < +∞                (59) 

is right.  For a finite interval (𝛼, 𝛽)  condition (59) 

is always satisfied. 

    Theorem 6.  Under condition (59) family 

{𝛷𝑣}𝑣𝜖𝐾    linear homomorphisms of the space Ʋ 

into the space S exists. 

     Proof.   By Holder's inequality, we have 

|< 𝑐𝑗 , v > |𝑞 ≤ 

(𝑥𝑗+1 − 𝑥𝑗)𝑞/𝑝 ∫ | < 𝑐(𝑥), v >
𝑥𝑗+1

𝑥𝑗
|𝑞𝑑𝑥.    

   Hence we have 

∑ | < 𝑐𝑗, v > |𝑞
𝑗𝜖ℤ ≤ 𝑀𝑞/𝑝 ∫ | < 𝑐(𝑥), v >

𝛽

𝛼
|𝑞𝑑𝑥.    

  In view of the condition 𝑐𝜖ℒ𝑞(𝓜) we can see 

 the sum ∑ | < 𝑐𝑗 , v > |𝑞
𝑗𝜖ℤ  is finite. So we have 

𝑐(𝑣) = {< 𝑐𝑗, v >}𝜖𝑙𝑞 .                                        (61) 

   Consider the mapping Φ𝑣 of the space Ʋ   into the 

space S by matching the element   υ 𝜖 Ʋ, <
𝜐(𝑡), v >= ∑ < 𝑐𝑗, v > 𝜔𝑗(𝑡)𝑗𝜖ℤ    an element 

           𝑤 = 𝑤(𝑡) = ∑  𝑐𝑗𝜔𝑗(𝑡)𝑗𝜖ℤ ,                 (62) 
where for a fixed  v𝜖𝐾 the expressions  𝑐𝑗 =<

𝑐𝑗, 𝑣 >    are numbers.  From relations (57), (59) and 

(61) - (62)   follows the implication 𝑤𝜖𝑆.   The 
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linearity of the mapping Φ𝑣 is obvious.   This 

completes the proof. 

 

 

7 Embedding of  the Haar Type 

Spaces 
Next, we assume that 

                  𝓚 = 𝓜 = (α, β) .                      (63)   

Consider the function   𝑈(𝑥, 𝑦)  given by the 

formula 

    𝑈(𝑥, 𝑦) = {
1  𝑖𝑓 𝑥, 𝑦𝜖(𝑥̃𝑠, 𝑥̃𝑠+1)

0  𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒,
               (64) 

where 

(𝑥̃𝑠, 𝑥̃𝑠+1) = 

= {
(𝑥2𝑠, 𝑥2𝑠+2)                  𝑓𝑜𝑟 𝑠 ≥ 0

(𝑥−𝑠(𝑠−1)/2, 𝑥−𝑠(𝑠+1)/2)  𝑓𝑜𝑟  𝑠 < 0.
           (65) 

 We define the linear operator Ƥ by the relations 

Ƥ: Ω  →   Ω̃   <=> ∀𝑤𝜖Ω  𝑤̃ = Ƥw,   𝑤̃𝜖Ω̃  <=>  
<=>  𝑤̃(𝑦) = ∫ 𝑈(𝑥, 𝑦)𝒘(𝑥)

𝑥𝜖𝓜
𝑑𝑥.                (66)   

By (63) -- (66) we get 

𝑤̃(𝑦) = ∫ 𝑤(𝑥)𝑑𝑥
𝑥̃𝑠+1

𝑥̃𝑠
  ∀𝑦𝜖(𝑥̃𝑠, 𝑥̃𝑠+1).                (67)    

