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Abstract:- The spatial analysis aims to understand and explore the nature of entanglements and interactions 

between spatial units’ locations. The analysis of models involving spatial dependence has received great 

attention in recent decades. Because ignoring the presence of spatial dependence in the data is very likely to 

lead to biased or inefficient estimates if we use traditional estimation methods. Therefore, this paper is an 

attempt to assess the risks involved in ignoring the spatial dependence that characterizes the panel data by using 

a Monte Carlo simulation (MCS) study for two of the most common spatial panel data (SPD) models; Spatial 

lag model (SLM) and spatial error model (SEM), by comparing the performance of two estimators; i.e., spatial 

maximum likelihood estimator (MLE) and non-spatial ordinary least squares (OLS) within-group estimator, 

across two levels of analysis; Parameter-level in terms of bias and root mean square error (RMSE), and model-

level in terms of goodness of fit criteria under different scenarios of spatial units N, time-periods T, and spatial 

dependence parameters, by using two different structures of spatial weights matrix; inverse distance, and 

inverse exponential distance. The results show that the non-spatial bias and RMSE of β̂ are functions of the 

degree of spatial dependence in the data for both models, i.e., SLM and SEM.  If the spatial dependence is 

small, then the choice of the non-spatial estimator may not lead to serious consequences in terms of bias and 

RMSE of β̂. On the contrary, the choice of the non-spatial estimator always leads to has disastrous 

consequences if the spatial dependence is large. On the other hand, we provide a general framework that shows 

how to define the appropriate model from among several candidate models through application to a dataset of 

per capita personal income (PCPI) in U.S. states during the period from 2009 to 2019, concerning three main 

aspects: educational attainment, economy size, and labour force type. The results confirm that PCPI is spatially 

dependent lagged correlated. 
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1 Introduction  
Panel data refer to cross-section units (e.g., 

individuals, groups, countries, companies) observed 

over several time periods. In a SPD setting, the 

cross-section observations are associated with a 

particular location in space. The data can be 

observed either at point locations (e.g., housing 

data) or aggregated over regular or irregular areas 

(e.g., countries, regions, states, counties). The 

structure of the interactions between each pair of 

spatial units is represented by a spatial weights 

matrix. On a somewhat more formal level, in spatial 

econometrics, these interactions may relate to the 

models’ dependent variable, to the exogenous 

variables, to the disturbance term, or various 

combinations of them.  

The analysis of models involving spatial 

dependence has received great attention in recent 

decades. Because ignoring the presence of the 

spatial dependence in the data is very likely to lead 

to inefficient or biased estimates if we use 

traditional estimation methods, such as OLS. For 

instance, when the spatial dependence exists in the 

data, then this may be an additional source of 

variation. As we know, ignoring the source of 

variation can lead to biased estimates, and also the 

traditional estimators are no longer efficient due to 

changes in asymptotic variance-covariance matrices 

(VCMs). Therefore, alternative estimation methods 

had to be developed that take into account spatial 

dependence that characterizes the data to obtain 

more accurate results.  

Spatial econometrics was first studied in the 1950s. 

It was named by Jean Paelinck in the early 70s. 

Many works have been published since the launch 

of Cliff and Ord’s seminal work, see [1]. More 

recently, researchers have recognized the 

importance of introducing this approach in the case 
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of panel data models to take the advantages 

provided by these models, where SPD models have 

the same structure of panel data model which 

capture spatial interactions across spatial units and 

over time. With panel data available, we can not 

only improve the efficiency of estimates but also 

investigate some issues that cannot be addressed by 

the cross-section data, such as heterogeneity and 

dependence across time. Besides the additional 

information regarding the use of the cross-sectional 

dimension of the data enables accounting for the 

presence of unobservable heterogeneity among 

cross-section units. Also, access to information 

included in both cross-sectional and temporal 

dimensions enables us to model dynamic relations, 

see [2, 3, 4, and 5].  

Since many applications in spatial econometrics are 

currently based on panel data. In addition, the 

attention to the space of geographical units and the 

interaction between them has become an important 

feature of the empirical work, see [6, 7, and 8], 

because this type of data possesses information 

about the location of the observations that may 

constitute an additional source of variation, and 

ignoring this variation may lead to biased estimates, 

see [9]. Therefore, many of researchers are trying to 

propose estimation methods that allow for the 

existence of spatial dependence in panel data 

models, see [10, 11, and 12]. 

Although a reasonable amount of literature has been 

devoted to reviewing the spatial econometrics 

techniques in the last decades, this paper focus some 

of the recent theoretical advances in this research 

area. For this purpose, as follows: 

(1) Studying the effect of ignoring spatial 

dependence in the data by comparing the 

performance of the spatial and non-spatial 

estimators for two specifications of SPD 

models, i.e., SLM and SEM, through a MCS 

study under different scenarios of N, T, spatial 

dependence degree, and spatial weights matrix. 

(2) Investigating the influence of the structure of 

spatial weights on the performance of spatial 

estimators and the goodness of fit model 

through a simulation study. 

Applying the SPD modeling to analyze the 

determinants of PCPI in U.S. states, and 

providing a general framework of how to select 

the appropriate SPD model among several 

candidates. 

This paper is divided into 9 sections as follows: 

Section 2 introduces the specification of SPD 

models and some other related terminology, sections 

3 illustrates the assumptions of the SPD models, 

section 4 provides a brief summary for spatial 

weights matrix, section 5 explains the SLM and its 

estimation methods, section 6 explains the SEM and 

its estimation methods, section 7 provides a MCS 

study, section 8 presents our application to personal 

income in U.S. States, finally, section 9 includes the 

concluding remarks. 

 

 

2 The Specification of SPD Models 
As we mentioned previously; spatial econometrics 

focuses on interaction effects among geographical 

units, such as counties, regions, etc. in modelling 

terms; Elhorst [13] defined three types of interaction 

effects to explain why an observation related to a 

specific location may be dependent on observations 

at other locations as stated in  

(1) Endogenous interaction effects among the 

dependent variable (y): measures the 

dependency of unit (A) in dependent variable y 

on other units in the same dependent variables. 

This effect can be denoted by WNTy. 

(2) Exogenous interaction effects among the 

independent variables (X): measures the 

dependency of unit (A) in dependent variable y 

on other units in the explanatory variables X. 

This effect can be denoted by WNTX.  

(3) Interaction effects among the error terms 

(u): refers that units may behave similarly 

because they have the same unobserved 

characteristics or face similar unobserved 

environments. This effect can be denoted by 

WNTu. 

A full static model with the above three types of 

interaction effects can be expressed as: 

 

yt = λWNyt + Xtβ + WNXtθ + ut, 
ut = ρWNut + εt, t = 1,… , T (1) 

 

where yt is a (N1) vector consisting of one 

observation of the dependent variable for every 

spatial unit (𝑖 = 1,⋯ , N) in the sample at time 

𝑡 (𝑡 = 1,⋯ , T), Xt is a (NK) matrix of exogenous 

explanatory variables, 𝑢𝑡 reflects the error terms 

specification of the model, which is assumed to be 

spatially correlated, and ε𝑡  is a (N1) vector of 

𝑖. 𝑖. 𝑑. disturbance terms, whose elements have zero 
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mean and finite variance σε
2. λ is the spatial 

autoregressive coefficient, ρ is the spatial 

autocorrelation coefficient, β  and θ are 
(K1) vectors contain the response parameters of 

the exogenous explanatory variables. Any vector or 

a matrix pre-multiplied by WN denotes its spatially 

lagged value. WN is a (NN) non-negative matrix of 

known constants describing the spatial arrangement 

of the units in the sample. Where the element wij in 

the matrix represents the prior strength of the 

interaction between spatial unit 𝑖 (row) and spatial 

unit j (column). In other words, the elements of WN, 

wij, are non-zero if 𝑖 and j are neighbors. By 

convention, a self-neighbor relation is excluded, so 

the diagonal elements of WN are zero.  

To generalize the spatial weights matrix in panel 

data settings, the weights are assumed to remain 

constant over time, then the full (NT ×NT) weights 

matrix becomes: 

 

WNT = IT ⊗ WN = [

WN 0 ⋯ 0
0 WN ⋯ ⋮
⋮ ⋯ ⋱ 0
0 0 ⋯ WN

] (2) 

 

Model (1) can be rewritten in a reduced form as 

follows:  

yt = SN
−1(Xtβ + WNXtθ) + SN

−1BN
−1εt, (3) 

 

where:  

SN = (IN − λWN), (4) 

BN = (IN − ρWN) (5) 

 

Table 1 summarizes the main spatial regression 

models. These models can be treated as fixed effects 

(FE) or random effects (RE). 

 
In this paper, we will focus on studying two 

specifications of SPD models that suffered from 

some econometric problems; SLM, and SEM which 

mentioned in Fig. 1. In the first case; it must be 

dealt with the endogeneity of the spatial lag (SL), 

and in the second case; the non-spherical nature of 

the error VCM must be taken into account. 

 

 

3 Models Assumptions 
Even though there are different SPD model 

specifications, there are some basic common 

features for all of them. The following common 

assumptions will be used throughout the text for 

static SPD models. In addition to these, specific 

assumptions for some models will be listed 

when needed.  
A1. Assumptions of Spatial Weights Matrices: 

(1) The spatial weights matrix (WN) is non-

stochastic matrix with zero diagonals.  

(2) The spatial transformation matrices (i.e., (IN −
λWN)) are invertible on the compact parameter 

spaces of spatial parameters λ and ρ. 

(3) The admissible parameter space for the true 

spatial parameters λ and ρ is [-1, 1]. 

(4) Row sums of the matrices WN, (IN −
λWN)−1  , and (IN − ρWN)−1, before WN is 

row-standardized, are uniformly bounded (UB) 

in absolute values as N goes to infinity. 