We substitute the function 𝑤(𝑥) = 𝜔(𝑥)(𝑡)    (see 

formula (51))  in (67).    We put 𝑤̃(𝑦) = 𝜔̃(𝑦)(𝑡), 

 𝑦𝜖(𝑥̃𝑠, 𝑥̃𝑠+1). For 𝑠 ≥ 0  we have 

 𝜔̃(𝑦)(𝑡) = ∫ 𝜔(𝑥)(𝑡)𝑑𝑥
𝑥2𝑠+1

𝑥2𝑠
+

               + ∫ 𝜔(𝑥)(𝑡)𝑑𝑥     ∀𝑦𝜖(𝑥2𝑠, 𝑥2𝑠+2). (68)
𝑥2𝑠+2

𝑥2𝑠+1
        

If 𝑦𝜖[𝑥2𝑠, 𝑥2𝑠+2), then in  the first integral values 𝑥 

and 𝑡 are in the same the same grid interval, namely, 

in the interval [𝑥2𝑠, 𝑥2𝑠+1). According to formula 

(51) in this integral the integrand is equal to 

(𝑥2𝑠+1 − 𝑥2𝑠)−1. The second integral (68) under 

these conditions is equal to zero. Thus, 

𝜔̃(𝑦)(𝑡) = 1  ∀𝑦𝜖[𝑥2𝑠, 𝑥2𝑠+2) ∀𝑡 𝜖(𝑥2𝑠, 𝑥2𝑠+1). (69)          

Similarly, we find 

𝜔̃(𝑦)(𝑡) = 1∀𝑦𝜖[𝑥2𝑠, 𝑥2𝑠+2), 𝑡 𝜖(𝑥2𝑠+1, 𝑥2𝑠+2). (70)           

     It is easy to see that 

𝜔̃(𝑦)(𝑡) = 0   ∀𝑡 𝜖(𝛼, 𝛽)\[𝑥2𝑠, 𝑥2𝑠+1).                 (71)             

From (69) -- (71) it follows that for 𝑠 ≥ 0    function 

value 𝜔̃(𝑦)(𝑡) on the interval [𝑥̃𝑠, 𝑥̃𝑠+1)  is   unit, and 

outside this interval its value is zero. 

    For s< 0 we have 

𝜔̃(𝑦)(𝑡) = ∑ ∫ 𝜔(𝑥)(𝑡)𝑑𝑥
𝑥𝑗+1

𝑥𝑗

−𝑠(𝑠+1)/2−1
𝑗=−𝑠(𝑠−1)/2            (72) 

∀𝑦𝜖(𝑥2𝑠, 𝑥2𝑠+2). 
If in (72) the variable 𝑡 is in the interval[𝑥𝑖 , 𝑥𝑖+1), 

then  the integral of  functions 𝜔(𝑥)(𝑡) over the 

mentioned interval  is left in the last sum.    In view 

of formula (51), the result of integration   turns out 

to be equal to one. Thus, throughout the entire 

interval   [𝑥𝑠, 𝑥𝑠+1) function 𝜔̃(𝑦)(𝑡)    is equal to 

unit, and outside this interval it is equal to zero,     

𝜔̃(𝑦)(𝑡) = {
1 𝑓𝑜𝑟   𝑦, 𝑡𝜖[𝑥̃𝑠, 𝑥̃𝑠+1)

  0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
                  (73)   

Introducing the notation 𝜔̃𝑠(𝑡) = 𝜔̃(𝑦)(𝑡)      for 

𝑦𝜖[𝑥̃𝑠, 𝑥̃𝑠+1), from  (51) and (73) we obtain the 

calibration relations 

𝜔̃𝑠(𝑡) = ∑ (𝑥𝑗+1 − 𝑥𝑗)

[𝑥𝑗,𝑥𝑗+1)⊂[𝑥̃𝑠,𝑥̃𝑠+1)

𝜔𝑗(𝑡)    (74) 

∀𝑠𝜖ℤ    ∀𝑡𝜖(𝛼, 𝛽).       
   Consider the linear space Ʋ̃   trajectories in the 

distribution space 𝐾′ by setting 

Ʋ̃ = {υ̃ | υ̃ = υ̃(t) = (𝑎̃, 𝜔̃(𝑡))Ω̃  ∀𝑎̃𝜖 Ω̃∗  }.     (75) 