A2. Assumptions of the Error Components: The 

relevant disturbances, i.e. {εit}, 𝑖 = 1,⋯ , N and 𝑡 =
1,⋯ , T are 𝑖. 𝑖. 𝑑 across 𝑖 and 𝑡 with zero mean, and 

finite variance, and their higher than fourth 

moments exist, i.e., E|εit|
4+C < ∞ for some c>0. 

A3. Assumptions on Covariates: The regressors Xt 

are non-stochastic and have full rank and their 

elements are UB in absolute value.  

A4. Assumption of N and T: Most studies assume 

that N is large while T can be finite or large. The 

case of finite N and large T is of less interest as the 

incidental parameter problem doesn’t occur in this 

situation. 

These assumptions are frequently made in spatial 

econometrics. For cross-sectional models; see [14], 

or [15], among others. For panel data models; see 

[11], or [16], among others. 

 

 

4 Spatial Weights Matrix  
A spatial weights matrix is a representation of the 

spatial structure in a particular data. It is a key 

element in spatial models, which represents the 

spatial dependence structure between locations 

exogenously, see [17] and [18]. In other words, 

Anselin [19] mentioned that the weights matrix is 

the formal expression of spatial dependence 

between observations. 

The problem of choosing the optimal weights matrix 

is still in the developing phase. In this paper, we 

focus only on two structures of the spatial weights 

matrix as follows: 
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Table 1. SPD Models with Different Combinations of Spatial Interactions 

Type of Model 
Spatial Interaction Effects 

Term Number 

SLM Spatial Lag Model WN𝑇𝑦 1 

SEM Spatial Error Model WN𝑇𝑢 1 

SAC Spatial Autoregressive Combined Model WN𝑇𝑦 & WN𝑇𝑢 2 

SLX Spatial Lag of X Model WN𝑇X K 

SDM Spatial Durbin Model WN𝑇𝑦 & WN𝑇X K+1 

SDEM Spatial Durbin Error Model WN𝑇X & WN𝑇𝑢 K+1 

GNS General Nesting Spatial Model WN𝑇𝑦 & WN𝑇X & WN𝑇𝑢 K+2 

 

 
Fig. 1: SPD Models under Consideration. 

Note: Where 𝜇𝑖 is called the time-invariant individual (spatial) effects or individual-specific effects, and 𝑣𝑖𝑡 is 

independent and identically distributed (𝑖. 𝑖. 𝑑. ) disturbances.  

 
(1) The inverse distance weights: This method 

relies on a simple transformation by taking the 

inverse of the distance separating the spatial 

units, and respects the Tobler’s law: the weights 

are greater (smaller) as the units are spatially 

closer (further apart) as in the following 

equation: 

wij = {
 1/dij 

0

if dij ≤ d⃛ ∀ i, j = 1,… , N

 ∀ i = j or dij > d⃛
 (6) 
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where dij is the distance between region 𝑖 and 

region j, and d⃛ denotes a threshold distance (or 

bandwidth).  

(2) The inverse exponential distance weights: 

Another possible transformation of the distance 

can be defined as: 

 

wij = { 1/edij  
0

if dij ≤ d⃛ ∀ i, j = 1,… , N

 ∀ i = j or dij > d⃛ 
 (7) 

 

This transformation gives more weights to spatially 

close units and fewer weights to units that are 

further apart, for more details, see [9]. 

 

 

5 Spatial Lag Panel Data Model 
A SLM or spatial autoregressive (SAR) model 

includes a spatially lagged dependent variable on 

the right-hand side of the regression specification, as 

follows:  

yt = λWNyt + Xtβ + εt (8) 

 
The SLM can be treated as:  

 

5.1 Fixed Effects 
By adding the time-invariant individual FE, μ, to the 

model (8), the SLM can be rewritten after stacking 

the observations across individual and time as:  

y = λ(IT ⊗ WN)y + Xβ + (𝑙T ⊗ IN)μ
+ ε, 

(9) 

where μ is (N1) vector contains spatial specific 

effects, 𝜇′ = [μ1 μ2 ⋯ μN], 𝑙T is a (T×1) 

vector of ones and ⊗ is a Kronecker product. This 

model suffers from As well known, when N → ∞, 

there is no consistent estimator of the individual FE, 

due to the incidental parameter problem, in another 

words, the No. of parameters goes to ∞ when N 

goes to ∞. [20] used the transformation in (10) to 

eliminate the FE from the model (9) and using these 

transformed variables to estimate the parameters by 

using ML estimation. 

Q0  = INT − (IN ⊗
𝑙T𝑙T

′

T
) (10) 

 

The transformed model for (9) can be written as: 

 

y∗ = λ(IT ⊗ WN)y∗ + X∗β + ε∗, (11) 

where: 

y∗ = Q0y, X∗ = Q0X, and ε∗ = Q0ε (12) 

Besides the incidental parameter problem, the 

endogeneity of ∑ wij
N
j=1 yjtviolates the assumption 

of the standard regression model 

that E[(∑ wij
N
j=1 yjt) εit] = 0. Therefore, the focus 

in this section will base on ML estimation because 

the MLE account for the endogeneity of ∑ wij
N
j=1 yjt, 

also, the No. of researches considering IV/GMM 

estimators of SPD models is still sparse. In this 

context, Elhorst [10] suggested a concentrated 

likelihood function that can be maximized from the 

residuals 𝑒0
∗  of the OLS regression of y∗ on  X∗ and 

the residuals 𝑒𝑙
∗ of the OLS regression of (IT ⊗

WN)y∗ on X∗. Then the MLE of  λ  is obtained by 

maximizing the following concentrated log-

likelihood function: 

 

ln L(λ)𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑒𝑑

= C + T ln|SN|

−
NT

2
ln[(𝑒0

∗  − λ𝑒𝑙
∗)′(𝑒0

∗  

− λ𝑒𝑙
∗)] (13) 

 

where C is a constant not depending on λ. This 

maximization problem is only solved numerically, 

since a closed-form solution for λ doesn’t exist. 

Therefore, an iteration procedure must be used, 

which require λ to be initially fixed to calculate 

β̂ and σ̂2. Finally, β̂ and σ̂2 are obtained from the 

first-order conditions of the likelihood function by 

replacing λ with its numerically estimated value, see 

[17]. 

 

5.2 Random Effects 
In contrast to the FE approach, the RE models do 

not have a problem with a large N. In this context, 

the SLM can be written in a stacked form across 

individual and time as: 

 

y = λ(IT ⊗ WN)y + Xβ + (𝑙T ⊗ IN)μ + 𝑢, 
𝑢 =  (𝑙T ⊗ IN)μ + ε 

(14) 

 

Assuming that, the unobserved individual effects, 

μi,  are uncorrelated with the other explanatory 

variables in the model, and μi ~ 𝑖. 𝑖. 𝑑 (0, σμ
2). 
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Additionally, the idiosyncratic error term, 

εit~ 𝑖. 𝑖. 𝑑 (0, σε
2), an μi and εit independent from 

each other.  The log-likelihood of the model (14) is: 

ln L = −
NT

2
ln(2πσ2) + T ln|SN| +

N

2
ln θ −

1

2σ2
∑∑[yit

• − λ(∑wij

N

j=1

yjt)

•

− xit
• β]

2
T

𝑡=1

N

𝑖=1

 (15) 

where the transformed variables are defined as: 

 

yit
• = yit + (√θ − 1)y̅i,  

xit
• = xit

′ + (√θ − 1)X̅i.
′ , 

(∑wij

N

j=1

yjt)

•

= ∑wij

N

j=1

yjt + (√θ − 1)
1

T
∑∑wijyjt

N

j=1

T

t=1

 
(16) 

 

and θ is defined as: 

0 ≤ θ =
𝜎𝜀

2

𝜎𝜀
2 + T𝜎𝜇

2 
≤ 1 (17) 

 

By using a similar procedure in SLM with FE, we 

can estimate β, λ and 𝜎𝜀
2, but the subscript * must be 

replaced by •. Given β, λ and 𝜎𝜀
2, √θ can be 

estimated by maximizing the concentrated log-

likelihood function with respect to √θ. 

 

ln L = −
NT

2
ln(𝑒•′𝑒•) +

N

2
ln θ (18) 

where the element of 𝑒• is defined as follows: 

 

𝑒𝑖𝑡
• = yit

• − λ(∑wij

N

j=1

yjt)

•

− Xit
• β (19) 

 

6 Spatial Error Panel Data Model 
The SAR specification for error vector ut in time 

𝑡 can be defined as: 

 

yt = Xtβ + ut, 
ut = ρWNut + εt 

(20) 

 

The SEM can be treated as: 

 

6.1 Fixed Effects 
By adding the time-invariant individual FE, μ, to the 

model (20): 

Y = Xβ + (𝑙T ⊗ IN)μ + u, 
u = ρ(IT ⊗ WN)u + ε 

(21) 

To eliminate the individual FE, the model (21) is 

transformed according to the same Q0-

transformation which used for SLM and which 

defined in (10). 

As mentioned in [21], the estimation procedures of 

SEM with FE can be summarized as follows: 

(1) Estimated OLS residuals of the transformed 

variables can be used to obtain an initial 

estimate of ρ.  

(2) The initial estimate of ρ can be used to compute 

a (spatial) feasible generalized least squares 

(FGLS) estimator of β and  σ2 and a new set of 

estimated GLS residuals.  

(3) Then an iterative procedure can be used: the 

concentrated likelihood and the GLS estimators 

are alternately computed until convergence. 

Lee and Yu [16] proved that the estimation of the 

SLM or SEM with spatial FE, which is based on the 

Q0-transformation, produces biased estimates for  σ2 

if N is large and T is fixed, and they called this 

procedure the direct approach. Starting with the 

SAC model, and using asymptotic theory, Lee and 

Yu [16] suggested two methods to obtain consistent 

results, as follows:  

(1) The first method: Instead of demeaning, they 

proposed an alternative procedure to eliminate 

the spatial FE, reducing the number of 

observations available for estimation by one 

observation, i.e., from NT to N(T-1) 

observations. This procedure is called the 

transformation approach. 