  By definition 

(< 𝑎̃, 𝑣 >, 𝜔̃(𝑡))Ω̃ = ∫ < 𝑎̃(𝑦), v >
𝑦𝜖𝓚

𝜔̃(𝑦)(𝑡)𝑑𝑦                        

                                           ∀𝜖𝐾.                                (76)     
From (73) and (76) we have 

(< 𝑎̃, v >, 𝜔̃(𝑡))
Ω̃

= 

= ∑ ∫  < 𝑎̃(𝑦), v > 𝜔̃(𝑦)(𝑡)
𝑥̃𝑗+1

𝑥̃𝑗
𝑑𝑦 =𝑗𝜖ℤ   

               = ∑  < 𝑎̃𝑗, v > 𝜔̃𝑗(𝑡),𝑗𝜖ℤ                      (77) 

where 

< 𝑎̃𝑗, v >= ∫  < 𝑎̃(𝑦), v >
𝑥̃𝑗+1

𝑥̃𝑗

𝑑𝑦  ∀𝑣𝜖𝐾. 

   The convergence of the series and integrals 

appearing in (77) is obvious.  

   Thus, the space (75) can be represented in the 

form   

Ʋ̃ = {υ̃ | υ̃ =  ∑  𝑎̃𝑗𝜔̃𝑗

𝑗𝜖ℤ

   ∀𝑎̃𝑗𝜖𝐾 ′  }             (78) 

Let 𝑆̃  be the linear space of  locally summable 

functions, 

𝑆̃ = {𝑤̃ | 𝑤̃ = 𝑤̃(𝑡) = ∑  𝑎̅𝑗𝜔̃𝑗𝑗𝜖ℤ    ∀𝑎̅𝜖𝑙𝑞  },    (79) 

where 𝑎̅ = { 𝑎̅𝑗}𝑗𝜖ℤ, 𝑎̅𝑗𝜖ℝ1. 

Let us assume that the condition 

             sup𝑗𝜖ℤ (𝑥̃𝑗+1 − 𝑥̃𝑗) = 𝑀̃ <+∞            (80) 

are right. 

 Theorem 7. Under condition (80) the following 

statements are true: 

    1. Linear spaces Ʋ̃ and 𝑆̃ are subspaces of the 

spaces Ʋ and  S  respectively. 

    2. Under condition (80) there exists a family  

{𝛷̃𝑣}𝑣𝜖𝐾    linear homomorphisms of the space Ʋ̃ 

into the space 𝑆̃. 

    Proof. The first assertion follows from        

calibration relation (74). The proof   of the second 

assertion is carried out similarly to the proof of         

Theorem 6. 
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In the space 𝑆, consider a new coordinate system 

ϖ𝑗, obtained from system (52) by multiplying  the 

coordinate functions 𝜔𝑗into constants (𝑥𝑗+1 − 𝑥𝑗). 

We have 

ϖ𝑗 = (𝑥𝑗+1 − 𝑥𝑗)𝜔𝑗, 

ϖ𝑗(𝑡) = {
1             𝑓𝑜𝑟  𝑡𝜖[𝑥𝑗, 𝑥𝑗+1),

0   𝑓𝑜𝑟  𝑡𝜖(𝛼, 𝛽)[𝑥𝑗, 𝑥𝑗+1).  
               (81) 

   Calibration relation (74) takes the form 

𝜔̃𝑠(𝑡) = ∑ 𝑝𝑠𝑗𝑗𝜖ℤ ϖ𝑗(𝑡)  ∀𝑠𝜖ℤ  ∀𝑡𝜖(𝛼, 𝛽),         (82) 

 where 

𝑝𝑠𝑗 = {
1         𝑓𝑜𝑟 (𝑥𝑗, 𝑥𝑗+1) ⸦ (𝑥̃𝑠, 𝑥̃𝑠+1)

0  𝑓𝑜𝑟 (𝑥𝑗 , 𝑥𝑗+1) ∩ (𝑥̃𝑠, 𝑥̃𝑠+1) = ∅.
  (83) 

    In the space 𝑆̃, consider the functionals 𝑔𝑖    and 

𝑔̃𝑖 given by the formulas 

≪ 𝑔𝑖 , 𝑢 ≫= 𝑢(𝑥𝑖),   ≪ 𝑔̃
𝑖
, 𝑢 ≫= 𝑢(𝑥̃𝑖)   

∀𝑢𝜖𝑆. (84) 
    The properties of biorthogonality are easily 

verified 

≪ 𝑔𝑖 , ϖ𝑗 ≫= 𝛿𝑖𝑗,   ≪ 𝑔̃
𝑖
, 𝜔̃𝑗 ≫= 𝛿𝑖𝑗    ∀𝑖, 𝑗𝜖ℤ, (85) 

where 𝛿𝑖𝑗  is the Kronecker symbol. 