(2) The second method: It is a bias correction 

procedure for the parameter’s estimates 

obtained by the direct approach based on ML 

function that is obtained under the 

transformation approach. The biases of the SAC 

model [16] can be conducted on the SLM and 

SEM models. Where the σ̂2 of σ2 obtained by 
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the direct approach will be biased. This bias can 

easily be corrected by:  

 

σ̂bias corrected
2 =

T

T − 1
σ̂direct

2  (22) 

 

This bias correction will have no any effect if T is 

large, for more details, see [22]. 

 

6.2 Random Effects 
In this section, we focus on the approach of Kapoor 

et al. [11] for specifying the SEM with RE which 

can be written after stacking across individual and 

time as follows: 

y = Xβ + u,   
u = ρ(IT ⊗ WN)u + ε, 
ε = (𝑙T ⊗ IN)μ + 𝑣 

(23) 

where μ is a (N×1) vector of cross-sectional random 

components, 𝑣𝑖𝑡  ~ 𝑖. 𝑖. 𝑑 (0, 𝜎𝑣
2), and the vectors 

μ and 𝑣 are independent of each other and the 

regressor matrix X. The second line in (23) can be 

written in a reduced form as follows: 

u = (IT ⊗ BN
−1)ε 

    = (IT ⊗ BN
−1)[(𝑙T ⊗ IN)μ + 𝑣] 

(24) 

The corresponding error VCM is: 

Ωu = E(uu′) 

       = (IT ⊗ BN
−1)Ωε(IT ⊗ BN

−1′
) 

(25) 

where Ωε is VCM of ε. Since μ and 𝑣 are 

independent, it implies that:  

Ωε = σμ
2(𝑙T ⊗ IN)(𝑙T ⊗ IN)′ + σ𝑣

2INT 

      = σμ
2(𝑙T𝑙T

′ ⊗ IN) + σ𝑣
2INT 

      = Tσμ
2Q1 + σ𝑣

2INT (26) 

 

where Q0 is defined in (10) and Q1 is defined as:  

Q1 = IN ⊗
𝑙T𝑙T

′

T
 (27) 

Since Q0 + Q1 = INT, then: 

Ωε = σ𝑣
2Q0 + σ1

2Q1 (28) 

σ1
2 = σ𝑣

2 + Tσμ
2 (29) 

Kapoor et al. [11] proposed a generalization of 

generalized method of moments (GMM) estimator 

provided in [23] for estimating the SAR parameter ρ 

and the two variance components of the disturbance 

process σ1
2 and σ𝑣

2. Therefore, to estimate the model 

(23), Kapoor et al. [11] defined three sets of GMM 

estimators based on the following moment 

conditions for T ≥ 2: 

E

[
 
 
 
 
 
 
 
 
 
 
 
 

1

N(T − 1)
ε′Q0ε

1

N(T − 1)
ε̅′Q0ε̅

1

N(T − 1)
ε̅′Q0ε

1

N
ε′Q1ε

1

N
ε̅′Q1ε̅

1

N
ε̅′Q1ε ]

 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

σ𝑣
2

σ𝑣
2
1

N
tr(WNT

′ WNT)

0
σ1

2

σ1
2
1

N
tr(WNT

′ WNT)

0 ]
 
 
 
 
 
 
 

 (30) 

 

where:  

ε = u − ρu̅, ε̅ = u̅ − ρu̅̅, 
u̅ = (IT ⊗ WN)𝑢,   
u̿ = (IT ⊗ WN)u̅ (31) 

 

To estimate δSEM =

[
 
 
 
β
ρ 

σ𝑣
2

σ1
2]
 
 
 

, follow the steps: 

 

(1) The First Step: 

o The first three moment conditions can be used 

to obtain the first set of GMM estimators for 

ρ and σ𝑣
2. 

o The initial estimates obtained (ρ̂ and σ̂𝑣
2) are 

then used to provide an estimate for σ1
2 = σ𝑣

2 +
Tσμ

2 based on the fourth-moment condition. 

(2) The Second Step: Under the normality 

assumption of innovation ε𝑖𝑡 , Kapoor et al. [11]  

derived the VCM of the sample moments at the 

true parameter values Ȩ, whose inverse is to be 

used as the optimal weighting matrix in a GMM 

estimator.  

The second set of GMM estimators is then 

defined as the nonlinear least squares estimators 
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based on all moment conditions weighted by the 

optimal weighting scheme Ȩ̂−1.  

(3) The Third Step: the third set of GMM 

estimators is suggested because of 

computational considerations and is based on a 

simpler weighting matrix. The third set of 

GMM estimators uses all moment conditions 

but a simplified weighting scheme.    

(4) The Fourth Step: The FGLS for β can be 

obtained based on consistent estimates for 

ρ, σ𝑣
2, and σ𝜇

2 that result from previous steps. 

 

 

7 Monte Carlo Simulation Study 
In this section, we focus on trying to achieve two 

main objectives in two specifications of SPD 

models, i.e., SLM and SEM with FE, as follows:  

(1) Comparing between the finite sample properties 

of the spatial MLEs (transformation approach), 

which will be referred to in an abbreviated 

manner as (the spatial estimator), and the non-

spatial OLS within-group estimator, or in a 

short way (the non-spatial estimator), under 

different values for temporal and cross-sectional 

dimensions (N and T), spatial parameters, and 

spatial weights matrix.   

(2) Verifying the impact of the spatial weights 

structure on the goodness of fit model and 

performance of estimates in the used SPD 

models. Where some researches indicate that the 

choice of the spatial weights matrices are crucial 

and can affect the findings of the research [24]. 

 

7.1 Design of the Simulation 
We relied on the general methodology of MCS for 

Mooney [25], which has been mentioned in most 

empirical studies, see e.g., [26]. Fig. 2 provides a 

summary of the used algorithm in our simulation 

study. 

 

7.2 Simulation Results 
This section summarizes the results obtained from 

our simulation described previously. Each model 

focuses on the comparison between the non-spatial 

and spatial estimators in terms of bias and RMSE 

of β̂, in addition to, provides the comparison among 

the two structures of spatial weights matrix in terms 

of bias and RMSE of λ̂. Besides, it furnishes 

information on the goodness of fit criteria for each 

model and the relationship between biases of 

ignoring spatial and the degree of spatial 

dependence in the data. 

 

Table 2. Design of Our MCS  

Design Factor Levels No. of Levels 

Type of SPD Models SLM and SEM 2 

Value of Parameter λ & 𝜌 { 0.2, 0.8+
−

+
− } 4 

Type of Weights Matrix for Data 

Generation 
W1 or W2 2 

No. of Spatial Units N={5, 20, 35, 60} 4 

No. of Time-periods T={10, 30, 50} 3 

Coordinates of Distance Coordinates of d𝑖𝑗~ Uniform (0, 2N) 1 

Spatial FE μ𝑖~ N(5, 0.25) 1 

β 5 1 

Explanatory Variable X𝑖𝑡~N(0,  1) 1 

Error Terms 𝜀𝑖𝑡~N(0,  1) 1 

No. of Unique Simulations 

SLM: 4 (values of λ) × 2 (types of W) × 4 (values of N) × 3 (values of T) 

=  96 Simulations. 

SEM: 4 (values of 𝜌) × 2 (types of W) × 4 (values of N) × 3 (values of T) 

= 96 Simulations. 
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No. of Replications R=1000 

Total No. of Simulations 
SLM: 96×1000= 96000 

SEM: 96 ×1000= 96000 

 
Fig. 2: Algorithm of Our Simulation Study 

*Note:  W1: Inverse distance weights and W2: inverse exponential distance weights. 

 

7.2.1 Simulation Results of Spatial Lag Model 

The findings show that the bias and RMSE of 

β̂ resulting from ignoring the presence of spatial 

dependence in SLM is a function of the degree or 

magnitude of spatial dependence in the data. In 

other words, If the spatial dependence is small, i.e., 

λ = {−0.2, 0.2}, then the consequences of choosing 

the non-spatial estimator are not great, where the 

non-spatial bias and RMSE of β̂ may be equal to or 

less than the spatial bias and RMSE of β̂ in some 

cases. Quite the contrary, the non-spatial estimator 

choice definitely brings dire consequences in terms 
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of bias and RMSE of β̂ when λ is large, see Table 3 

- Table 6. On average, the spatial estimator of 

β̂ performs mostly satisfactory, where it produces a 

19.32% bias less than the non-spatial estimator 

when λ is small. This percentage reaches 82.02% 

when λ is large. While, it produces a 19.41% RMSE 

less than those of the non-spatial estimator when λ is 

small. This percentage reaches 80.58% when λ is 

large. 

On the other hand, i.e. model-level, the spatial 

Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) are always less than 

their non-spatial counterparts when λ is large. 

Additionally, the spatial model always performs 

better than the non-spatial model when N and T are 

small regardless of the spatial dependence strength 

and the structure of the spatial weights matrix.

 

Table 3. Simulation Results of SLM and N = 5 

W T 𝛌 
Spatial Estimator Non-spatial Estimator 

Bias λ̂ RMSE λ̂ Bias β̂ RMSE β̂ AIC BIC Bias β̂ RMSE β̂ AIC BIC 

W1 

10 

-0.2 0.146 0.153 0.211 0.241 156.1 161.9 0.229 0.261 158.8 172.2 

-0.8 0.163 0.171 0.310 0.339 158.3 164.0 1.295 1.306 215.6 229.0 

0.2 0.110 0.115 0.150 0.182 154.3 160.0 0.175 0.207 159.2 172.6 

0.8 0.031 0.032 0.111 0.139 151.6 157.3 0.473 0.510 342.3 355.7 

30 

-0.2 0.074 0.081 0.074 0.092 490.8 499.8 0.119 0.140 466.2 487.2 

-0.8 0.080 0.089 0.099 0.122 493.7 502.7 0.869 0.874 642.3 663.4 

0.2 0.057 0.062 0.065 0.081 487.6 496.6 0.067 0.084 480.5 501.6 

0.8 0.016 0.018 0.079 0.099 484.7 493.7 2.329 2.335 1080.2 1101.2 

50 

-0.2 0.083 0.087 0.073 0.088 815.8 826.3 0.147 0.160 771.0 795.7 

-0.8 0.084 0.089 0.113 0.128 821.7 832.2 1.010 1.012 1077.8 1102.5 

0.2 0.065 0.068 0.052 0.064 810.3 820.9 0.078 0.093 795.8 820.4 

0.8 0.019 0.020 0.054 0.068 803.9 814.4 1.497 1.501 1783.2 1807.8 

W2 

10 

-0.2 0.117 0.123 0.209 0.240 157.4 163.1 0.259 0.289 162.6 176.0 

-0.8 0.104 0.111 0.286 0.317 160.0 165.7 1.656 1.666 247.5 260.9 

0.2 0.094 0.099 0.151 0.183 155.2 161.0 0.188 0.219 163.1 176.5 

0.8 0.027 0.028 0.112 0.140 152.8 158.5 0.495 0.533 354.5 367.9 

30 

-0.2 0.049 0.057 0.071 0.089 492.0 501.0 0.131 0.152 476.6 497.6 

-0.8 0.042 0.049 0.083 0.104 494.0 503.0 1.105 1.110 716.0 737.1 

0.2 0.042 0.048 0.065 0.081 489.1 498.1 0.067 0.084 491.4 512.5 

0.8 0.013 0.015 0.076 0.095 486.3 495.4 2.441 2.448 1109.9 1131.0 

50 

-0.2 0.060 0.063 0.068 0.082 817.5 828.0 0.171 0.182 792.1 816.8 

-0.8 0.047 0.051 0.090 0.105 822.1 832.7 1.312 1.314 1222.4 1247.1 

0.2 0.051 0.053 0.052 0.064 812.6 823.1 0.088 0.102 817.8 842.4 

0.8 0.015 0.016 0.051 0.064 807.2 817.8 1.460 1.465 1842.5 1867.2 

 

Table 4. Simulation Results of SLM and N = 20 

W T 𝛌 
Spatial Estimator Non-spatial Estimator 

Bias λ̂ RMSE λ̂ Bias β̂ RMSE β̂ AIC BIC Bias β̂ RMSE β̂ AIC BIC 

W1 

10 

-0.2 0.180 0.185 0.068 0.085 644.9 654.8 0.072 0.089 608.7 681.3 

-0.8 0.142 0.150 0.089 0.106 653.2 663.1 0.402 0.409 791.3 863.9 

0.2 0.169 0.172 0.059 0.073 635.0 644.9 0.061 0.076 599.9 672.4 

0.8 0.064 0.064 0.059 0.074 619.4 629.3 0.062 0.077 798.0 870.5 

30 

-0.2 0.195 0.197 0.074 0.082 1941.7 1954.9 0.065 0.074 1788.2 1884.9 

-0.8 0.156 0.158 0.111 0.118 1973.8 1987.0 0.459 0.461 2355.9 2452.6 

0.2 0.176 0.177 0.039 0.048 1912.8 1925.9 0.038 0.046 1791.6 1888.3 

0.8 0.062 0.062 0.042 0.052 1868.7 1881.9 0.375 0.378 3358.8 3455.5 

50 

-0.2 0.142 0.143 0.024 0.031 3291.3 3306.0 0.048 0.055 2970.2 3078.2 

-0.8 0.110 0.112 0.034 0.041 3320.8 3335.5 0.392 0.393 3915.9 4023.8 

0.2 0.131 0.132 0.033 0.040 3262.2 3276.9 0.025 0.031 2997.9 3105.9 

0.8 0.047 0.047 0.076 0.082 3219.1 3233.8 0.750 0.751 6010.7 6118.7 

W2 10 

-0.2 0.032 0.035 0.066 0.083 656.9 666.8 0.162 0.176 728.0 800.6 

-0.8 0.010 0.012 0.084 0.102 659.9 669.8 4.222 4.226 1509.7 1582.3 

0.2 0.033 0.035 0.058 0.073 652.3 662.1 0.067 0.083 727.8 800.4 
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0.8 0.010 0.011 0.061 0.077 648.5 658.4 3.677 3.681 1568.7 1641.3 

30 

-0.2 0.034 0.035 0.062 0.071 1987.6 2000.8 0.185 0.190 2126.0 2222.7 

-0.8 0.009 0.009 0.084 0.094 1998.6 2011.8 4.663 4.664 4490.6 4587.3 

0.2 0.038 0.039 0.034 0.042 1972.2 1985.4 0.045 0.054 2132.2 2228.9 

0.8 0.015 0.016 0.054 0.064 1948.0 1961.2 3.800 3.802 4631.2 4727.9 

50 

-0.2 0.026 0.027 0.024 0.030 3325.7 3340.4 0.162 0.165 3505.0 3613.0 

-0.8 0.006 0.007 0.027 0.033 3337.9 3352.7 4.199 4.199 7378.2 7486.2 

0.2 0.030 0.031 0.037 0.044 3306.1 3320.9 0.056 0.063 3530.2 3638.1 

0.8 0.013 0.013 0.087 0.093 3273.6 3288.3 3.944 3.945 7728.5 7836.5 

 

Table 5. Simulation Results of SLM and N = 35 

W T 𝛌 
Spatial Estimator Non-spatial Estimator 

Bias λ̂ RMSE λ̂ Bias β̂ RMSE β̂ AIC BIC Bias β̂ RMSE β̂ AIC BIC 

W1 

10 

-0.2 0.281 0.284 0.094 0.107 1111.8 1123.4 0.072 0.084 1050.4 1193.1 

-0.8 0.235 0.239 0.124 0.136 1133.1 1144.7 0.388 0.392 1271.7 1414.4 

0.2 0.258 0.259 0.064 0.077 1089.1 1100.7 0.058 0.071 1040.7 1183.4 

0.8 0.094 0.094 0.047 0.060 1055.8 1067.4 0.069 0.083 1337.2 1479.9 

30 

-0.2 0.223 0.224 0.028 0.035 3430.8 3445.6 0.046 0.054 3080.3 3263.7 

-0.8 0.182 0.184 0.043 0.051 3471.0 3485.8 0.293 0.295 3731.5 3914.9 

0.2 0.213 0.214 0.024 0.031 3389.1 3403.9 0.031 0.039 3072.6 3256.0 

0.8 0.086 0.086 0.056 0.063 3312.7 3327.6 0.068 0.075 4666.9 4850.3 

50 

-0.2 0.176 0.177 0.032 0.038 5770.8 5787.2 0.034 0.040 5109.9 5312.2 

-0.8 0.142 0.143 0.022 0.027 5815.5 5831.9 0.242 0.243 6186.3 6388.6 

0.2 0.175 0.175 0.051 0.055 5727.4 5743.8 0.020 0.025 5110.3 5312.6 

0.8 0.077 0.077 0.084 0.087 5624.9 5641.3 0.214 0.215 8192.9 8395.2 

W2 

10 

-0.2 0.035 0.037 0.066 0.079 1146.9 1158.5 0.224 0.231 1280.1 1422.9 

-0.8 0.008 0.009 0.077 0.092 1153.5 1165.1 4.998 5.001 2741.9 2884.7 

0.2 0.044 0.045 0.048 0.059 1135.2 1146.7 0.048 0.060 1255.7 1398.4 

0.8 0.019 0.019 0.060 0.073 1120.5 1132.1 2.646 2.650 2683.2 2826.0 

30 

-0.2 0.015 0.016 0.025 0.032 3490.6 3505.5 0.177 0.180 3768.2 3951.6 

-0.8 0.004 0.004 0.027 0.034 3497.8 3512.6 4.776 4.777 8097.2 8280.5 

0.2 0.017 0.018 0.030 0.037 3480.3 3495.2 0.037 0.044 3762.2 3945.6 

0.8 0.005 0.006 0.046 0.054 3475.4 3490.3 3.423 3.424 8223.3 8406.7 

50 

-0.2 0.014 0.014 0.045 0.050 5826.4 5842.8 0.138 0.140 6200.7 6403.0 

-0.8 0.003 0.004 0.039 0.046 5838.3 5854.7 4.355 4.355 13290.4 13492.7 

0.2 0.016 0.016 0.060 0.064 5815.7 5832.1 0.076 0.079 6223.6 6425.9 

0.8 0.006 0.006 0.082 0.086 5797.5 5813.9 3.967 3.968 13711.6 13913.9 

 

Table 6. Simulation Results of SLM and N = 60 

W T 𝛌 
Spatial Estimator Non-spatial Estimator 

Bias λ̂ RMSE λ̂ Bias β̂ RMSE β̂ AIC BIC Bias β̂ RMSE β̂ AIC BIC 

W1 

10 

-0.2 0.407 0.409 0.061 0.071 1875.2 1888.4 0.037 0.045 1785.3 2057.9 

-0.8 0.387 0.389 0.091 0.100 1921.1 1934.3 0.149 0.155 2028.1 2300.7 

0.2 0.360 0.361 0.038 0.048 1830.6 1843.8 0.032 0.041 1779.0 2051.6 

0.8 0.122 0.122 0.034 0.043 1764.7 1777.9 0.042 0.052 2060.6 2333.2 

30 

-0.2 0.311 0.312 0.027 0.032 5859.6 5876.1 0.023 0.029 5236.3 5577.0 

-0.8 0.268 0.270 0.018 0.023 5938.3 5954.8 0.141 0.143 5957.6 6298.3 

0.2 0.302 0.303 0.042 0.047 5775.9 5792.4 0.018 0.023 5217.4 5558.1 

0.8 0.120 0.120 0.041 0.046 5607.2 5623.7 0.068 0.071 6065.9 6406.7 

50 

-0.2 0.355 0.355 0.015 0.018 9641.3 9659.4 0.018 0.022 8695.1 9067.5 

-0.8 0.328 0.329 0.037 0.041 9830.3 9848.3 0.125 0.126 9958.6 10331.0 

0.2 0.319 0.319 0.024 0.028 9471.0 9489.0 0.014 0.018 8688.5 9060.9 

0.8 0.113 0.113 0.050 0.053 9173.9 9191.9 0.128 0.129 12227.8 12600.2 

W2 
10 

-0.2 0.030 0.031 0.054 0.064 1969.5 1982.7 0.159 0.164 2250.7 2523.3 

-0.8 0.007 0.008 0.083 0.094 1982.3 1995.5 6.479 6.481 4784.6 5057.2 

0.2 0.034 0.035 0.032 0.040 1952.3 1965.5 0.159 0.164 2256.7 2529.3 

0.8 0.013 0.013 0.082 0.093 1928.3 1941.5 6.619 6.620 4855.7 5128.3 

30 -0.2 0.018 0.018 0.037 0.043 5992.1 6008.6 0.109 0.111 6533.1 6873.9 
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-0.8 0.004 0.005 0.022 0.028 6014.0 6030.4 5.810 5.811 14017.7 14358.4 