  Projection of 𝑃̅0 from 𝑆 onto 𝑆̃   define by  

functionals (84) -- (85), 

𝑃̅0𝑢 = ∑ ≪ 𝑔̃
𝑖
, 𝑢 ≫ 𝜔̃𝑖       ∀𝑢

𝑖𝜖ℤ
𝜖𝑆 .               (86) 

    

Let  𝑄̅0   be  the operator 𝐼 − 𝑃̅0. 

 Operation (86) derives  a wavelet decomposition of 

space  𝑆, 

                            𝑆 = 𝑆̃ + 𝑊.                              

(87) 

 Consider an element  𝑢𝜖𝑆 in basis {ϖ𝑗}𝑖𝜖ℤ of the 

space 𝑆, 

                             𝑢 = ∑ 𝑐𝑖̅𝑖𝜖ℤ ϖ𝑖                             
(88) 

                         𝑐𝑖̅ = ≪ 𝑔
𝑖
, 𝑢 ≫.                             

(89) 

Let's be known  the coefficients 𝑎̅𝑖 and 𝑏̅𝑖 of  

projections for the element 𝑢 onto  spaces 𝑆̃ and 𝑊  

in (87), 

  𝑃̅0u= ∑ 𝑎̅𝑖𝑖𝜖ℤ 𝜔̃𝑖,      𝑄̅0u= ∑ 𝑏̅𝑖′𝑖′𝜖ℤ ϖ𝑖′ ,           (90) 

  where 𝑎̅𝑖 =≪ 𝑔̃
𝑖
, 𝑢 ≫,  𝑏̅𝑖′ =≪ 𝑔𝑖′ , 𝑄̅0𝑢 ≫. 

  Let's express the numbers 𝑐𝑗̅ through the numbers 

𝑎̅𝑖 and 𝑏̅𝑖′ . According to the formulas (82) and (90) 

we have the representation 

                      𝑢 = ∑ 𝑎̅𝑖𝑖𝜖ℤ 𝜔̃𝑖 + ∑ 𝑏̅𝑖′𝑖′𝜖ℤ =

∑ (∑ 𝑎̅𝑖𝑖𝜖ℤ 𝑝𝑖,𝑖′ + 𝑏̅𝑖′)𝑖′𝜖ℤ ϖ𝑖′ .                                 (91) 

   On the other hand, representation (88) -- (89) is 

valid.   Equating the right parts of representations 

(88) and  (91) taking into account the linear 

independence of the coordinate   splines {ϖ𝑖}𝑖𝜖ℤ 

leads to  ratios 

          𝑐𝑗̅ = ∑ 𝑎̅𝑖𝑖𝜖ℤ 𝑝𝑖,𝑗 + 𝑏̅𝑗     ∀𝑗𝜖ℤ.                    (92) 

    Relations (92) are formulas of   reconstruction. 

    We introduce vectors 

  𝒂̅ = (… , 𝑎̅−2, 𝑎̅−1, 𝑎̅0, 𝑎̅1, 𝑎̅2, … ), 
  𝒃̅ = (… , 𝑏̅−2, 𝑏̅−1, 𝑏̅0, 𝑏̅1, 𝑏̅2, … ), 
  𝒄̅ = (… , 𝑐−̅2, 𝑐−̅1, 𝑐0̅, 𝑐1̅, 𝑐2̅, … ), 
 as well as the matrix Ƥ=(𝑝𝑠𝑗)𝑠,𝑗𝜖ℤ,  whose elements 

𝑝𝑠𝑗 are given by formula (83). 