0.2 0.020 0.021 0.063 0.067 5970.1 5986.5 0.194 0.195 6567.5 6908.2 

0.8 0.008 0.008 0.109 0.112 5930.0 5946.5 6.770 6.770 14356.6 14697.3 

50 

-0.2 0.023 0.023 0.016 0.020 10005.4 10023.4 0.130 0.131 10856.8 11229.2 

-0.8 0.006 0.007 0.044 0.049 10059.1 10077.2 6.040 6.040 23327.3 23699.7 

0.2 0.023 0.024 0.026 0.031 9962.1 9980.1 0.177 0.178 10922.2 11294.6 

0.8 0.008 0.008 0.073 0.076 9896.2 9914.2 6.662 6.663 23906.3 24278.7 

 

As for the level of comparison between the spatial 

weight structures, Fig. 3 displays the pattern of 

spatial bias and RMSE of β̂ under the influence of N 

and T for each structure of the spatial weights 

ignoring the values of λ. The results indicate that 

each structure of the weights matrix has a specific 

pattern of the spatial bias and RMSE of β̂. In all 

structures, the pattern of spatial bias and RMSE of β̂ 

are irregular with increasing N or T, however, it can 

be argued that the spatial estimator produces a large 

bias and small RMSE when T is small. 

On the other hand; Fig. 4 displays the spatial  λ̂ bias 

under the influence of N and λ for each structure of 

the spatial weights ignoring the values of T. our 

conclusion from this Figure can be pointed that each 

structure of spatial weights has a specific pattern of 

the spatial λ̂ bias according to the used values of N 

and λ. Interestingly, the result of the spatial λ̂ bias is 

in favor of W2.  

Fig. 5 shows the behavior of the spatial λ̂ RMSE 

across different combinations of N, T, and the 

structure of the weights matrix. The results confirm 

that the results of λ̂ RMSE are always in favor of 

W2.  

For a comparison between the two structures of 

weights matrix in terms of the spatial AIC and BIC. 

The results show that the two structures of weights 

matrix seem to provide very similar levels of spatial 

AIC and BIC, However, the SLM based on W2 

returns a slightly higher value of spatial AIC and 

BIC in all cases, see Table 3 - Table 6. 

 W1 W2 

Bias 
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Fig. 3: The Spatial bias and RMSE of β̂  in SLM at Different Values of N, T, and W for All λ 
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Fig. 4: λ̂ Bias in SLM at Different Values of N, λ, and W for All T 

 

  

 
Fig. 5: λ̂ RMSE in SLM at Different Values of N, T, and W for All λ 
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Table 7. Simulation Results of SEM and N = 5 

W T ρ 
Spatial Estimator Non-spatial Estimator 

Bias ρ̂ RMSE ρ̂ Bias β̂ RMSE β̂ AIC BIC Bias β̂ RMSE β̂ AIC BIC 

W1 

10 

-0.2 0.202 0.259 0.101 0.127 144.4 150.1 0.107 0.134 152.3 165.7 

-0.8 0.208 0.261 0.098 0.122 143.0 148.7 0.137 0.172 167.8 181.2 

0.2 0.152 0.197 0.102 0.126 144.7 150.4 0.101 0.127 148.1 161.5 

0.8 0.043 0.058 0.091 0.113 144.6 150.4 0.161 0.203 207.7 221.1 

30 

-0.2 0.104 0.130 0.068 0.087 428.1 437.2 0.071 0.089 438.6 459.7 

-0.8 0.112 0.140 0.063 0.079 427.8 436.8 0.082 0.101 486.0 507.1 

0.2 0.076 0.096 0.063 0.079 428.0 437.0 0.064 0.082 435.7 456.7 

0.8 0.023 0.030 0.056 0.072 428.3 437.3 0.136 0.171 675.6 696.7 

50 

-0.2 0.081 0.104 0.050 0.062 712.6 723.2 0.051 0.063 726.2 750.8 

-0.8 0.089 0.111 0.048 0.060 709.7 720.2 0.057 0.071 801.8 826.4 

0.2 0.061 0.077 0.044 0.054 711.5 722.1 0.045 0.056 723.3 747.9 

0.8 0.016 0.021 0.041 0.051 712.0 722.5 0.086 0.111 1141.9 1166.5 

W2 

10 

-0.2 0.179 0.223 0.101 0.127 144.5 150.3 0.108 0.135 152.6 165.9 

-0.8 0.160 0.200 0.095 0.118 143.5 149.3 0.148 0.186 173.2 186.6 

0.2 0.140 0.180 0.102 0.126 144.7 150.4 0.101 0.126 148.3 161.7 

0.8 0.042 0.057 0.089 0.110 144.6 150.3 0.167 0.211 211.2 224.6 

30 

-0.2 0.094 0.117 0.068 0.087 428.2 437.3 0.071 0.090 439.3 460.4 

-0.8 0.087 0.108 0.062 0.077 428.2 437.3 0.088 0.108 503.1 524.1 

0.2 0.072 0.090 0.062 0.079 428.0 437.0 0.064 0.082 436.3 457.4 

0.8 0.022 0.029 0.055 0.070 428.2 437.3 0.143 0.180 687.0 708.1 

50 

-0.2 0.073 0.092 0.050 0.062 712.8 723.3 0.051 0.064 727.3 752.0 

-0.8 0.067 0.084 0.047 0.058 710.2 720.8 0.061 0.076 830.4 855.0 

0.2 0.057 0.072 0.044 0.054 711.6 722.1 0.045 0.056 724.3 748.9 

0.8 0.016 0.020 0.040 0.050 711.9 722.5 0.089 0.114 1161.0 1185.7 

  
Table 8. Simulation Results of SEM and N = 20 

W T ρ 
Spatial Estimator Non-spatial Estimator 

Bias ρ̂ RMSE ρ̂ Bias β̂ RMSE β̂ AIC BIC Bias β̂ RMSE β̂ AIC BIC 

W1 

10 

-0.2 0.135 0.169 0.055 0.070 570.1 580.0 0.054 0.068 594.6 667.1 

-0.8 0.131 0.162 0.053 0.066 569.5 579.4 0.058 0.073 629.3 701.9 

0.2 0.116 0.146 0.054 0.067 568.7 578.6 0.052 0.065 584.8 657.4 

0.8 0.042 0.056 0.051 0.064 570.7 580.6 0.054 0.069 601.9 674.5 

30 

-0.2 0.075 0.095 0.033 0.040 1705.8 1719.0 0.033 0.041 1737.6 1834.4 

-0.8 0.074 0.093 0.030 0.036 1705.4 1718.5 0.033 0.040 1842.3 1939.0 

0.2 0.063 0.079 0.031 0.039 1706.8 1720.0 0.031 0.039 1726.1 1822.9 

0.8 0.021 0.026 0.030 0.038 1705.2 1718.4 0.041 0.051 2018.2 2115.0 

50 

-0.2 0.057 0.071 0.023 0.029 2839.8 2854.5 0.023 0.029 2877.0 2984.9 

-0.8 0.060 0.074 0.024 0.030 2840.4 2855.1 0.027 0.035 3049.6 3157.6 

0.2 0.046 0.059 0.024 0.030 2839.6 2854.3 0.024 0.030 2864.0 2972.0 

0.8 0.016 0.020 0.023 0.029 2840.6 2855.3 0.035 0.044 3485.8 3593.8 

W2 

10 

-0.2 0.051 0.063 0.055 0.070 570.4 580.3 0.056 0.070 606.8 679.4 

-0.8 0.019 0.024 0.046 0.058 569.9 579.8 0.127 0.160 977.0 1049.6 

0.2 0.051 0.064 0.053 0.066 568.5 578.4 0.053 0.067 599.0 671.5 

0.8 0.017 0.022 0.045 0.056 570.1 579.9 0.129 0.161 983.5 1056.0 

30 

-0.2 0.028 0.035 0.032 0.040 1706.1 1719.3 0.034 0.042 1776.0 1872.7 

-0.8 0.011 0.014 0.025 0.031 1705.6 1718.7 0.080 0.101 2880.2 2976.9 

0.2 0.028 0.035 0.031 0.039 1706.7 1719.9 0.033 0.040 1765.3 1862.0 

0.8 0.009 0.012 0.025 0.032 1704.9 1718.1 0.093 0.116 2957.5 3054.2 

50 

-0.2 0.022 0.027 0.023 0.028 2840.0 2854.7 0.024 0.030 2940.6 3048.6 

-0.8 0.009 0.011 0.021 0.026 2840.9 2855.7 0.065 0.082 4776.2 4884.2 

0.2 0.020 0.026 0.023 0.029 2839.4 2854.1 0.025 0.031 2928.9 3036.9 

0.8 0.008 0.010 0.019 0.025 2840.5 2855.2 0.071 0.089 4947.0 5054.9 
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Table 9. Simulation Results of SEM and N = 35 