    The introduced notation allows us to write the 

formulas   reconstruction (92) in the form 

                             𝒄̅ = Ƥ𝑇𝒂̅ + 𝒃̅.                      (93) 

     The vector 𝒄̅ is the initial flow, 𝒂̅      is  main 

flow, and the vector 𝒃̅ is wavelet flow. 

     Consider  𝑢𝜖𝑆,  𝑢 = ∑ 𝑐𝑠̅𝑠𝜖ℤ ϖ𝑠.   Using 

equalities 

𝑎̅𝑖 =≪ 𝑔̃
𝑖
, 𝑢 ≫, 

we have 

𝑎̅𝑖 = ∑ 𝑐𝑠̅
𝑠𝜖ℤ

≪ 𝑔̃
𝑖
, ϖ𝑠 ≫. 

   From (92) we successively derive 

𝑏̅𝑗 = 𝑐𝑗̅ − ∑ 𝑝𝑖,𝑗 ∑ 𝑐𝑠̅
𝑠𝜖ℤ

≪ 𝑔̃
𝑖
, ϖ𝑠 ≫

𝑖𝜖ℤ
. 

    Using the notation 

                         𝑞𝑖,𝑠 =≪ 𝑔̃
𝑖
, ϖ𝑠 ≫ ,                     (94)  

  we get 

                 𝑎̅𝑖 = ∑ 𝑞𝑖,𝑠𝑐𝑠̅
𝑠𝜖ℤ

,                              (95) 

           𝑏̅𝑗 = 𝑐𝑗̅ − ∑ 𝑐𝑠̅
𝑠𝜖ℤ

∑ 𝑝𝑖,𝑗 𝑞𝑖,𝑠
𝑖𝜖ℤ

.         (96) 

   Formulas (95) -- (96) are called formulas   

decomposition. 

   Introducing the matrix 𝓠 = (𝑞𝑖,𝑠)𝑖,𝑠𝜖ℤ      we 

rewrite the decomposition formulas in the form 

                      𝒂̅ = 𝓠𝒄̅,        𝒃̅ = 𝒄̅ − Ƥ𝑇𝓠𝒄̅.           (97) 

   Note that the constants 𝑝𝑠,𝑗 are calculated from  

formulas (65) and (83), while the numbers 𝑞𝑖,𝑠    are 

determined by formulas (85), (94). 

    Referring to the projection of  the space Ʋ    on Ʋ̃, 

note that their structure is similar  the structure of 

the spaces 𝑆 and 𝑆̃, respectively. 

    According to formulas (57) and (58) we have   

Ʋ = {υ |υ =  υ(𝑡), υ(𝑡) = ∑ 𝑐𝑗𝜔𝑗(𝑡)𝑗𝜖ℤ }, 

          𝑆 = {𝑤 | 𝑤 =w(t)=∑   𝑐𝑗 𝜔𝑗(𝑡)𝑗𝜖ℤ  }.         

   In the same way, the structures of the spaces 

   (78) and (79) are  similar,  

               Ʋ̃ = {υ̃ | υ̃ =  ∑  𝑎̃𝑗𝜔̃𝑗𝑗𝜖ℤ },   

              𝑆̃ = {𝑤̃ | 𝑤̃ = 𝑤̃(𝑡) = ∑  𝑎̅𝑗𝜔̃𝑗𝑗𝜖ℤ }. 
   To construct a wavelet expansion in the case of 

spaces   Ʋ  and Ʋ̃ we just use obtained formulas for 

the mentioned decomposition of the spaces  𝑆  and 

𝑆̃. 

   For this purpose, we introduce the vectors 

8 Projection onto Embedded Space 
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  𝒂̃ = (…, 𝑎̃−2, 𝑎̃−1, 𝑎̃0, 𝑎̃1, 𝑎̃2, … ), 
  𝒃 = (…, 𝑏−2, 𝑏−1, 𝑏0, 𝑏1, 𝑏2, … ), 
  c = (…, 𝑐−2, 𝑐−1, 𝑐0, 𝑐1, 𝑐2, … ), 
whose components are elements of the space 𝐾′. 

  We assume that 𝒂̃𝜖Ʋ̃, and  𝒃, 𝒄𝜖Ʋ. 
   Theorem 8. The wavelet expansion for  spaces 

Ʋ̃⸦Ʋ consists of decomposition formulas 

   𝒂̃ = 𝓠𝒄,        b= 𝒄 − Ƥ𝑇𝓠𝒄̅, 
    and reconstruction formulas 

   c= Ƥ𝑇𝒂̃ + 𝒃.  
The element c  is called the initial  distribution flow, 

element 𝒂̃ is called basic distribution flow, and 𝒃  is 

called  wavelet flow of distributions. 

 

 

9  Discussion 
In this paper, we first consider  the space 𝐾  of basic 

functions (i.e., infinitely differentiable  compactly 

supported functions) and the space 𝐾′ of 

distributions. 

   Then we discuss  the set ℒ𝑞(𝓜)  of trajectories   

in the  𝐾′  whose  action on any basic function lies 

in the space  𝐿𝑞(𝓜),  𝑞𝜖(1, +∞). It is proved that 

ℒ𝑞(𝓜) is not empty, and it is a linear space. For 

example, a trajectory of the distributions 𝛿𝑥, 𝑥𝜖𝓜, 
belongs to ℒ𝑞(𝓜). 

     In addition, we consider abstract functions of  

real variable 𝑡𝜖𝑇 with values in the space 𝐿𝑝(𝓜), 

𝑝 = (1 − 𝑞−1)−1. 
   The notion of a complete abstract function in 

𝐿𝑝(𝓜)  is introduced. Let 𝜔(𝑥)(𝑡) be  a complete 

abstract function in 𝐿𝑝(𝓜). An example of a 

complete function is 𝜔(𝑥)(𝑡) = 𝑥𝑡   for 𝓜=(1,2), 

𝑡𝜖𝑇 = {0,1,2, … }. We  consider a space 𝑆 of 

distribution trajectories which are generated by the 

  function 𝜔(𝑥)(𝑡). The space 𝑆̃,  embedded in the 

space 𝑆 is constructed similarly. A projection  

operation 𝑃0 of the space 𝑆  onto 𝑆̃ generates  

wavelet decomposition of the space 𝑆. From here  

decomposition and reconstruction formulas for 

distribution flows  are obtained.  These formulas can 

be used for wavelet decompositions of the 

information flows coming from analog  devices. 

This approach is preferable to situations where the  

analog flow turns into a discrete numerical flow  

with  the help of quantization  and digitization. The 

point is that  quantization  and digitization lead   to 

significant loss of information and to distortion.  

Therefore, it is preferable to carry out the wavelet  

decomposition of the original analog flow.  

However in certain cases it is required to process 

discrete flows  of distributions. This is not difficult 

to achieve using special  generating function 

options. One of these options is  also presented in 

this work. In the case under consideration,  we 

arrive at the Haar-type coordinate functions. As a 

result we  obtain  the decomposition and 

reconstruction formulas corresponding  to this case 

for discrete flow of distributions. 

    An important issue is the adaptive choice of 

embedded space  and projection operation for it. In 

the case of ordinary functions,  this problem is 

solved by the appropriate consolidation of the initial  

divisions (see [15] – [17]). Such a choice can be 

made  by the use of local approximation properties 

for functions  in one or another  metric space. For 

distribution flows, similar  issues are to be 

considered in the future. 

 

 

10  Conclusion 

In this paper, a new approach to the construction of 

wavelet expansions is considered. This approach 

allows us to consider discrete    and continuous 

flows of distributions. Such flows arise in many 

physical problems. As it is known,   point actions 

considered in theory, in fact   actually do not exist. 

In this regard, the use of   distributions is more 

natural, since such an approach reflects the idea of  

a trial function. Mentioned flows of   distributions 

can be continuous or discrete.  In that and  in 

another case, their wavelet decomposition is 

important, allowing the  more efficient use of 

computer and communication      resources. This 

work shows the possibility of wavelet 

decomposition of both continuous and  discrete flow 

of distributions. In the future,   it is planned to use 

the distributions  to study the spaces of dipoles   and 

the conditions for their embedding. We suppose to 

obtain a wavelet decomposition of the dipole spaces. 
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