W T ρ 
Spatial Estimator Non-spatial Estimator 

Bias ρ̂ RMSE ρ̂ Bias β̂ RMSE β̂ AIC BIC Bias β̂ RMSE β̂ AIC BIC 

W1 

10 

-0.2 0.127 0.159 0.041 0.052 997.1 1008.7 0.042 0.052 1035.4 1178.1 

-0.8 0.140 0.173 0.041 0.051 995.0 1006.6 0.042 0.053 1072.0 1214.7 

0.2 0.114 0.146 0.042 0.053 994.1 1005.7 0.040 0.050 1025.5 1168.2 

0.8 0.041 0.054 0.043 0.053 997.8 1009.4 0.045 0.057 1067.4 1210.2 

30 

-0.2 0.072 0.089 0.024 0.030 2981.8 2996.6 0.024 0.030 3030.6 3214.0 

-0.8 0.076 0.094 0.023 0.029 2981.9 2996.8 0.025 0.031 3141.4 3324.8 

0.2 0.060 0.074 0.024 0.030 2981.1 2996.0 0.024 0.030 3012.7 3196.1 

0.8 0.020 0.026 0.024 0.030 2984.5 2999.4 0.026 0.033 3258.7 3442.1 

50 

-0.2 0.055 0.069 0.019 0.023 4968.4 4984.8 0.019 0.024 5024.1 5226.3 

-0.8 0.058 0.072 0.018 0.023 4967.1 4983.5 0.020 0.025 5205.0 5407.3 

0.2 0.044 0.055 0.019 0.024 4968.9 4985.3 0.019 0.024 5004.0 5206.3 

0.8 0.016 0.020 0.019 0.023 4973.0 4989.4 0.022 0.027 5583.4 5785.7 

W2 

10 

-0.2 0.039 0.048 0.040 0.050 997.3 1008.9 0.043 0.054 1060.1 1202.9 

-0.8 0.015 0.018 0.033 0.041 996.5 1008.0 0.113 0.141 1731.0 1873.7 

0.2 0.038 0.047 0.042 0.052 994.2 1005.8 0.041 0.052 1048.4 1191.2 

0.8 0.013 0.016 0.036 0.045 996.0 1007.5 0.120 0.153 1765.1 1907.9 

30 

-0.2 0.021 0.026 0.024 0.030 2982.3 2997.1 0.024 0.031 3102.1 3285.5 

-0.8 0.008 0.010 0.018 0.023 2982.9 2997.8 0.063 0.079 5115.0 5298.4 

0.2 0.021 0.026 0.023 0.029 2981.0 2995.8 0.025 0.031 3084.3 3267.7 

0.8 0.007 0.009 0.020 0.025 2983.9 2998.8 0.069 0.087 5257.8 5441.2 

50 

-0.2 0.017 0.021 0.019 0.023 4969.0 4985.4 0.020 0.025 5142.0 5344.3 

-0.8 0.006 0.007 0.015 0.019 4968.8 4985.2 0.050 0.063 8484.0 8686.3 

0.2 0.015 0.019 0.018 0.023 4969.0 4985.4 0.019 0.024 5123.5 5325.8 

0.8 0.005 0.007 0.015 0.019 4972.3 4988.7 0.055 0.068 8776.9 8979.2 

 

Table 10. Simulation Results of SEM and N = 60 

W T Ρ 
Spatial Estimator Non-spatial Estimator 

Bias ρ̂ RMSE ρ̂ Bias β̂ RMSE β̂ AIC BIC Bias β̂ RMSE β̂ AIC BIC 

W1 

10 

-0.2 0.118 0.147 0.033 0.041 1706.0 1719.2 0.033 0.041 1768.4 2041.0 

-0.8 0.126 0.156 0.033 0.042 1705.3 1718.4 0.033 0.042 1811.5 2084.2 

0.2 0.102 0.129 0.032 0.040 1706.4 1719.6 0.031 0.039 1760.7 2033.4 

0.8 0.039 0.053 0.033 0.042 1705.5 1718.7 0.033 0.042 1781.7 2054.3 

30 

-0.2 0.068 0.085 0.018 0.023 5109.6 5126.1 0.019 0.023 5186.8 5527.5 

-0.8 0.074 0.092 0.019 0.024 5107.5 5124.0 0.020 0.026 5316.6 5657.3 

0.2 0.054 0.068 0.018 0.022 5111.7 5128.2 0.018 0.022 5164.0 5504.7 

0.8 0.021 0.027 0.017 0.022 5114.8 5131.3 0.018 0.022 5239.5 5580.3 

50 

-0.2 0.053 0.066 0.014 0.018 8516.0 8534.0 0.014 0.018 8601.5 8973.8 

-0.8 0.055 0.068 0.014 0.018 8515.7 8533.7 0.015 0.018 8812.2 9184.6 

0.2 0.043 0.054 0.014 0.017 8521.8 8539.9 0.014 0.017 8578.4 8950.8 

0.8 0.016 0.020 0.014 0.017 8517.8 8535.8 0.015 0.019 9000.2 9372.6 

W2 

10 

-0.2 0.023 0.023 0.016 0.020 10005.4 10023.4 0.130 0.131 10856.8 11229.2 

-0.8 0.006 0.007 0.044 0.049 10059.1 10077.2 6.040 6.040 23327.3 23699.7 

0.2 0.023 0.024 0.026 0.031 9962.1 9980.1 0.177 0.178 10922.2 11294.6 

0.8 0.008 0.008 0.073 0.076 9896.2 9914.2 6.662 6.663 23906.3 24278.7 

30 

-0.2 0.015 0.018 0.018 0.023 5109.9 5126.3 0.020 0.025 5355.9 5696.6 

-0.8 0.005 0.006 0.016 0.019 5107.2 5123.7 0.063 0.079 9370.7 9711.4 

0.2 0.014 0.017 0.017 0.022 5111.5 5128.0 0.019 0.023 5334.0 5674.7 

0.8 0.005 0.006 0.014 0.017 5114.3 5130.8 0.057 0.071 9422.9 9763.6 

50 

-0.2 0.011 0.014 0.014 0.017 8516.4 8534.4 0.015 0.018 8882.5 9254.9 

-0.8 0.004 0.005 0.011 0.014 8514.2 8532.2 0.043 0.054 15574.7 15947.1 

0.2 0.011 0.014 0.014 0.017 8522.5 8540.5 0.014 0.018 8859.0 9231.4 

0.8 0.004 0.005 0.012 0.014 8516.2 8534.2 0.046 0.058 15702.2 16074.6 
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7.2.2 Simulation Results of Spatial Error Model 

Our conclusion about the SEM is that the non-

spatial estimator choice of ignoring the presence of 

spatial dependence in the data may not necessarily 

bring tremendous drawbacks in terms of bias and 

RMSE of β̂ when the value of the spatial 

dependence is small, i.e., ρ = {−0.2, 0.2}, where we 

find the bias and RMSE of β̂ resulting from the non-

spatial estimator are less than or equal to their 

counterparts of the spatial estimator in some cases. 

In contrast, the bias and RMSE of β̂ resulting from 

the non-spatial estimator tend to increase as the 

spatial dependence increases, i.e., ρ =
{−0.8, 0.8}, compared to their counterparts of the 

spatial estimator. This pattern is happened 

regardless of the spatial weights matrix used, see 

Table 7 - Table 10. In general, we find that the 

spatial estimator performs mostly acceptably, where 

it produces biases that mostly are 5.71% lower than 

those of the non-spatial estimator in case of low ρ, 

however, this percentage reaches 41.11% in case of 

large ρ on average. As for the model-level, we 

compute AIC and BIC to assess the goodness of fit 

for each regression. The results confirm that the 

spatial model always performs better than the non-

spatial model regardless of the spatial dependence 

strength and the structure of the spatial weights 

matrix. 

As for the level of comparison between the spatial 

weights structures, Fig. 6 shows that the two spatial 

weights matrices have the same pattern of the spatial 

bias and RMSE of β̂ but with different values for 

each of them. The spatial bias and RMSE of β̂ tends 

to decrease when N or T increases. 

On the other hand; Fig. 7 clears that W2 appears a 

significant improvement in the results of bias of ρ̂ 

compared to W1. There is no specific pattern to 

show the relation between the degree of spatial 

dependence in the data and the spatial bias of ρ̂. 

 W1 W2 

Bias 

  

RMSE 

  
Fig. 6: The Spatial bias and RMSE of β̂  in SEM at Different Values of N, T, and W for All ρ 
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  Fig. 7: ρ̂ Bias in SEM at Different Values of N, ρ, and W for All T 

  

  

 

Fig. 8: ρ̂ RMSE in SEM at Different Values of N, T, and W for All ρ 

 

Fig. 8 shows that the results of RMSE of ρ̂ are 

always in favor of W2 across all combinations of N 

and T. In addition to, the RMSE of ρ̂ gradually 

decreases when N or T increases in the two 

structures of weights.  

For a comparison between the two structures of 

weights matrix in terms of the spatial AIC and BIC. 

The results show that the two structures of weights 

matrix seem to provide very similar levels of spatial 

AIC and BIC except for N is large and T is small, 
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where the SEM based on W2 returns much higher 

value of spatial AIC and BIC in this case, see Table 

7 - Table 10. 

 

 

8 Application to Personal Income in 

U.S. States 
This paper is an attempt to use the SPD approach for 

investigating the determinants of PCPI in U.S. 

States. As we know, panel data models have played 

an important role in the literature of analysing 

determinants of PCPI. So our contribution in this 

paper focuses on adding the spatial dimension to the 

analysis to enable us to model the spatial 

dependence. 

Annual data are collected from U.S. census bureau 

and U.S. bureau of economic analysis (BEA) for 48 

U.S. states over 11 periods from 2009 to 2019. The 

total sample size NT equals 528 without any 

missing data. Four model specifications; non-SPD 

models, SLM, SEM, and SAC, are utilized with 

individual FE and RE setting under different 

structures of spatial weights matrix. Additionally, 

attention was paid to direct and indirect effects 

estimates of the independent variables. The second 

objective of this application is to show how to select 

the appropriate model to fit the data. Today, the 

researcher in the spatial econometrics has the 

possibility to choose from many models. First, he 

should ask himself whether there are spatial effects, 

or not, and, if so, which type of spatial interaction 

effects should be accounted for a (1) spatially 

lagged dependent variable, (2) spatially 

autocorrelated error term, or (3) combination of 

them. Second, he asks himself whether they should 

be treated as FE or RE. 

 

Table 11. Definition of the Variables 

Dimension Variable Name 
Variable Name on 

the Site 
Definition 

Measuring 

Unit 
Source 

Dependent 

Variable 
PCPI 

Per Capita Personal 

Income 

Personal income in 

a specific region 

divided by its 

population 

thousand 

dollars 

U.S. 

BEA 

Educational 

Attainment 

ND 
Some College, No 

Degree 

Percentage of 

individuals without 

a degree 

% 

U.S. 

Census 

Bureau 

BD Bachelor's Degree 

Percentage of 

individuals with 

bachelor's degrees 

% 

GD 
Graduate or 

Professional Degree 

Percentage of 

individuals with 

graduate or 

professional degree 

% 

Economy's Size GDPPC 
Per Capita Real 

GDP by State 
Real GDP per capita 

thousand 

dollars 

U.S. 

BEA 

Labor Force 

Type 

Population Population No. of population 
100 thousand 

persons 
Non-farm 

Non-farm 

Employment 

No. of non-farm 

jobs 

Un-employ 
Unemployment 

Rate 

Percentage of 

unemployed persons 

in the total labor 

force 

% 

U.S. 

Census 

Bureau 
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Table 12. Descriptive Statistics of the Variables (NT=528) 

Variable Name Mean Std. Dev. Min. Max. 

PCPI 45.84 8.71 29.86 7.297  

𝐍𝐃 21.34 2.87 15.0 27.90 

𝐁𝐃 18.47 2.96 10.40 26.60 

𝐆𝐃 10.96 2.79 6.30 20.30 

GDPPC 50.08 9.44 33.15 76.36 

Population 65.29 71.20 5.60 395.12 

Non-farm 37.90 40.83 3.72 243.63 

Un-employ 7.06 2.64 2.60 15.10 

 

Table 13. Summary Statistics of the Straight-Line Geographic Distances between Centroids of U.S. States, in 

kilometers 

Min. of all 

Distances 

Mean of all 

Distances 
Max. of all Distances 

Std. Dev. of all 

Distances 

80.41 1676.80 4231.84 948.20 

Links W1: Inverse Distance W2: Inverse Exponential 

Total No. of Links 210 104 

Min. No. of Links 1 1 

Mean No. of Links 4.38 2.2 

Max. No. of Links 11 5 

Threshold Distance 519 

Source of data: https://www.mapdevelopers.com/distance_from_to.php (Accessed Date: 29/8/2019). 
 

8.1 Data Description  
 

8.1.1 Economic Data 

To model regional PCPI, we take into account 7 

explanatory variables as in Table 11. The dataset is 

limited by the amount of information available for 

states involved. 

 

8.1.2 Data of Spatial Weights Matrix 

The data of the straight-line geographical distances 

between centroids of U.S. states, which are 

summarized in Table 13, are used to create the 

spatial relations based on inverse distance and 

inverse exponential distance weights. The threshold 

distance is calculated by the max-min criterion. The 

two used spatial weights matrices are row 

standardized to facilitate interpretation, see [27]. 

 

8.2 Testing the Multicollinearity 
The first step of data processing is to try to ensure 

that there is no high linear correlation between 

independent variables.  

We used the most common methods to detect the 

multicollinearity: (1) Pearson correlation matrix 

between each pair of variables and (2) the variance 

inflation factor (VIF), see [28], [17], and [29]. 
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Table 14. Pearson Correlation Matrix and VIF 

Variable ND BD GD GDPPC Population Non-farm Un-employ 

ND 1       

BD -0.21a 1      

GD -0.54a 0.72a 1     

GDPPC -0.30a 0.60a 0.56a 1    

Population -0.19a 0.10c 0.15a 0.20a 1   

Non-farm -0.20a 0.14b 0.18a 0.24a 0.99a 1  

Un-employ 0.04a -0.45a -0.21a -0.28a 0.18a 0.14a 1 

VIF1 1.60 3.10 3.34 1.75 239.93 240.23 1.66 

VIF2 1.60 3.10 3.23 1.72 ---- 1.15 1.38 

Notes: VIF1: is VIF for all variables, VIF2: is VIF after removing “Population”. The superscripts a, b, and c indicate 

statistical significance at the 0.001, 0.01, and 0.05 levels, respectively. 
 
Table 14 shows that there is a strong linear 

correlation between (population and non-farm jobs). 

Additionally, the results of VIF for the first time 

with all independent variables (VIF1) confirmed 

that there is a multicollinearity problem between 

independent variables; where in most empirical 

studies, the general rule of thumb is that VIF values 

exceeding 5 need further investigation, while VIF 

values exceeding 10 indicate to serious 

multicollinearity requiring correction, see [17].  If 

two independent variables are almost linearly 

correlated, we can eliminate one of them to combat 

multicollinearity, see [28]. Therefore, we drop 

(population) from the model. All values of new VIF 

(VIF2) less than 5 confirmed on there is no 

multicollinearity.  

 

8.3 Hausman Specification Test 
Because ignoring spatial dependence may lead to 

biased and inefficient estimates, therefore, panel 

data models are applied with/ without spatial effects 

to avoid these shortcomings, and then allow the data 

to determine the most appropriate approach. Before 

applying the framework in Fig. 9, the Hausman 

specification test is conducted to compare between 

RE and FE estimators. Hausman [30] developed this 

test for non-SPD model. Mutl and Pfaffermayr [31] 

showed how to apply this procedure to a spatial 

framework. 

The results of the all estimated spatial and non-

spatial panel data models are reported in Table 15 

according to two methods of wights matrices in 

context of FE and RE settings which tested by 

Hausman specification test. As shown in Table 15, 

the null hypothesis of the Hausman test is rejected at 

the 0.001 level of significance for all models, 

indicating that FE specifications are more suitable 

than RE specifications. 

 

8.4 Testing the Spatial Dependence 
As a next step, we need to capture spatial 

dependence in the data. Therefore, the following 

framework in Fig. 9 is proposed. Lagrange 

Multiplier tests, i.e., LM -lag, LM-error tests, and 

their robust counterparts (RLM), can be applied to 

specify whether the estimation of a spatial model is 

warranted. If the null hypotheses of LM tests are 

rejected for the absence of SL or spatial error (SE) 

in the model, it proves that SPD is a suitable method 

for the analysis. Burridge [32] and Anselin [19] 

proposed LM tests for a spatially lagged dependent 

variable and SE correlation term in the case of 

cross-sectional data. The hypotheses for the LM 

tests are: 

For SLM: 
H0: λ = 0    𝑣𝑠.   H1: λ ≠ 0, henceforth 

LMλ 

For SEM: 
H0: ρ = 0    𝑣𝑠.   H1: ρ ≠ 0, henceforth 

LMρ 
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Anselin et al. [33] also proposed robust LM (RLM) 

statistics for a spatially lagged dependent variable in 

the local presence of SE autocorrelation and another 

one for SE autocorrelation in the local presence of a 

spatially lagged dependent variable. In other words, 

the hypotheses for RLM tests are: 

For SLM: 
H0: λ = 0   given  ρ ≠
0  𝑣𝑠.  H1: λ ≠ 0, henceforth LMλ|ρ   

For SEM: 
H0: ρ = 0   given  λ ≠
0 𝑣𝑠.  H1: ρ ≠ 0, henceforth LMρ|λ 

 

Table 15. Results of Estimated Panel Data Models 

Variable 

Non-spatial W1: Inverse Distance W2: Inverse Exponential 

FE RE 
SLM SEM SLM SEM 

FE RE FE RE FE RE FE RE 

ND -0.32b -0.37a -0.18c -0.17 c -0.06 -0.30c -0.20c -0.20c -0.25c -0.31b 

BD 1.39a 0.83a 0.40a 0.39a 0.22 0.56a 0.74a 0.68a 1.23a 0.68a 

GD 2.47a 1.69a 1.11a 0.99a 0.68a 1.31a 1.42a 1.29a 2.25a 1.47a 

GDPPC 0.27a 0.25a 0.25a 0.27a 0.30a 0.35a 0.27a 0.27a 0.30a 0.32a 

Non-farm 0.09a 0.02c 0.14a 0.08a 0.14a 0.02 0.13a 0.08a 0.08a 0.003 

Non-employ -0.39a -0.95a -0.02 -0.14b -0.24a -0.78a -0.08 -0.22a -0.46a -0.89a 

Intercept -14.3b 12.9a -14.8 a -10.9a 17.36a 14.52a -16.6a -10.9b -10.8c 14.14a 

𝛌 ---- ---- 0.59a 0.58a ---- ---- 0.42a 0.42a ---- ---- 

𝝆 ---- ---- ---- ---- 0.89a 0.61 ---- ---- 0.33a 0.40 

Hausman 22.88a 68.40a 189.78a 116.89a 236.47a 

Note: The superscripts a, b, and c indicate statistical significance at the 0.001, 0.01, and 0.05 level, respectively. Non-

spatial models are estimated by Within-group OLS for FE and GLS for RE. Spatial models are estimated by ML 

(transformation approach) for all models except for SEM-RE is estimated by GMM. 

 

Recently, Anselin et al. [6] also developed the 

classical LM tests for SPD models, and Elhorst [10] 

developed the robust counterparts of these LM tests 

for SPD models.   

Table 16 shows that the classical LM tests of SL and 

SE terms are significant at the 0.001 level. 

However, the RLM tests are significant for SL term 

but not significant for SE term in all structures of 

spatial weights matrices. Therefore, our model will 

include SL term and exclude SE term. To be more 

certain of which terms are included in our model, 

we'll compare between the SLM and SEM models 

with SAC, which includes the two types of spatial 

dependence terms, in terms of goodness of fit 

criteria to select the best model for the data as in 

Table 17.  

In some way, this is in line with some of the applied 

literature that estimated the SAC if the researcher 

doesn’t have a strong prior in favour of either SLM 

or SEM. In other words, an empirical strategy could 

be to start from the most general specification, SAC, 

along with the appropriate type of individual model, 

SLM or SEM, and let the data tell us which of the 

two spatial processes – if any and if not both – is 

more appropriate, by looking at the significance of 

spatial coefficients and goodness of fit criteria, for 

more details, see [34]. 

 

8.5 Model Selection 
As in a lot of empirical researches, the models are 

comparable in terms of AIC, and BIC. These criteria 

are one of the best methods to select the most 
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adequate weighting matrix, see [35] and [36]. Table 

17 shows that the values of the goodness of fit 

criteria for the non-spatial model are much bigger 

than for all SPD models. As expected, the SLMs 

record the smallest values of AIC and BIC 

compared with their counterparts for SEM and SAC 

models. Therefore, we can say that SLM is the most 

adequate model among the candidate models. On 

purely statistical grounds, the SLM based on W1 

returns a slightly lower AIC and BIC compared to 

W2. 

 

Table 16. Results of LM Tests with Different Spatial Weights Matrices 

Test 
W1: Inverse Distance W2: Inverse Exponential 

Lag Error Lag Error 

LM 73.70a 20.41a 51.16a 12.86a 

RLM 53.88a 0.32 38.42a 0.13 

Note: The superscript a indicates statistical significance at the 0.001 level.  
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Fig. 9: Our Strategy for Selecting the Most Appropriate SPD Model 

Note: 𝐿𝑀𝜆 and 𝐿𝑀𝜌: The Lagrange Multiplier Tests for a Spatially Lagged Dependent Variable and Spatial 

Error Correlation Respectively - 𝐿𝑀𝜆|𝜌 and 𝐿𝑀𝜌|𝜆: The Robust Counterparts of these Tests - SLM: Spatial Lag 

Model - SEM: Spatial Error Model - SAC: Spatial Autoregressive Combined Model - AIC: Akaike Information 

Criterion - BIC: Bayesian Information Criterion. 

 

Table 17. Results of Estimated SPD Models with Spatial FE 

Criterion 
Non-

spatial 

W1: Inverse Distance W2: Inverse Exponential 

SLM SEM SAC SLM SEM SAC 

AIC 1813.19 1390.42 1525.50 1392.42 1463.27 1621.76 1465.27 

BIC 1843.08 1423.81 1558.89 1429.98 1496.66 1655.15 1502.83 

8.6 Interpretation of the Results 
The coefficients interpretation in the linear 

regression model is not complicated. Since the 

model is linear in parameters and assumes that the 

observations are independent, the parameter can be 

explained as the partial derivative of the response 

variable with respect to the independent variable. 

When we consider SPD models, the interpretation 

needs more proper considerations to fully interpret 

the effect of changes, direct and spillover effects, 
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must be obtained and interpreted as the coefficients 

of model, see [37]. 

In SLM, the direct effect is the average of main 

diagonal elements of the matrix in (32), and the 

spillover effect is the average of row off-diagonal 

elements in the same matrix, see [38] and [39]. 

 

MSLM = SN
−1βk 

 

(32) 

 

Table 18 provides the measures of direct, spillover, 

and the total effect of each regressor to assess the 

magnitudes of impacts arising from changes in the 6 

independent variables under the study. 

The first column of Table 18 express about the 

direct effects, which measure how much the 

dependent variable, PCPI, changes in a state when a 

given independent variable changes in that same 

state. The second column refers to the spillover 

(indirect) effects of changes in our independent 

variables; Finally, the last column shows the point 

estimates of the total effects that are defined as the 

sum of the direct and indirect effects. We note that 

all effects of four explanatory variables are 

statistically significant at the 0.001 level and one 

variable is significant at 0.05. 

In general, we can conclude the following points 

from Table 18: 

(1) The direct effect of increasing ND in a specific 

state by 1% directly reduces PCPI by $214.5 in 

the same state. Also, the indirect effect of 

increasing ND in neighboring states is negative 

on the PCPI by $229.0. The total effect of ND is 

negative and consists mostly of indirect effect.  

(2) The BD has a positive direct and indirect effect 

on PCPI, indicating that we would expect an 

increase in PCPI in states with a high level of 

BD. The magnitude of the indirect effect 

produced from BD increases by a very small 

amount over the magnitude of the direct effect, 

indicating that the direct and indirect effects of 

this variable are almost equal.  

(3) The direct and indirect effects of GD are 

positive; this refers to that the increase in GD in 

a specific state by 1% directly increases the 

PCPI by $1302.8 in the same state and 

indirectly increases it in other states by $1391.1.  

(4) The direct and indirect effects of GDPPC are 

positive; as the GDPPC increases by $1000 in a 

particular state, the PCPI will increase by 

$302.5 on average in the same state, and 

increase by $323.0 on average in other states.   

(5) The number of non-farm jobs has a positive 

direct and indirect effect on the PCPI; when the 

number of non-farm jobs increases by 100,000 

jobs in a particular state, the PCPI increases by 

$159.0 in the same state, and increase by $169.8 

on average in other states. 

(6) The impact of the unemployment rate on PCPI 

is not significant. 
 

Table 18. Direct and Indirect Effects of SLM with 

Spatial FE and using W1 

Variable 
Direct 

Effects 

Spillover/ 

Indirect 

Effects 

Total 

Effects 

ND -0.2145c -0.2290c -0.4435c 

BD 0.4741a 0.5062b 0.9803a 

GD 1.3028a 1.3911a 2.6939a 

GDPPC 0.3025a 0.3230a 0.6255a 

Non-farm 0.1590a 0.1698a 0.3289a 

Un-employ -0.0290 -0.0310 0.0601 

Note: The superscripts a, b, and c indicate statistical 

significance at the 0.001, 0.01, and 0.05 level 

respectively. 

 

 

9 Conclusions 
This paper is an attempt to assess the risks involved 

in ignoring the spatial dependence that characterizes 

the data. Due to the importance of this topic, our 

contribution is not limited by this empirical 

application, but also we conduct a MCS study to 

evaluate the performance of both the spatial MLE 

(transformation approaches) and the non-spatial 

OLS (within-group) estimator for two specifications 

of the most common spatial data generating 

processes (DGPs), i.e., SLM and SEM with spatial 

FE under different scenarios of N, T, and spatial 

dependence parameters. Besides, we employ two 

structures of weights matrices; i.e., inverse distance 

(W1) and inverse exponential distance (W2), to draw 

and estimate each DGP aiming to compare the 

impact of these structures on each model. 

In a summary way, the following points can be 

concluded from our simulation study: 
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(1) On the Parameter-Level: The non-spatial bias 

and RMSE of β̂ are functions of the degree of 

spatial dependence in the data for both models, 

i.e., SLM and SEM.  The choice of the non-

spatial estimator may not lead to serious 

consequences in terms of bias and RMSE of β̂ 

when the spatial dependence is small. On the 

contrary, the choice of the non-spatial estimator 

always leads to has disastrous consequences if 

the spatial dependence is large. 

(2) On the Model-Level: The SLM always 

performs better than its non-spatial counterpart 

when λ is large in terms of AIC and BIC. 

However, the spatial AIC and BIC in SEM are 

always much less than their non-spatial 

counterparts in all cases. 

(3) For a comparison between the two structures of 

weights matrix in terms of the spatial AIC and 

BIC. The results of SLM show that the two 

structures of weights matrix seem to provide 

very similar levels of spatial AIC and BIC, 

However, the SLM based on W2 returns a 

slightly higher value of spatial AIC and BIC in 

all cases. This result is also true for SEM except 

for N is large and T is small, where the SEM 

based on W2 returns much higher value of 

spatial AIC and BIC in this case. 

On the other hand; our empirical study confirms the 

following points:  

(1) PCPI is spatially dependent lagged correlated. 

(2) There are no differences among the two used 

structures of spatial weights matrix in terms of 

the inference drawn from Hausman and LM 

tests, the number of significant variables, and 

their significance levels. However, the 

differences among the two used structures can 

be confined in the values resulting from each 

procedure in our analysis not in the conclusion, 

for example, the W1 yields a higher 

improvement in terms of goodness of fit criteria.  

In the future, this work can obviously be 

extended along many dimensions, for example; 

1. The set of maintained assumptions in our 

simulation study can be made more general. 

Here the first extension that can be addressed is 

to allow for the RE specification. In other 

words, a MCS study can be performed to 

compare the performance of the estimators used 

in non-spatial and SPD models with RE settings. 

2. It could be interesting to consider studying the 

estimation procedures used in dynamic SPD 

models or SPD models with random 

coefficients, see [40, 41, 42].  

3. We here study only the time-invariant spatial 

weights matrix; therefore, it is important to 

study the situation of the spatio-temporal 

weights matrix that allows decomposing the 

spatial effects when the spatial relations are 

being collected continuously over time. 

4. The models under consideration in our study 

can be extended to include other elements. In 

particular, it would be helpful to consider a SL 

in the explanatory variables, or there is a linear 

relationship (multicollinearity) between the 

explanatory variables, see [43, 44, 45, 46]. 

5. A final remark needs to be made concerning the 

interpretation of parameter estimates in the SPD 

models. Unlike in OLS regressions, parameter 

estimates in SPD models that contain SL of the 

dependent variable have not a direct 

interpretation due to the embedded feedback 

effects among spatial units. Therefore, LeSage 

and Pace [38] developed summary measures 

reflecting the impact of change in explanatory 

variables on the dependent variable as we 

cleared previously. To meaningfully interpret 

parameter estimates in the context of the 

proposed SPD models, the development of 

summary measures appears to be a promising 

area for future researches. 
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